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Czechoslovak Mathematical Journal, 42 (117) 1992, Praha 

SEQUENTIAL CONVERGENCES IN -£-GROUPS 

WITHOUT URYSOHN'S AXIOM 

JAN JAKUBIK, Kosice*) 

(Received February 25, 1991) 

The system ConvG of all sequential convergences on an ^-group G satisfying 
Urysohn's axiom was investigated in the papers [4-9], [11], [12]. 

All ^-groups which are considered in the present paper are assumed to be abelian. 

Let us denote by conv G the system of all sequential convergences on G which satisfy 

the usual conditions (as in the above mentioned papers) except Urysohn's axiom . 

(For a detailed definition cf. Section 1 below.) 

One of the reasons for studying conv G is the fact that the o-convergence on G 
belongs to convG, but it need not belong in general to the system ConvG . For 
example, the o-convergence on the vector lattice S does not satisfy Urysohn's axiom 
(cf. e.g., [13], Chap . I l l , §9). 

Both the systems Conv G and conv G are partially ordered by inclusion. 

For each a G conv G there exists a uniquely determined element a* of Conv G 
such that a -̂  a* and whenever /? G ConvG with a ^ /?, then a* ^ /?. Hence the 
intersection of the interval [a, a*] of conv G with the system Conv G is a one-element 
set. 

Sample results: 
For each cardinal m there exist an ^-group H and a G conv H such that 

card[a,a*] > m . 

The following conditions are equivalent: 

(i) conv G -= Conv G; (ii) card Conv G = 1 . 

Let convG ^ ConvG . Then the set convG \ ConvG is infinite. Moreover, if the 
breadth of G is infinite, then 

card(conv G \ Conv G) ^ 2N° . 

*) Supported by SAV grant 362/91. 
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A constructive description of atoms of ConvG was given in [7]. It will be proved 
below that there are no atoms in conv G. 

The system conv G is a lower semilattice, but it need not be a lattice. If a0 is the 
o-convergence on G and /? £ conv G, then the join a0 V /? does exist in conv G. If G 
is (K0,2)-distributive, then convG is a complete lattice. 

The system ConvG is in a certain sense a closed subset of convG (cf. 2.9). Each 
interval of conv G is a Brouwerian lattice. For the corresponding dual infinite dis
tributive law the following negative result will be proved. Let the breadth of G 
be infinite and suppose that G is archimedean, orthogonally complete and divisible; 
then there are a n (n £ N) and /? in Conv G such that both the elements /?V( /\ an) 

n£N 
and /\ (/3 V a n ) do exist in convG (and in ConvG), but these elements fail to be 

n£N 
equal. 

1. PRELIMINARIES 

Let G be an ^-group. Next, let g £ G and (gn) £ GN. If gn = g for each n £ N, 
then we write (<7n) = const g. For (hn) £ GN we set (hn) ~ (gn) if there is m £ N 
such that hn = gn for each n £ N with n^ m. 

Let a be a subset of the semigroup (GN)+. Consider the following conditions for 
the set a: 

(I) If (gn) £ a, then each subsequence of (gn) belongs to a. 
(II) Let (gn) £ ( G N ) + . If each subsequence of (gn) has a subsequence belonging to 

a, then (gn) belongs to a. 
(IF) Let (gn) £ a and (ftn) £ (G")+. If (hn) ~ (gn), then (hn) £ a. 
(Ill) Let g £ G. Then const g belongs to a if and only if g = 0. 

The system of all convex semigroups a of (GN)* which satisfy the conditions (I), 
(II) and (III) (or the conditions (I), (IP) and (III)) will be denoted by ConvG (or 
convG, respectively). (Cf. e.g., [10], Section 1.) It is obvious that ConvG C convG. 

For (gn) £ GN, g £ G and a £ convG we put gn —>a g if and only if (\gn— g\) £ a. 
Let a(o) be the set of all sequences (<7n) in G + having the property that there is 

(hn) £ (GN)+ such that (i) /in+i ^ hn is valid for each n £ N; (ii) / \ hn = 0; (iii) 
n€IV 

there is m £ N such that hn ^ gn for each n £ N with n ^ m. (Then we clearly 
have a(o) £ convG.) The set a(o) will be said to be the o-convergence in G. 

As we have already remarked above, a(o) need not belong to ConvG. 
Both ConvG and convG are partially ordered by inclusion. 
For a\ and a 2 in conv G with a\ ^ a2 we denote by [ai ,a 2] the corresponding 

interval of conv G. Let a(d) be the set of all (gn) £ (GN)+ such that the set 
{n £ N: gn ^ 0} is finite. Then a(d) is the least element of both Conv G and 
conv G. 
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Let a G convG. We denote by a* the set of all elements (gn) of (GN)+ such that 
each subsequence of (gn) has a subsequence belonging to a. Clearly a C a*. 

