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FACTORABLE CONGRUENCES AND FACTORABLE 

CONGRUENCE BLOCKS ON POWERS OF A FINITE ALGEBRA 
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(Received January 7, 1991) 

1. INTRODUCTION 

R. Willard has proved in [4] that any power An, n ^ 2, of a finite ib-element algebra 
A, k ^ 2, has factorable congruences whenever the power Ak +* ~* has the same 
property. In this paper the exponent k3 -f k2 — it is reduced to 342 — 2k. Further, 
it is shown that the factorability of congruence blocks on the power A2k ~k ensures 
this property on any power An, n ^ 2. 

2. FACTORABLE CONGRUENCES 

Definition 1. Let A\, ..., An, n ^ 2, be algebras of the same type. We say that 
the product B = A\ x . . . x An has factorable congruences whenever 0 = 0 i x . . . x 0 n 

holds for any congruence © on B where 0 i , . . . , 0 n are congruences on A\, ..., An, 
respectively. 

.Notation 1. Let A\, . . . , An, n ^ 2, be algebras of the same type, B = Ai x . . . x 
An. Elements ( a i , . . . , an), (6 i , . . . , 6n), . . . of B are denoted by a, 6, Further, 
denote 

cr{B) = {(a, b, c, d) € BA\ for each i ^ n either (a,-, 6f) = (c,, </„•) or a,- = 6,} 

and 
( (a, b, c, d) G -B4; for each i ^ n either (a,*, 6t) = (c,-, d,)! 

7(H) = 1 K 
L or a,- = 6,-, c,- = d,- or a, = 6,- = dt- J 

Notation 2. Let B be an algebra, c,d £ B. Then the symbol 0#(c , d) denotes 
the principal congruence on B generated by the pair {c, d). 
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L e m m a 1. Let A\, ..., An,n°^ 2, be algebras of the same type, B = A\ x . . . x An. 

The following conditions are equivalent: 

(1) B has factorable congruences; 

(2) (d, 6, c, d) G <?(B) implies (a, 6) G QB(C, d) for any elements a, 6, c, d G B; 

(3) (a, 6, c, d) G j(B) implies (a, 6) G 9 B ( C , d) for any elements a, 6, c, d G 5 . 

P r o o f . (1)<*(2): See [4; Lemma 4.3, p . 339]. 

(2) => (3) is trivial since j(B) C (7(5); 

(3) --> (2): Let ( a ,6 , c , J ) G <r(£). T7ien(a t ,6 t) = ( c , , ^ ) , i G I, and a t = 6 t, i G J, 

for some disjoint index sets I, J, IUJ = {I,... ,n}. 

(a) Introduce a new quadruple (a' ,b',c' ,d') G I?4 by the rule 

K,б:,c^;.) = ( ( в ť ' 6 i ' c « ' d ' ) f o r г ' є / 

l (di,di,Ci,di) foг i Є J. (d t ,d t ,c t ,d t ) 

Then (a ; , 6', c', d') G T ( # ) and so (a',6') G 6 B ( C ' , a7'), by hypothesis (3). 

(b) Further, introduce a quadruple (a",b", c", d") G B4 via 

lV," A" . " H"\ í ( a»' 6*' c«' c ř*! 
l (ai,ai,di,di 

(ai,bi,Ci,di) foг i Є I 

) for i Є J. 

Since evidently (a" , 6", c", a7") G T ( 5 ) we have (a" , 6") G 9 B ( C " , a7"), by (3) 

again. 

Moreover (a',V) = (c", J " ) , (c', d') = (c,ri), (a" , 6") = (a, 6), and thus (a, 6) = 

(a", 6") G 0 * ( c " , J " ) = QB(a'~b') C G ^ a 7 ' ) = 0 B ( c , a7), i.e. (a, 6) G G 5 ( c , J ) , as 

required. D 

L e m m a 2. Let B, C be algebras of the same type, <p a homomorphism from B 

to C. Then (a,b) G G # ( c , a1) implies (<p(a), <p(b)) G Qc(<p(c), <p(d)) for any elements 

a, 6, c, d G I?. 

P r o o f . Applying the binary scheme, see [2; T h m 1, p. 41], to the relation 

formula (a, 6) G 0 B ( C , d) we obtain 

a = *i(c,d,&i,. ..,6m), 

ti(d,c,bi,...,bm) = <,-+i(c,d,&i,. . . , 6 m ) , 1 ^ i < n, 

6 = tn(d,c,6i,.. . , 6 m ) 

for some elements 6 i , . . . , 6 m G B and suitable terms ti ... ,tn. Then 

V?(a) = /i (<p(c), <p(d), v?(6i), . . . , y>(&m)), 

^»(v : > (^) ) V
: , (c),^(6i), . . . ,^(6 m )) = ^ + i ( v ? ( c ) , ^ ( J ) , < ^ ( 6 i ) , . . . , ^ ( 6 m ) ) , 1 ^ i < n, 

¥>(&) = tn (<p(d), <p(c), <p(b,),..., <p(bm)), 

which means tha t (<p(a), <p(b)) G Qc(<p(c),<p(d)), see [2] again. D 
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N o t a t i o n 3 . Let C be an algebra, Pi,P2,P3>P4: C4 —* C canonical projections, 

and S a subset of C4. Then pf, pf» P3 > P4 denote the restrictions of p\, P2, P3, P4, 

respectively to S. 

