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Czechoslovak Mathematical Journal, 42 (117) 1992, Praha 

PARTIAL MONOUNARY ALGEBRAS 

W I T H COMMON QUASI-ENDOMORPHISMS *) 

EMILIA HALUSKOVA, DANICA STUDENOVSKA, Kosice 

(Received October 10, 1990) 

Homomorphisms and endomorphisms of monounary algebras were investigated in 

[2], [6]-[9]; for the case of partial monounary algebras, cf. [3]-[5]. 

The theory of partial algebras was systematically studied by B. Wojdylo and 

P. Burmeister in [1]. They investigated some types of mappings between part ial 

algebras; in particular , they studied quasi-endomorphisms of partial algebras. 

In the present paper we shall deal with quasi-endomorphisms of part ial monounary 

algebras. 

For a partial monounary algebra (A, f) let Q(f) be the system of all quasi-

endomorphisms of (A , f ) . We are interested in a constructive description of all partial 

mappings g of A into A with Q(f) = Q(g)\ let us denote by EQ(f) the system of 

all such mappings g. The desired construction is contained in T h m . 4.10. From 

this theorem it follows tha t there is at most one partial mapping g ^ f belonging to 

EQ(f), i.e., | | £ Q ( / ) | | ^ 2. 

An analogous question concerning endomorphisms of partial monounary algebras 

was investigated in [3] and [4]. 

1. P R E L I M I N A R I E S 

Let M be the set of all positive integers, yVo = M U {0} and Z be the set of all 

integers. 

The system of all monounary algebras will be denoted by U and for the denotation 

of the system of all partial monounary algebras we will use the symbol Up. 

For a nonempty set A, the system of all partial mappings of A into A (i.e., of all 

mappings from a subset of a set A into the set A) will be denoted by the symbol 

F(A). 

*) Supported by SAV grant 362/91. 
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Let (A,f) G Up. If B is a subset of A with the property / (6 ) G B for each 

6 G d o m / , then there is (uniquely determined) element / f B of F(I?) such tha t 

B n d o m ( / [ B ) = fln d o m / and / (6) = ( / \ B)(b) for each b e B f) d o m / . In this 

case the pair (B, f \ B) is said to be a subalgebra of a part ial monounary algebra 

(A J). 
Let ( A , / ) € £/p. For x G -4 put / ° ( x ) = x. If fk(x) is defined for k G JV0 and 

/ f c (x) G d o m / , then /* + 1 ( :c ) = f(fk(x)). An algebra ( A , / ) is called connected, if 

whenever x , y G ^4, there exist rn, n G JVn such tha t fm(x) = fn(y). A maximal 

connected subalgebra of (^4, / ) is said to be a component of (A, f). We shall say tha t 

algebras (A, f) and (A,g) have the same parti t ion into components, if the following 

condition is satisfied: if (B,g \ B) is a component of (A, g), then (B,f \ B) is a 

component of (A, / ) and conversely. 

The system of all connected algebras belonging to U will be denoted by the symbol 

Uc. 

A nonempty set C C A is called a cycle of (A, f) £UP, if (C, f \ C) is a connected 
subalgebra of (A, f) and there exists k G JV with /* (y ) = y for each y £ C. 

An algebra (.A, / ) G Up is said to be a chain if some of the following conditions is 

satisfied: 

1. A = { a i , a 2 , . . . , a n } , n G JV, n > 1 and / ( a t ) = a t +i for i = 1, 2, . . . , n - 1, 

a n ^ d o m / ; 

2. A = {a», f G JV} and / ( a t ) = a t +i for each i G A^; 

3. A = {a t , i G 2} and /(a,-) = a t +i for each i € Z; 

4. A = {di,i G 2,i ^ 1} and /(a,-) = a t +i for each i G 2 , i ^ 0, ai £ d o m / . 

Further, (I?, / # ) G £/p is a chain of (A , / ) G £/p if (It, //?) is a chain and (R, / # ) is 
a subalgebra of (A, / ) . 

Let (-4, / ) G £/p • Then g G K(^4) is called an endomorphism of (A, f) if dom g = A 

and x G d o m / implies y(x) G d o m / and g(f(x)) = f(gfe)) for each x G -4. Further, 

a G I7^) is said to be a quasi-endomorphism of ( -4, / ) if x G d o m / and x,f(x) G 

dom a yield a(x) G d o m / and g(f(x)) = / ( a ( x ) ) . If # is a quasi-endomorphism and 

there is no x G A such tha t x G d o m / and x, / ( x ) G dom<7, then we shall say tha t g 

is a trivial quasi-endomorphism of (A, / ) . 