Lemma 1.1. Let a G convG. Then a* G ConvG. Iff3£ ConvG and ft ^ a. 
then P^ a*. 

P r o o f . The first assertion is a consequence of [5], Theorem 2; the latter is 
obvious. • 

R e m a r k 1.2. In [12] the author studied several types of kernels in a convergence 
if-group, where "convergence -?-group" denoted an if-group with a fixed convergence 
belonging to ConvG. Nevertheless, the condition (II) was not applied and thus the 
results and their proofs are valid also in the case when the convergence under con
sideration belongs to conv G. [In the original version (which concerns convergences 
belonging to ConvG), Lemma 4.1 is to be cancelled; namely in the proof of this 
lemma the notion of o-convergence was used. Lemma 4.1 was not applied in the 
proofs of further results of [12].] 

2. THE PARTIALLY ORDERED SYSTEM convG 

Again, let G be an ^-group. If {<*»}ie/ is a nonempty system of elements of conv G, 
then the set f] a,- is nonempty and satisfies the conditions (I), (IP) and (III). Hence 
we have %eI 

Proposition 2.1. Let X ^ 0 be an upper-bounded subset of conv G. Then X is 
a complete lattice. If {ai}t'eI iS a s above, then f] a,- = A a» IS vaiid -J- convG. 

•€I t€I 

We recall the following notation (cf. [5], Section 2). 
Let 0 ^ A C (GN)+. We denote 6A — the set of all (gn) G (GN)+ such that (gn) 

is a subsequence of some sequence belonging to A; 
(A) — the set of all (gn) G (GN)+ having the property that there exist k £ N and 

foi)> (0n)> • • • > (9n) e A such that gn ^ gn + gn + . . . + gn holds for each neN; 
[A] — the set of all (gn) G (GN)+ having the property that there exists (hn) G A 

such that gn ^ hn is valid for each n G N. 
Now, let A0 be the set of all (gn) G (GN)+ that there exists (hn) G A with 

(9n)~(hn). 

Lemma 2.2. Let 0 ^ A C (GN)+. Put B = [(6A)], Bx = B°. Then 
(i) B = 6B = (B), and 
(ii).Bi = flJ=«Bi = (.Bi). 

P r o o f , (i) is a consequence of 1.15 in [6]. It is obvious that 6(A°) = (6A)0, 
(A0) = (A)0 and [A0] = [A]0. Hence (i) implies that (ii) holds. D 
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From the definition of convG and from 2.2 we immediately obtain: 

P r o p o s i t i o n 2 .3 . Let 0 ^ A C (GN)+. Put B = [{6A)]°. If there exists 

O / I / G G such that const g £ B, then there is no a £ conv G with A C a. If there 

is no element g E G such that g -^ 0 and constg £ 5 , then B £ convG; moreover, 

whenever a £ convG and AC. a, then B C a. 

Next, 1.1 yields: 

L e m m a 2 .4 . Let 8 / . 4 C (GN)~*~. Then the following conditions are equivalent: 

(i) There exists a £ C o n v G with AC a. 

(ii) There exists (3 £ conv G witA A C f3. 

P r o p o s i t i o n 2 .5 . There exists an £-group G such that the partially ordered set 

conv G faiis to be a lattice. 

P r o o f . In [6], Example 7.6, it was proved that there exists an ^-group G having 

the property tha t there are a\ and a-i in Conv G such tha t whenever a £ Conv G, 

then ai U 0:2 fails to be a subset of a. Now from 2.4 we obtain tha t whenever 

(3 £ conv G, then a i U a^ fails to be a subset of /?. Therefore the join a\ V c*2 does 

not exist in conv G. • 

By appliyng 2.1, 2.4 and proceeding analogous by as in [5], Theorem 2.6 we obtain: 

P r o p o s i t i o n 2 .6 . The following conditions are equivalent: 

(i) conv G is a lattice. 

(ii) conv G is a complete lattice. 

(iii) conv G has a greatest element. 

L e m m a 2.7. Let {c t ,} , € / be a nonempty subset of conv G. Put A = (J a , and 

B = \(&AJ\. Then the following conditions are equivalent: teI 

(i) B £ conv G. 

(ii) H = V a.'-
iei 

P r o o f . The implication (ii) => (i) is obvious. Clearly A0 = A. Thus, 2.2 and 

2.3 yield t ha t (i) => (ii) is valid. • 

From 2.1 , 2.4, 2.7 and [5], 2 .1, 2.2 and 2.5 we obtain: 

P r o p o s i t i o n 2 .8 . Let { o , } t € / be a nonempty subset of ConvG. 