T h e o r e m 1. Let C be a finite algebra. The following conditions are equivalent: 

(1) Cn has factorable congruences for any n ^ 2; 

(2) C 7 ( c ) has factorable congruences. 

P r o o f . We use the arguments from [4; Lemma 4.4, p . 339]: Let (a,b,c,d) be 

an arbitrary quadruple from y(Cn), n ^ 2. It is a routine to verify tha t 

(*)(p?c\Pr\plic\plic))e7(c^y, 
(b) the correspondence <p: g •—• (g(a\,b\,c\,d\),..., <7(an,6n, c n , dn)) is homomor-

phism from C1^ to Cn which sends p± , P2 » P3 » P4 to a,&,c, a7, respec

tively. 

Now, by hypothesis (2) the algebra C7(c) has factorable congruences and so (a) 

implies (p± , P2 ) £ ©c-Kc)(P3 .P4 )• Applying the homomorphism <p to 

this principal congruence formula we obtain (a, b) G 0c»(c,c() which proves (1), see 

Lemma 1 again. D 

Corol lary 1. Let C be a finite k-element algebra, k ^ 2. The foliowing conditions 

are equivalent: 

(1) C " has factorable congruences for any n ^ 2; 

(2) C3k ~2k has factorable congruences. 

P r o o f . Evidently card j(C) = 3k2 — 2k whenever card C = k. D 

F A C T O R A B L E C O N G R U E N C E BLOCKS 

Def in i t i on 2 . Let A\, ..., An, n ^ 2, be algebras of tha same type. A subset S 

of B = A\ x . . . x j4n is said to be factorable whenever S = S\ x . . . x Sn for some 

subsets Si C Ai, i -^ n. 

Further, we say tha t H has factorable congruence blocks whenever any congruence 

block on B is factorable. 

L e m m a 3 . Let A\, ..., An, n ^ 2, be algebras of the same type, S a subset of 

B = A\ x . . . x An. The following conditions are equivalent: 

(1) S is factorable; 

(2) c, J G S implies a G S where ai G {c t, a
1,}, z -̂  n. 

P r o o f . (1) => (2): Let c,d e S = S\ x ... x Sn. Then Ci,d{ G 5 t , i ^ n, and 
thus also a t G 5 t , t ^ n, for a t G { c t , d t } , i ^ n. Altogether, a = ( a i , . . . , a n ) G 
5 i x . . . x Sn = S as required. 
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(2) => (1): Denote Si = priS, i ^ n. Evidently the inclusion S C S\ x ... x Sn 

holds. Conversely, let s = (si,...,sn) G S\ x ...xSn. Then there are elements 
(a,i, • • i<iin) E S, i -̂  n, such that an = Si, i ^ n, by the definition of subsets Si, 
i -̂  n. Now from (an,... , a i n ) , ( a 2 i , . . . ,a2 n) € 5 we obtain (si, «2, <*23, •, a2n) = 
(an,a22,a23,. . . ,a 2 n) € S, by hypothesis (2). Repeating this process we find that 
s = (s\,..., sn) G 5, which proves the factorability of c D 

Notation 4. Let A\, . . . , Ani n ^ 2, be algebras of the same type, B = A\ x 
... x An. Denote by 

/3(B) = {(a,b,c,ct) G B4, for each i ^ n either (ai,bi) = (ci,di) 

or at- = 6t = di}. 

Lemma 4. Lei A\, . . . , An, n ^ 2, be algebras of the same type, B = A\X.. .xAn. 
The following conditions are equivalent: 

(1) B has factorable congruence blocks; 
(2) (d, bjC,d) G P(B) implies (a, 6) G ©B(C, J) for any elements d, b,c,d G i?. 

P r o o f . (1) => (2): Let (d,b,c,d) G /?(£). Then 6 = d and at G {ci,di}, i ^ n. 
Evidently c,d G [<fl0#(c, d) and thus also a G [ J | 0 B ( C , J), by Lemma 3. In other 
words, we have (a, 6) = (a,d) G 0 s ( c , d). 

(2) ---> (1): Let 5 be an arbitrary congruence block on B and let c,d G 5. Consider 
an element a = ( a i , . . . , an) such that at- G {c,, a1,}, i ^ n. Then (a, J, c, a1) G /?(#) 
and so (a, J) G 0B(c ,J) , by hypothesis (2). This means that d G [O?|0B(C, J) C 5 
and so 5 is factorable, see Lemma 3. D 

Theorem 2. Let C be a finite algebra. The following conditions are equivalent: 
(1) Cn has factorable congruence blocks for any n ^ 2; 
(2) C^(c) has factorable congruence blocks. 

P r o o f goes along the same lines as in Theorem 1 and hence can be omitted. 
D 

Corollary 2. Let C be a finite k-element algebra, k ^ 2. The following conditions 
are equivalent: 

(1) Cn has factorable congruence blocks; 
(2) C2k ~k has factorable congruence blocks. 

P r o o f . We have card 0(C) = 2k2 — k whenever card C = k. D 
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