Czechoslovak Mathematical Journal

Jaromír Luda

Factorable congruences and factorable congruence blocks on powers of a finite algebra

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 1, 89-93

Persistent URL: http://dml.cz/dmlcz/128309

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

FACTORABLE CONGRUENCES AND FACTORABLE CONGRUENCE BLOCKS ON POWERS OF A FINITE ALGEBRA

Jaromír Duda, Brno
(Received January 7, 1991)

1. Introduction

R. Willard has proved in [4] that any power $A^{n}, n \geqslant 2$, of a finite k-element algebra $A, k \geqslant 2$, has factorable congruences whenever the power $A^{k^{3}+k^{2}-k}$ has the same property. In this paper the exponent $k^{3}+k^{2}-k$ is reduced to $3 k^{2}-2 k$. Further, it is shown that the factorability of congruence blocks on the power $A^{2 k^{2}-k}$ ensures this property on any power $A^{n}, n \geqslant 2$.

2. Factorable congruences

Definition 1. Let $A_{1}, \ldots, A_{n}, n \geqslant 2$, be algebras of the same type. We say that the product $B=A_{1} \times \ldots \times A_{n}$ has factorable congruences whenever $\Theta=\Theta_{1} \times \ldots \times \Theta_{n}$ holds for any congruence Θ on B where $\Theta_{1}, \ldots, \Theta_{n}$ are congruences on A_{1}, \ldots, A_{n}, respectively.

Notation 1. Let $A_{1}, \ldots, A_{n}, n \geqslant 2$, be algebras of the same type, $B=A_{1} \times \ldots \times$ A_{n}. Elements $\left\langle a_{1}, \ldots, a_{n}\right\rangle,\left\langle b_{1}, \ldots, b_{n}\right\rangle, \ldots$ of B are denoted by \bar{a}, \bar{b}, \ldots Further, denote

$$
\sigma(B)=\left\{\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in B^{4} ; \text { for each } i \leqslant n \text { either }\left\langle a_{i}, b_{i}\right\rangle=\left\langle c_{i}, d_{i}\right\rangle \text { or } a_{i}=b_{i}\right\}
$$

and

$$
\gamma(B)=\left\{\begin{aligned}
\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in B^{4} ; & \text { for each } i \leqslant n \text { either }\left\langle a_{i}, b_{i}\right\rangle=\left\langle c_{i}, d_{i}\right\rangle \\
& \text { or } a_{i}=b_{i}, c_{i}=d_{i} \text { or } a_{i}=b_{i}=d_{i}
\end{aligned}\right\}
$$

Notation 2. Let B be an algebra, $c, d \in B$. Then the symbol $\Theta_{B}(c, d)$ denotes the principal congruence on B generated by the pair $\langle c, d\rangle$.

Lemma 1. Let $A_{1}, \ldots, A_{n}, n \geqslant 2$, be algebras of the same type, $B=A_{1} \times \ldots \times A_{n}$. The following conditions are equivalent:
(1) B has factorable congruences;
(2) $\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in \sigma(B)$ implies $\langle\bar{a}, \bar{b}\rangle \in \Theta_{B}(\bar{c}, \bar{d})$ for any elements $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in B$;
(3) $\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in \gamma(B)$ implies $\langle\bar{a}, \bar{b}\rangle \in \Theta_{B}(\bar{c}, \bar{d})$ for any elements $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in B$.

Proof. (1) $\Leftrightarrow(2)$: See [4; Lemma 4.3, p. 339].
(2) $\Rightarrow(3)$ is trivial since $\gamma(B) \subseteq \sigma(B)$;
$(3) \Rightarrow(2)$: Let $\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in \sigma(B)$. Then $\left\langle a_{i}, b_{i}\right\rangle=\left\langle c_{i}, d_{i}\right\rangle, i \in I$, and $a_{i}=b_{i}, i \in J$, for some disjoint index sets $I, J, I \cup J=\{1, \ldots, n\}$.
(a) Introduce a new quadruple $\left\langle\bar{a}^{\prime}, \bar{b}^{\prime}, \bar{c}^{\prime}, \bar{d}^{\prime}\right\rangle \in B^{4}$ by the rule

$$
\left\langle a_{i}^{\prime}, b_{i}^{\prime}, c_{i}^{\prime}, d_{i}^{\prime}\right\rangle=\left\{\begin{array}{l}
\left\langle a_{i}, b_{i}, c_{i}, d_{i}\right\rangle \text { for } i \in I \\
\left\langle d_{i}, d_{i}, c_{i}, d_{i}\right\rangle \text { for } i \in J .
\end{array}\right.
$$