(a) The meet of the system {<*,},£/ in ConvG coincides with the meet of this 

system in conv G. 

(b) The join of the system {c*»},'e/ in ConvG exists if and only if the join of this 

system in conv G exists, and in this case these joins coincide. 

104 



If a G conv G and H is an ^-subgroup of G, then we put 

a[H] = a n ( H N ) + . 

It is obvious that a[H] G conv H. 

E x a m p l e 2.9. Consider the vector lattice S (cf. [13], p. 79-80). Let m be a 
cardinal and let I be a set with card I > m. Next, let G, = S for each i G I. We 
denote by G the direct sum J^ G,. 

•€I 

Let i G I. For y G G let </,• be the component of g in G,. We denote by a,- the set 
of all (gn) G (GN)~*~ having the property that there exists m € N such that (<7n,)n^m 

belongs to the set a(o)[G,], and for each j G I with y -̂  i, the sequence (gnj)n^m 

belongs to the set a(d)[Gj]. From 2.9 we infer a,- G convG and that, whenever i(l) 
and i(2) are distinct elements of I, then a»(i) ^ <*t(2)« Next, it is easy to verify that 
a* consists of all (hn) G (GN)~*~ having the property that there exists m G N such 
that ( h n ) n ^ m belongs to a(o)*[G,], and for each j € I with .; ^ i, the sequence 
(hnj)n>m belongs to a(d)[Gj]. 

Now let a be the set of all (xn) G (GN)~*~ which satisfy the following condition: 
there exist m G N and a finite subset Ii of I such that ( x n , ) n ^ m G a(o)[G,] if i G Ii, 
and (xni)n^m G a(f/)[G,] otherwise. Then in view of 2.3 we have a G convG. Next, 
a, < a and a < a V a* for each i G I. Thus a\/ a* ^ a* for each i G I. If i(l) and 
i(2) are distinct elements of I, then aVa* /^ -̂  a V a . / 2 y This yields that the power 
of the interval [a, a*] of conv G is greater or equal to card I > m. 

L e m m a 2.10. The following conditions are equivalent: 
(i) ConvG has a greatest element; 
(ii) convG has a greatest element. 

P r o o f . This is an immediate consequence of 1.1. D 

Proposition 2.11. Assume that the l-group G is (N0,2)-distributive. Then 
conv G is a complete lattice. 

P r o o f . In view of [12], ConvG is a complete lattice. Hence according to 2.10, 
conv G has a greatest element. Now 2.6 implies that convG is a complete lattice. 

D 
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3 . LATTICE ORDERED GROUPS HAVING FINITE BREADTH 

A subset A of G+ is said to be disjoint if a\ A a2 = 0 whenever a\ and a2 are 
distinct elements of A. If G has an infinite disjoint subset, then we say that the 
breadth of G is infinite; otherwise G is said to have a finite breadth. 

Lemma 3.1. Let G be a linearly ordered group, a £ convG, a ^ <*(o). Then 
a = a(o). 

P r o o f . The case a = a(d) being trivial we can suppose that a > a(d)} hence 
there exists (<7n) £ a such that gn(\) ^ yn(2) whenever n(l) and n(2) are distinct 
elements of N. Let 0 < g £ G. Proposition 2.3 yields that the set { n £ J V : ( / n ^ g} 
is finite. Thus for each n £ N there is m(n) £ N such that 

9m(n) = max{(7t : * £ N and t^ n). 

If n(l) and n(2) are positive integers with n(l) < n(2), then (/m(n(i)) ^ 0m(n(2))- By 
applying 2.3 again we get that f\ gm(n) = 0. Thus (gn) £ a(o) and hence a ^ a(o). 

neN 
Therefore in view of the assumption we have a = &(o). • 

Lemma 3.2. LetG\ andG2 be£-groups, a, £ convG, (i = 1 , 2 ) andG = GixG 2 . 
For g € G let g% (i = 1,2) be tbe component of g in G,. Let a be ibe set of ai7 
(<7n) £ (GN)+ having the property that there exists m £ N sucb tbafc (^n)n^m £ <*» 
(i = 1,2). Tben a £ conv G and the mapping (a\, a2) —• a is an isomorphism of the 
partially ordered system conv(Gi x G2) onto convG. 