For ( 4 , / ) GZIP put 

II(/) = {(/G F(A) : g is an endomorphism of (A, / ) } , 

Q ( / ) = {g G K(-4) : # is a quasi-endomorphism of (^4, / ) } . 

R e m a r k . Let (A, f) G Up. 

a) Then H(f) = {g G Q ( / ) : domg = A}. 
b) If (B,fB) is a component of (A,f), gs G Q ( / B ) , then g£ G F(5) and gB G 

Q ( / ) . 
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We shall use the following notations 

EH(f) = {ge F(A) : H(f) = H(g)}, 

EQ(f) = {ge F(A) : Q(f) = Q(g)}, 

EH0(f) = EH(f)nH(f). 

1.1. Lemma. Let (A J) e Up. Then EH0(f) = {g e H(f): H(f) = H(g)} and 
EQ(f) = {geQ(f):Q(f) = Q(g)}. 

P r o o f . Since g G Q(g) for each g e F(A) and g G H(g) for g e F(A) such that 
domg = A, we obtain that the assertion is valid. D 

1.2. Lemma. Let (AJ) e Up. If g e EQ(f) or g G EH(f), then EQ(f) = 
EQ(g) or EH0(f) = EHQ(g)f EH(f) = EH(g), respectively. 

P r o o f . Assume that Q(f) = Q(g). Then h e EQ(f) if and only if Q(h) = 
Q(f) = Q(g) and this relation holds if and only if h e EQ(g). This gives the desired 
conclusion EQ(f) = EQ(g). 

The remaining assertion can be shown similarly. D 

1.3. Lemma. Let (AJ) eUp. Then EQ(f) C EH(f). 

P r o o f . Take g e Q(f) with Q(f) = Q(g). We have h e H(f) if and only if 
domh = A and h e Q(f). Further this relation is valid if and only if h e H(g), since 
Q(f) = Q(g). Thus H(f) = H(g) and g e EH(f). D 

1.4. Corollai*. Let (AJ)eUp. Then EQ(f)C)H(f) C EH0(f). 

1.5. Lemma. Let (A J) e U and g e Q(f). Then f G Q(g) if and only if 
x e dom f̂ implies f(x) e domg for each x e A. 

P r o o f . Let / e Q(g). Since dom/ = A, we get f(x) e domg for x e domg. 
On the other hand, assume that x e domg and x,g(x) e dom/. Then f(x) e 

domg and we have g(f(x)) = f(g(x)), because g G Q(f). This proves that / G Q(g). 
D 

1.6. Corollary. Suppose that (A, f) e Uc has a cycle C,g G Q(f), f G Q(g) and 
domg -̂  0. Then C C dom<7. 

Consider (A J) eUp. We put 

Kd = {a e dom/: ({a} J \ {a}) is a component of (A J)}, 

Kn = {a ^ dom/ : ({a}, f \ {a}) is a component of (A, / ) } , 
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K = KdUKn. 

Further we shall say that (A, f) is of type a, r, 7r, 7 or 6 if it fulfils the following 
condition (a), (r) , (n), (7) or (6), respectively: 

(a) K -/ A and each component (B, / # ) of (A, f) such that ||.B|| > 1 is a cycle or 
a chain; 

(r) K ^ A, d o m / = A and there is a G A with / (x) = a for each xG .4 ; 
(TT) K = A, ||Kd | | = 1; 

(7) Kn = -4; 
(£) Kd = A. 

R e m a r k . If (̂ 4, / ) is of type r with f(x) = a for each x G dom/ , then we say 
that (̂ 4, / ) is of type r with a value a; analogously for the type w. 

1.7. Lemma. Let (A, f) G Up and let (A, f) be neither of type r nor of type TT. 
Further let g G F(A). If g G EQ(f), then (A, f) and (A,g) have the same partition 
into components. 

P r o o f . According to 1.3 we obtain that g G EH(f). Thus in view of Thm.4.6 of 
the paper [3], the algebras (A, f) and (A, g) have the same partition into components. 

• 

1.8. Lemma. Let (A, f) G Up be neither of type w nor of type r, (B, fs) be a 
component of (A, f) and g G EQ(f). Then Q(gB) = Q(/B) where gB = g \ B. 

P r o o f . Let us show that Q(JB) C Q(gB). (The relation Q(gB) C Q ( / B ) can be 
proved analogously since (A, f) and (A,g) have the same partition into components 
by 1.7.) 

Let h G QUB). Then h G F(B). Define hx G F(A) as follows: dom/ii = dom/i 
and h\(x) = h(x) for each x G dom/ii . We have h\ G Q(f) since h G <5(/.e). 
According to the assumption, Q( / ) = Q(g)> hence /ii G Q(g). 