Then $\left\langle\bar{a}^{\prime}, \bar{b}^{\prime}, \bar{c}^{\prime}, \bar{d}^{\prime}\right\rangle \in \gamma(B)$ and so $\left\langle\bar{a}^{\prime}, \bar{b}^{\prime}\right\rangle \in \Theta_{B}\left(\bar{c}^{\prime}, \bar{d}^{\prime}\right)$, by hypothesis (3).
(b) Further, introduce a quadruple $\left\langle\bar{a}^{\prime \prime}, \bar{b}^{\prime \prime}, \bar{c}^{\prime \prime}, \bar{d}^{\prime \prime}\right\rangle \in B^{4}$ via

$$
\left\langle a_{i}^{\prime \prime}, b_{i}^{\prime \prime}, c_{i}^{\prime \prime}, d_{i}^{\prime \prime}\right\rangle=\left\{\begin{array}{l}
\left\langle a_{i}, b_{i}, c_{i}, d_{i}\right\rangle \text { for } i \in I \\
\left\langle a_{i}, a_{i}, d_{i}, d_{i}\right\rangle \text { for } i \in J .
\end{array}\right.
$$

Since evidently $\left\langle\bar{a}^{\prime \prime}, \bar{b}^{\prime \prime}, \bar{c}^{\prime \prime}, \bar{d}^{\prime \prime}\right\rangle \in \gamma(B)$ we have $\left\langle\bar{a}^{\prime \prime}, \bar{b}^{\prime \prime}\right\rangle \in \Theta_{B}\left(\bar{c}^{\prime \prime}, \bar{d}^{\prime \prime}\right)$, by (3) again.
Moreover $\left\langle\bar{a}^{\prime}, \bar{b}^{\prime}\right\rangle=\left\langle\bar{c}^{\prime \prime}, \bar{d}^{\prime \prime}\right\rangle,\left\langle\bar{c}^{\prime}, \bar{d}^{\prime}\right\rangle=\langle\bar{c}, \bar{d}\rangle,\left\langle\bar{a}^{\prime \prime}, \bar{b}^{\prime \prime}\right\rangle=\langle\bar{a}, \bar{b}\rangle$, and thus $\langle\bar{a}, \bar{b}\rangle=$ $\left\langle\bar{a}^{\prime \prime}, \bar{b}^{\prime \prime}\right\rangle \in \Theta_{B}\left(\bar{c}^{\prime \prime}, \bar{d}^{\prime \prime}\right)=\Theta_{B}\left(\bar{a}^{\prime}, \bar{b}^{\prime}\right) \subseteq \Theta_{B}\left(\bar{c}^{\prime}, \bar{d}^{\prime}\right)=\Theta_{B}(\bar{c}, \bar{d})$, i.e. $\langle\bar{a}, \bar{b}\rangle \in \Theta_{B}(\bar{c}, \bar{d})$, as required.

Lemma 2. Let B, C be algebras of the same type, φ a homomorphism from B to C. Then $\langle a, b\rangle \in \Theta_{B}(c, d)$ implies $\langle\varphi(a), \varphi(b)\rangle \in \Theta_{C}(\varphi(c), \varphi(d))$ for any elements $a, b, c, d \in B$.

Proof. Applying the binary scheme, see [2; Thm 1, p. 41], to the relation formula $\langle a, b\rangle \in \Theta_{B}(c, d)$ we obtain

$$
\begin{aligned}
a & =t_{1}\left(c, d, b_{1}, \ldots, b_{m}\right) \\
t_{i}\left(d, c, b_{1}, \ldots, b_{m}\right) & =t_{i+1}\left(c, d, b_{1}, \ldots, b_{m}\right), 1 \leqslant i<n \\
b & =t_{n}\left(d, c, b_{1}, \ldots, b_{m}\right)
\end{aligned}
$$

for some elements $b_{1}, \ldots, b_{m} \in B$ and suitable terms $t_{1} \ldots, t_{n}$. Then

$$
\begin{aligned}
\varphi(a) & =t_{1}\left(\varphi(c), \varphi(d), \varphi\left(b_{1}\right), \ldots, \varphi\left(b_{m}\right)\right), \\
t_{i}\left(\varphi(d), \varphi(c), \varphi\left(b_{1}\right), \ldots, \varphi\left(b_{m}\right)\right) & =t_{i+1}\left(\varphi(c), \varphi(d), \varphi\left(b_{1}\right), \ldots, \varphi\left(b_{m}\right)\right), 1 \leqslant i<n, \\
\varphi(b) & =t_{n}\left(\varphi(d), \varphi(c), \varphi\left(b_{1}\right), \ldots, \varphi\left(b_{m}\right)\right)
\end{aligned}
$$

which means that $\langle\varphi(a), \varphi(b)\rangle \in \Theta_{C}(\varphi(c), \varphi(d))$, see [2] again.