P r o o f . This can be verified by using 2.3 and applying analogous steps as in 
[4]. Section 4. • 

Similarly, from 2.3 and by applying the same procedure as in the proof of [4], 
Section 5, we obtain: 

Lemma 3.3. Let G and H be t-groups such that G is a lexico extension of H. 
Let a £ Conv H. Next, let (3 be the set of all (gn) £ (GN)+ having the property that 
there exists m £ N such that (gn+m)neN belongs to a. Then ft £ convG and the 
mapping a —* ft is an isomorphism of the partially ordered set conv H onto conv G. 

Lemma 3.4. (a) Let G\, G2 and G be as in 3.2. Let a; be the o-convergence on 
d (i = 1, 2). Next, let a be as in 3.2. Then a is the o-convergence on G. 

(b) Let G and A be as in 3.3 and let a be the o-convergence on H. Next, let ft be 
as in 3.3. Then ft is the o-convergence on G. 

The p r o o f is easy. 
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It is well-known that each i?-group having a finite breadth can be built up from 
a finite number of linearly ordered groups by forming direct products and lexico 
extensions (cf. [1], [2]). Next, if G is a linearly ordered group, then a(o) G ConvG. 
Thus Lemmas 3.1-3.4 and [4], Theorem 3.9 yield: 

Proposition 3.5. Let G be an t-group having a finite breadth. Then conv G = 
ConvG. 

Lemma 3.6. Let G be an t-group having a finite breadth. Then G is comletely 
distributive. 

P r o o f . This is an easy consequence of the fact that each interval [ti,v] of G 
with u <v has a subinterval [ui, vi] such that u\ < v\ and [tii, v\\ is linearly ordered. 

D 

Propositon 3.7. Let G be an t-group having a finite breadth. Then convG is a 
complete lattice. 

P r o o f . It suffices to apply 2.12 and 3.6. D 

4. THE SYSTEM convG\ConvG 

The main results of this section concern the case when the breadth of G is finite. 
Let (xn) G (GN)+, A = {(xn)}. If a = [{6A)]° and a E convG, then in view of 

2.3, a is the least element of conv G which contains (xn). In this case a will be said 
to be a principal convergence generated by the sequence (xn). 

The following assertion is obvious. 

Lemma 4.1. Let a be an atom of conv G. Then a is a principal convergence 
generated by each sequence (xn) G a with (xn) £ a(d)(G). 

Lemma 4.2. Let (xn),(yn) G (GN)+, xn ^ xn+i for each n G N. Put A = 
{(xn)}. Then the following conditions are equivalent: 

(i) There are positive integers k\ and m such that ym+n -̂  k\xn for each n G N. 

(n)(yn)e[(6A)\\ 

P r o o f . The implication (i) => (ii) obviously holds. Assume that (ii) is valid. 
Then there exist subsequences (zn), (zn)} . . . , (zn) of (xn) and positive integers k 
and m such that 

ym+n ^k(zn+zl + ... + zn) 

is valid for each n £ N. Since zn ^ xn for j = 1, 2, . . . , t we infer that (i) holds. D 
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Corollary 4.2.1. Let a be a principal convergence in G which is generated by 
a strictly decreasing sequence (xn). Let (yn) G a. Assume that (yn) is strictly 
decreasing. Let m and k\ be as in 4.2. Then the set 

{neN: y2n < kixn} 

is infinite. 

P r o o f . Let n G N, n > m. Then y2n < t/m+n, in view of 4.2 the relation 
t/2n < k\xn is valid. • 

Lemma 4.3. Assume that G is linearly ordered. Let a G conv G, a ^ a(d). Then 
there exists (xn) G a such that xn > xn+i for each n G N, and f\ xn = 0. 

P r o o f . Since a -/ a(d) there is (yn) G a such that yn ^ 0 for each n £ N. 
Denote zn = y\ A y2 A . . . A yn. Hence 0 < zn -̂  yn for each n G N; thus (zn) G a. 
According to 2.3, for each n G N there is m G N with m > n such that zm < zn. 
Thus there is a subsequence (xn) of (zn) such that xn > xn+i for each n G N. 
Clearly (xn) G a. Hence f\ xn = 0. • 

n£N 

Lemma 4.4. Let a G conv G and let (xn) be a strictly decreasing sequence be
longing to a. Then a fails to be an atom in convG. 

P r o o f . By way of contradiction, suppose that a is an atom of conv G. From 
(xn) G a we infer that f\ xn = 0. Next, a is a principal convergence generated by 

neN 
(xn). We construct by induction a subsequence (/n) of (xn) as follows. 