Notation 3. Let C be an algebra, $p_{1}, p_{2}, p_{3}, p_{4}: C^{4} \rightarrow C$ canonical projections, and S a subset of C^{4}. Then $p_{1}^{S}, p_{2}^{S}, p_{3}^{S}, p_{4}^{S}$ denote the restrictions of $p_{1}, p_{2}, p_{3}, p_{4}$, respectively to S.

Theorem 1. Let C be a finite algebra. The following conditions are equivalent:
(1) C^{n} has factorable congruences for any $n \geqslant 2$;
(2) $C^{\gamma(C)}$ has factorable congruences.

Proof. We use the arguments from [4; Lemma 4.4, p. 339]: Let $\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle$ be an arbitrary quadruple from $\gamma\left(C^{n}\right), n \geqslant 2$. It is a routine to verify that
(a) $\left\langle p_{1}^{\gamma(C)}, p_{2}^{\gamma(C)}, p_{3}^{\gamma(C)}, p_{4}^{\gamma(C)}\right\rangle \in \gamma\left(C^{\gamma(C)}\right)$;
(b) the correspondence $\varphi: g \mapsto\left\langle g\left(a_{1}, b_{1}, c_{1}, d_{1}\right), \ldots, g\left(a_{n}, b_{n}, c_{n}, d_{n}\right)\right\rangle$ is homomorphism from $C^{\gamma(C)}$ to C^{n} which sends $p_{1}^{\gamma(C)}, p_{2}^{\gamma(C)}, p_{3}^{\gamma(C)}, p_{4}^{\gamma(C)}$ to $\bar{a}, \bar{b}, \bar{c}, \bar{d}$, respectively.

Now, by hypothesis (2) the algebra $C^{\gamma(C)}$ has factorable congruences and so (a) implies $\left\langle p_{1}^{\gamma(C)}, p_{2}^{\gamma(C)}\right\rangle \in \Theta_{C \gamma(C)}\left(p_{3}^{\gamma(C)}, p_{4}^{\gamma(C)}\right)$. Applying the homomorphism φ to this principal congruence formula we obtain $\langle\bar{a}, \bar{b}\rangle \in \Theta_{C^{n}}(\bar{c}, \bar{d})$ which proves (1), see Lemma 1 again.

Corollary 1. Let C be a finite k-element algebra, $k \geqslant 2$. The following conditions are equivalent:
(1) C^{n} has factorable congruences for any $n \geqslant 2$;
(2) $C^{3 k^{2}-2 k}$ has factorable congruences.

Proof. Evidently card $\gamma(C)=3 k^{2}-2 k$ whenever card $C=k$.

Factorable congruence blocks

Definition 2. Let $A_{1}, \ldots, A_{n}, n \geqslant 2$, be algebras of tha same type. A subset S of $B=A_{1} \times \ldots \times A_{n}$ is said to be factorable whenever $S=S_{1} \times \ldots \times S_{n}$ for some subsets $S_{i} \subseteq A_{i}, i \leqslant n$.

Further, we say that B has factorable congruence blocks whenever any congruence block on B is factorable.

Lemma 3. Let $A_{1}, \ldots, A_{n}, n \geqslant 2$, be algebras of the same type, S a subset of $B=A_{1} \times \ldots \times A_{n}$. The following conditions are equivalent:
(1) S is factorable;
(2) $\bar{c}, \bar{d} \in S$ implies $\bar{a} \in S$ where $a_{i} \in\left\{c_{i}, d_{i}\right\}, i \leqslant n$.