We put t\ = x\. Suppose that t\) t2, ..., tm are already defined. From f\ xn = 0 
neN 

we obtain /\ (m + l)xn = 0. Hence there is n(l) G N such that £n(i) < tm and 
neN 

(m -f l)xn(i) ^ -r2(m+i). We put <m + i = xn(i). 
The relation X2(m-fi) ^ (m -f lj^m+i is valid for each m £ N. Hence if k\ G N, 

m E N and m -f 1 > ki, then 

£2 (m+l) ^ *l^m+l-

In view of 2.3 there exists a principal convergence /? which is generated by (/n) . 
Clearly (tn) G a and hence ft -̂  a . Next, according to 4.2.1 the sequence (xn) does 
not belong to /?. Hence j3 < ct, which is a contradiction. • 

Lemma 4.5. Let G be a linearly ordered. Then conv G has no atom. 

P r o o f . This is a consequence of 4.3 and 4.4. 
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In the remaining par t of the present section we assume tha t G is a nonzero £-group 

having a finite breadth. Thus (cf. [1] or [2]) there are nonzero linearly ordered convex 

^-subgroups G i , G2, • • •, G m of G such tha t 

(i) if H -^ {0} is a convex linearly ordered subgroup of G, then there is a uniquely 

determined i € {1, 2 , . . . , m} such tha t H C G t ; 

(ii) if 0 < gi G G, for each i G {1, 2 , . . . , m } , then {5^1, ̂ 2, • • •, 9m} is a maximal 
disjoint subset of G. 

Let- {<7i> <72> • • •»9m) be a fixed subset of G with the property as in (ii). D 

L e m m a 4 .6 . Let a be a principal element of conv G which is genetated by (xn), 

a ^ &(d). Then there are i G { 1 , 2 , . . . , m} and (?/n) G ct such that 0 < yn G G, for 

each n G N. 

P r o o f . Let i G { 1 , 2 , . . . , m } . Denote x n = x n A <7,. In view of the condition 

(ii) above we conclude tha t for some i, the set {n G N: xn -^ 0} is infinite. Hence 

for this i, there is a subsequence (yn) of (xn) having the desired properties . 

For i G I — { 1 , 2 , . ..,m} and /? G conv G, we denote by /( /?) the set of all 

sequences (vn) in G + which have the following property: there exists m £ N (de

pending on (vn)) such tha t the sequence (vn A g , ) n ^ m belongs to /?, and vn Agj = 0 

whenever n ^ m and j G i ' \ { i } . D 

The following lemma is an obvious consequence of 2.3. 

L e m m a 4 .7 . Let i G I; next, iet /?i and fa he the elements of conv G t . Then 

/(A) e convo. If/?! < /?2, then / (f t ) < /(/?2). 

L e m m a 4 .8 . Let G be an i-group of a finite breadth. Then conv G has no atom. 

P r o o f . By way of contradiction, suppose tha t a is an a tom of conv G. Hence 

a is principal. Let (xn) and (yn) be as in 4.6. Then there is a principal element (3 

of conv Gi which is generated by (yn). Hence /(/?) ^ a and a(d) -^ / ( /? ) . Since a 

is an a tom we infer tha t a = / ( / ? ) . Also, /? fails to be the least element of conv Gi . 

Thus according to 4.5 there is fa G convG, with fa < fa In view of 4.7 we obtain 

tha t f(fa) G convG and {(fa) < <*, which is a contradiction . 

Let us remark tha t the above lemma will be sharpened in Section 5 below. D 

Coro l lary 4 .9 . Let G be an i-group having a finite breadth. Assume that 

card Conv G > 1. Then the set conv G \ Conv G is infinite. 

P r o o f . According to [4], Theorem 6.5, the set C o n v G is finite. Next, in view 

of card C o n v G > 1 there is a G C o n v G with a -^ a(d). Hence the assertion follows 

from 4.8. D 
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L e m m a 4.10. Let G be an t-group having a finite breadth. Then the following 
conditions are equivalent: 

(i) cardConvG = 1. 
(ii) The set conv G \ Conv G is finite. 

P r o o f . The implication (ii) => (i) is obvious. Let (i) be valid. By way of 
contradiction, suppose that card conv G > 1. Hence there is a G convG with a ^ 
a(d). Without loss of generality we can assume that a is principal. Let (xn) and 
(yn) be as in 4.6. There exists /? C conv G, such that (yn) G ft- Hence according to 
4.3 there is (tn) G (GN)+ such that tn > 2n+i for each n G N and / \ tn = 0. By 

applying [5], Theorem 2.2 we get the ConvG / {a(c.1)}, which is a contradiction. 
D 

Lemma 4.11. Let G be an t-group of finite breadth. Then the following condi
tions are equivalent: 

(i) card ConvG > 1. 
(ii) The set conv G \ Conv G is infinite. 

P r o o f . This is a consequence of 4.9 and 4.10. D 

5. T H E CASE OF ^-GROUPS HAVING INFINITE BREADTH 

We denote by D the system of all sequences (xn) £ (GN)+ which satisfy the 
following conditions: 

(i) xn > 0 for each n G N; 
(ii) xn A xm = 0 whenever n and m are distinct positive integers. 
Hence D ^ 0 if and only if the breadth of G is infinite. 
From [4], Theorem 7.3 we obtain 

Lemma 5.1. Let (xn) G D. Then there exists a G ConvG such that (xn) G a. 

Lemma 5.2. Let (xn) G D, A = {(xn)}. Then [(SA)]° G convG. 

P r o o f . This is a consequence of 5.1 and 2.3. D 

Let (xn) G D. Denote 

2/1 = *i\ 

2/2 = 2/3 = x2; 

2/4 = V5 = 2/6 = -P35 
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L e m m a 5 .3 . Let (xn), (yn) and A be as above. Then (yn) does not belong to 

[(6A)]\ 

P r o o f . By way of contradiction, assume tha t (yn) belongs to [(#-4)] . Hence 

there exist subsequences ( x n ) , (xn), ..., (x™) of (xn) and positive integers k, ki, m 

such tha t 

yn ^ k ! ( x n - f x n - F . . . + x n ) 

is valid for each n € N with n > m. 

Let n G N be such tha t n > m and n > 2. Then yn = £ n ( i ) for some n ( l ) < n. 

Hence t/nAxJ
n = 0 for each j G { 1 , 2 , . . . , k } and therefore yn £ fci(xn + .rn-r- . . .-f-cn), 

which is a contradiction . D 

L e m m a 5 .4 . Let (xn) and A be as above. Then [(6A)] does not belong to 

C o n v G . 

P r o o f . Let (yn) be as above. Each subsequence (zn) of (yn) has a subsequence 

(tn) such tha t (tn) is a subsequence of (xn)) whence (tn) G [(^-4)1 . On the other 

hand, in view of 5.3 the sequence (yn) does not belong to [(6A)] . Hence [(6-4)]° 

fails to be an element of Conv G. D 

L e m m a 5.5 . Let (xn) and (x'n) be sequences belonging to D. Assume that xn A 

x'm = 0 whenever n and m are positive integers. Let A = {(-c n )} , A' — { ( # „ ) } . 

Then[(6A)]"^[(6A')]\ 

P r o o f . By an obvious verification. D 

If G has infinite breadth, then there exist (x™) in D (m = 1, 2, . . . ) such tha t 
xrTm ^ xnY2} = ^ whenever m ( l ) and m(2) are distinct positive integers and n ( l ) , 

n(2) are arbitrary positive integers . Hence 5.4 and 5.5 yield 

P r o p o s i t i o n 5.6. Let G be an l-group with infinite breadth. Then the set 

conv G \ Conv G is infinite. 

This result can be slightly sharpened if we apply the following argument . Let 

(xj^) be as above. For 0 ^ M C N let OLM be the convergence which is generated by 

the S(M) = { 0 C ) } m G M . -•*., ocM = [(<5S(M))]°. (From 2.3 we infer tha t , in fact, 

OLM 6 conv G.) Next, if Mi and M2 are nonempty subsets of N with Mi -^ M2, then 

<*Mi 7̂  « M 3 - Moreover, analogously as in 5.5 we have OLM £ C o n v G . 

Thus we obtain 

T h e o r e m 5 . 6 . 1 . Let G be an £-group with infinite breadth. Then c a r d ( c o n v G \ 

Conv G) ^ 2*o. 

From 5.6 and 4.11 we obtain 
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C o r o l l a r y 5 .7 . Let G be an t-group. Then either (i) convG = C o n v G , or (ii) 

the set conv G \ Conv G is infinite. The condition (i) is valid if and only if Conv G is 

a one-element set. 

The following assertion is easy to verify. 

L e m m a 5.8 . An t-group G has a finite breadth if and only if there exists a finite 

set M = {a i , a 2 , . . . , a m } in G such that M is a maximal disjoint subset of G and 

each interval [0, a,] (i G { 1 , 2 , . . . , m}) is a chain. 

Let us denote by S(G) the set of all x G G + such that the interval [0, x] of G is a 

chain, and whenever (xn) is a sequence of elements in [0,x] with xn > £ n +i for each 

n G N, then the relation ^ xn = 0 fails to hold. 
nGIV 

P r o p o s i t i o n 5 .9 . Let G be an t-group. Then convG = C o n v G if and only if 

there exists a finite subset Si of S(G) such that S\ is a maximal disjoint subset of 

G. 