Proof. (1) \Rightarrow (2): Let $\bar{c}, \bar{d} \in S=S_{1} \times \ldots \times S_{n}$. Then $c_{i}, d_{i} \in S_{i}, i \leqslant n$, and thus also $a_{i} \in S_{i}, i \leqslant n$, for $a_{i} \in\left\{c_{i}, d_{i}\right\}, i \leqslant n$. Altogether, $\bar{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle \in$ $S_{1} \times \ldots \times S_{n}=S$ as required.
(2) \Rightarrow (1): Denote $S_{i}=p r_{i} S, i \leqslant n$. Evidently the inclusion $S \subseteq S_{1} \times \ldots \times S_{n}$ holds. Conversely, let $\bar{s}=\left\langle s_{1}, \ldots, s_{n}\right\rangle \in S_{1} \times \ldots \times S_{n}$. Then there are elements $\left\langle a_{i 1}, \ldots, a_{i n}\right\rangle \in S, i \leqslant n$, such that $a_{i i}=s_{i}, i \leqslant n$, by the definition of subsets S_{i}, $i \leqslant n$. Now from $\left\langle a_{11}, \ldots, a_{1 n}\right\rangle,\left\langle a_{21}, \ldots, a_{2 n}\right\rangle \in S$ we obtain $\left\langle s_{1}, s_{2}, a_{23}, \ldots, a_{2 n}\right\rangle=$ $\left\langle a_{11}, a_{22}, a_{23}, \ldots, a_{2 n}\right\rangle \in S$, by hypothesis (2). Repeating this process we find that $\bar{s}=\left\langle s_{1}, \ldots, s_{n}\right\rangle \in S$, which proves the factorability of ${ }^{c}$

Notation 4. Let $A_{1}, \ldots, A_{n}, n \geqslant 2$, be algebras of the same type, $B=A_{1} \times$ $\ldots \times A_{n}$. Denote by

$$
\begin{gathered}
\beta(B)=\left\{\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in B^{4}, \text { for each } i \leqslant n \text { either }\left\langle a_{i}, b_{i}\right\rangle=\left\langle c_{i}, d_{i}\right\rangle\right. \\
\text { or } \left.a_{i}=b_{i}=d_{i}\right\} .
\end{gathered}
$$

Lemma 4. Let $A_{1}, \ldots, A_{n}, n \geqslant 2$, be algebras of the same type, $B=A_{1} \times \ldots \times A_{n}$. The following conditions are equivalent:
(1) B has factorable congruence blocks;
(2) $\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in \beta(B)$ implies $\langle\bar{a}, \bar{b}\rangle \in \Theta_{B}(\bar{c}, \bar{d})$ for any elements $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in B$.

Proof. (1) $\Rightarrow(2)$: Let $\langle\bar{a}, \bar{b}, \bar{c}, \bar{d}\rangle \in \beta(B)$. Then $\bar{b}=\bar{d}$ and $a_{i} \in\left\{c_{i}, d_{i}\right\}, i \leqslant n$. Evidently $\bar{c}, \bar{d} \in[\bar{d}] \Theta_{B}(\bar{c}, \bar{d})$ and thus also $\bar{a} \in[\bar{d}] \Theta_{B}(\bar{c}, \bar{d})$, by Lemma 3. In other words, we have $\langle\bar{a}, \bar{b}\rangle=\langle\bar{a}, \bar{d}\rangle \in \Theta_{B}(\bar{c}, \bar{d})$.
$(2) \Rightarrow(1)$: Let S be an arbitrary congruence block on B and let $\bar{c}, \bar{d} \in S$. Consider an element $\bar{a}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ such that $a_{i} \in\left\{c_{i}, d_{i}\right\}, i \leqslant n$. Then $\langle\bar{a}, \bar{d}, \bar{c}, \bar{d}\rangle \in \beta(B)$ and so $\langle\bar{a}, \bar{d}\rangle \in \Theta_{B}(\bar{c}, \bar{d})$, by hypothesis (2). This means that $\bar{a} \in[\bar{d}] \Theta_{B}(\bar{c}, \bar{d}) \subseteq S$ and so S is factorable, see Lemma 3.

Theorem 2. Let C be a finite algebra. The following conditions are equivalent:
(1) C^{n} has factorable congruence blocks for any $n \geqslant 2$;
(2) $C^{\beta(C)}$ has factorable congruence blocks.

Proof goes along the same lines as in Theorem 1 and hence can be omitted.

Corollary 2. Let C be a finite k-element algebra, $k \geqslant 2$. The following conditions are equivalent:
(1) C^{n} has factorable congruence blocks;
(2) $C^{2 k^{2}-k}$ has factorable congruence blocks.

Proof. We have card $\beta(C)=2 k^{2}-k$ whenever card $C=k$.

References

[1] S. Burris, R. Willard: Finitely many primitive positive clones, Proc. Amer. Math. Soc. 101 (1987), 427-430.
[2] J. Duda: On two schemes applied to Mal'cev type theorems, Ann. Univ. Sci. Budapest, Sect. Math. 26 (1983), 39-45.
[3] J. Duda: Varieties having directly decomposable congruence classes, Čas. Pěst. Matem. 111 (1986), 394-403.
[4] R. Willard: Congruence lattices of powers of an algebra, Algebra Univ. 26 (1989), 332-340.

Author's address: 61600 Brno, Kroftova 21, Czechoslovakia.