P r o o f . The case G = {0} is trivial; suppose that G ?- {0}. 

Assume tha t conv G = C o n v G . Hence in view of 5.6, the breadth of G is finite. 

Thus there exists a set M with the properties as in 5.8. Pu t S\ = M. Let i G I 

and suppose that a,- does not belong to S(G). Then there exists a strictly decreasing 
sequence (xn) in [0, a,] such tha t / \ xn = 0. There exists a G Conv G with (xn) G a . 

n£N 
Clearly (xn) (£ a(d), whence a / a(a I), which contradicts 5.7. Therefore Si C S(G). 

Conversely, assume that there is a finite subset Si = { a i , . . . ,<7m} of S(G) such 

tha t Si is a maximal disjoint subset of G. By 5.8 the breadth of G is finite. By 

virtue of 3.5 the relation conv G = Conv G is valid. • 

Again, let (xn) G D. Pu t zn = x^n for each n G N• We denote by a and /? the 
elements of conv G generated by (xn) and (zn), respectively. Using this notat ion we 
have the following lemma. 

L e m m a 5 .10 . /? < a. 

P r o o f . Since (zn) is a subsequence of (xn), the relation (zn) G c* holds. Thus 

fi $C a . By way of contradiction, suppose tha t /3 = a. Then there are k, k\} m G N 

and subsequences (zn), (-?n), . . .,* (z„) of (z n ) such that 

*„<*i(*J + z2+ ... + **) 

is valid for each n £ N with n > m. But the relation ( x n ) G I? implies that if n is 

odd, then this relation cannot hold. • 
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Corollary 5.11. Let a £ convG. Assume that a contains a sequence belonging 
to D. Then a fails to be an atom of conv G. 

Lemma 5.12. Let a £ convG, a ^ a(d). Then at least one of the following 
conditions is valid: 

(i) a contains a strictly decreasing sequence. 
(ii) a contains a sequence belonging to D. 

P r o o f . Assume that (i) does not hold. We have to verify that (ii) is valid. 
Since a ^ a(d) there exists (xn) £ a such that xn > 0 for each n £ N. We construct 
a sequence (yn) as follows. 

When defining t/i we distinquish two cases. 

(a) First, suppose that the set {n £ N: x\ A xn = 0} is infinite. Then we put 
t/i = x\. Further, for constructing 3/2, 2/3, ••• we apply the subsequence of (xn) 
consisting of those xn which satisfy the condition x\ Axn = 0. 

(bl) Suppose that the set {n £ N: X\ A xn = 0} is finite and that the interval 
[0, x\] is a chain. Then by the same argument as in the proof 4.3 we can verify 
that there exists a strictly decreasing subsequence of the sequence (x\ A xn) such 
that all elements of this subsequence belong to the interval [0, i i ] . This subsequence 
obviously belongs to a, which is a contradiction. 

(b2) Assume that the set {n £ N: x\ Axn = 0} is finite and that the interval [0, £1] 
fails to be a chain. Hence there are elements X\\ and x\2 such that 0 < xu < x\ is 
valid for i = 1, 2 and xu A X\2 — 0. 

If the set {n £ N: x\\ Axn = 0} is finite, then we put t/i = X\2 and for constructing 
2/2,2/3, • • we apply the sequence consisting of those x\\ Axn which are distinct from 0. 

If the set {n £ N: i n A xn = 0 } is infinite, then we put t/i = x\\ and for 
constructing j/2, 2/3, • • • we apply the sequence consisting of those xn which satisfy 
the condition x\\ A xn = 0. 

The next induction step is obvious. In this way we arrive at a sequence which 
belongs to a fl D. • 

Theorem 5.13. The partially ordered set conv<? has no atom. 

P r o o f . This is a consequence of 5.12, 5.11 and 4.4. • 
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6. INFINITE DISTRIBUTIVE LAWS 

In this section we shall investigate the question whether the infinite distributive 
laws must be valid in conv G. 

Let a t(i G I) and /? be elements of conv G. 

Lemma 6.1. Assume that \J at does exist in convG. Then both /?A( V a*) and 
«€/ «€/ 

V (P A a t) exist in conv G and 
*€/ 

(1) /?A(V"«) = V ^ A a ' ) . 
«€/ »€/ 

P r o o f . In view of 2.1, the element 7 = P A(\J a t) exists in convG. Clearly 
«€/ 

P jVat -̂  7 for each i G / . Hence \/ (0 A a t) exists in convG and \/ (P A a t) ^ 7. 
«€/ »€/ 

Let (xn) G 7. Thus (xn) G /? and in view of 2.7 there are i(l) , t(2), . . . , i(m) in 
7, (yn) G ar,-(i), . • -, (:C) ^ a«(m) such that xn ^ yn -h yn + . . . -h Ĵ 1 is valid for 
each n £ N. Hence there are elements xn in G with 0 -̂  xn ^ y^ (j = 1, 2, . . . , 
m; n = 1,2,...) such that xn = xn 4- xn -f . . . + x™ for each nGiV. Then (xn) G ,5 
for .; = 1, 2, . . . , m and hence (xn) € \/ (ft A a,). Thus the relation (1) holds. • 

«€/ 

In view of 2.8 we obtain 

Corollary 6.2. Let a, (t G / ) and /? be elements of ConvG such that \/ a t does 
•€/ 

exist in Conv G. Then the relation (1) is valid in Conv G. 

Corollary 6.3. Each intervai of conv G is a Brouwerian lattice. 

Corollary 6.4. (Cf. [5], Theorem 2.5.) Each interval of ConvG is a Brouwerian 
lattice. 

Proposition 6.5. Let G be a lattice ordered group of infinite breadth. Assume 
that G is orthogonally complete and divisible. Then there are ft and a n (n G N) in 
Conv G such that both ft V ( /\ an) and /\ (/? V an) do exist in Conv G, but these 
elements fail to be equal. neN neN 

For proving this we need some auxiliary results. 
For a nonempty subset A of (GN)+ we denote by A* the system of all (xn) G 

(GN)+ such that for each subsequence (yn) of (xn) there exists a subsequence (zn) 
of (yn) with (zn) eA. 

We shall apply the following (slightly modified) version of 2.3. (Cf. also [4].) 
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Proposition 6.6. Let A be a nonempty subset of(GN)+. 
(i) If there is 0 ^ g G G+ such that const g G [(£-4)] , then there is no a G Conv G 

with A C a . 
(ii) If there is no element g G G with g / 0 such that const g G [(^-4)] , then 

[(6 A)] G Conv G and whenever a G Conv G with AC a, then a D [(6 A)] . 

If the condition from (ii) is satisfied, then A is said to be regular and the system 
[(£-4)] is called the convergence in Conv G which is generated by A. If, moreover, 
A = {(xn)} is a one-element set, then (xn) is said to be regular. 

Now assume that G has an infinite breadth and that G is orthogonally complete, 
divisible and archimedean. 

There exists (xn) in (GN)+ such that (xn) G D. Next, because G is orthogonally 
complete, for each t G N there exists yt = Vxn(n G N, n > t). 

For each fixed t G N we consider the sequence (̂ -J/n)-

Lemma 6.7. Let t G N. Then the sequence (^yt) is regular. 

P r o o f . This is an immediate consequence of 6.6 and of the fact that G is 
archimedean. 

In view of 6.7 there exists at G ConvG such that at is generated by the sequence 
(^yt) in ConvG. • 

The above Lemmas 6 .8-6 .11 are also consequences of 6.6. 

L e m m a 6.8. Let t G N. Next, let 0 < a G G, a A yt = 0 and (un) G at. Then 
there is m £ N such that a A un = 0 for each n G N with n^ m. 

Corollary 6.8.1. /\ an = cr(d). 
n€-V 

For * G N we put z< = xi V £2 V . . . V xt. Let A be the system of all sequences 

(nZt)neN> w n e r e * r u n s o v e r - ^ 

L e m m a 6.9. The set A is regular. 

According to 6.9 there exists 0 G ConvG which is generated by A in ConvG. 

L e m m a 6.10. Let (vn) G P. Then there are m(l) and m(2) G N such that, 
whenever n G N, n ^ m(l) and 0 < a G G, a A xm = 0 for each m < m(2), then 
vn A a = 0. 

Put x = V xn . From 6.10 we infer 
nG-V 

Corollary 6.10.1. The sequence (^x) does not belong to /?. 

L e m m a 6.11. Let t G N. Then the set A U at is regular. 
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Corollary 6.12. Let t e N. Then the join P V at does exist in Conv G. 

Lemma 6.13. Let t e N. Then (±x) e P V at. 

P r o o f . We have x = zt + yt. Next, (^zt) e P and (^yt) e at. Therefore 
(£*n )e / ?Var , . D 

P r o o f of 6.5. In viev of 6.13 the relation (^x) e /\ (P V at) is valid. Next, 
t'€-V 

6.8A yields that /?V( ^ at) = p. Thus according to 6.10.1 the sequence (-xn) does 
teN n 

not belong to /? V ( ^ a t ) , which completes the proof. • 
teN 

Finally, 6.5 and 2.8 yield: 

Corollary 6.14. In 6.5f the set ConvG can be replaced by convG. 
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