Now we shall prove that h G Q(gB). Let x G dom^OH and x,5f(x) G domh . Since 
^1 ^ Q(g) anc^ dom/ii = dom/i, we get h\(x) G dom^ and g(h(x)) = (7(/ii(x)) = 
hx(g(x)) = /i(p(x)). Further /i(x) G 5 , therefore /i G Q(gB). • 

1.9. Lemma. Let (A, f) eUp. Then \\EQ(f)\\ ^ c. 

P r o o f . The assertion is the consequence of the lemma 1.3 and Thm. 4.11 of 
the paper [4]. • 
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2 . COMPONENTS OF ALGEBRAS WITH COMMON QUASI-ENDOMORPHISMS 

In this section we shall suppose that (A, f) G Up, g G F(A), Q(f) = Q(g) and that 
(B, fs) is a component of (A, / ) such that ||fl|| > 1. 

2.1. Lemma. Let y G domg C\ dom/ , f(y) = y. Then g(y) = y. 

P r o o f . Let us define a mapping <p G F(A) such that <p(z) = y for each z £ A. 
We have y> G Q(f) = Q(y) and y(y) = g(<p(y)) = ^(p(y)) = J/. • 

2.2. Lemma. The relation f G Q(g) is valid. 

P r o o f . The desired relation follows from the fact that / G Q(f) and from the 
assumption that Q(f) = Q(g)- • 

2.3. Lemma. If y G dom fs and f(y) = y, £nen y G domy and g(y) = y. 

P r o o f . Let y G dom/e — domy and f(y) = y. Since ||J9|| > 1 we can choose 
z G dom fs ,z ^ y such that / (z) = y. Let us construct ^ € -^(-4) s u c n t n a t 

According to 2.2 we have / G Q(g) and y G <?(/)• Therefore either z ^ domy or 
y(z) ^ d o m / . If z G domy and g(z) £ dom/ , then g(z) £ {y, z}, because {y, z} C 
dom/ . Consequently the mapping t/> is a trivial element of Q(y). If z £ domy, then 
V> is a trivial element of Q(y), too. But f(ip(z)) = f(z) = y, ip(f(z)) = V'(y)) = * and 
y ^ z. Thus V' ^ Q(f)y a contradiction with Q( / ) = Q(y). The equality g(y) = y 
follows from 2.L D 

2.4. Lemma. Let y G d o m / and f(y) G dom/ . If f2(y) = / (y) and y G domy, 
then g(y) = / (y) . 

P r o o f . If f(y) = y, then g(y) = y = /(y) by 2.3. 
Assume that f(y) / y and g(y) ^ /(y)« According to 2.3 (take z = f(y) ) 

we have g(f(y)) = /(y) and since y G Q(/) , we get y(y) G d o m / and f(g(y)) = 
g(f(y)) = / (y) . Now suppose that y(y) ^ y. Let us define <p G K(-4) such that 
V = {&> y]> b(y)> y]}- T h e n P € Q(f)-Q(g), a contradiction. Consequently y(y) = y 
and in view of 2.1, by interchanging / and y, we conclude f(y) = y. Thus the 
assumption that g(y) ^ f(y) is not tenable. • 

2.5. Lemma. Let (B,fs) have a cycle C. Then C C domy and g(x) G C for 
each x EC. 

P r o o f . Assume that p = | |C|| . If p = 1, then the assertion is valid by 2.3. 
Let p > 1. Then (^4,/) is neither of type TT nor of type r . According to 1.7 and 

1.8 (B,gs) is a component of (-4,y) and Q(/B) = Q(gB) where gs = y T B. From 
this and the assertions 2.2 and 1.6 we obtain C C domy. Further if x G C, then 
«,(*) = j ( /^(«)) = /(<KP ,-1(*))) = • • • = /"(</(*)), since </ € Q(f). Hence «/(*) € C. 

D 
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2.6. Lemma. Let y G domfs — domy and f(y) G domg. Suppose that either 
f(y) $ domf or p(y) # f(y). Then g(f(y)) = y. 

P r o o f . Suppose that g(f(y)) ^ y- Let us define <p G F(A) such that <p = 
{[yJ(y)Uf(y)J(y)]}- If g(f(v)) = f(v), then <p(g(f(y))) = <p(f(y)) = f(y) = 
g(<p(f(y))) and hence <p G Q(g)> Otherwise <p is a trivial element of Q(g). Further 
y G d o m / and y, / (y) G dom^>, but either <p(y) = f(y) £ domf or f(<p(y)) = 
f2(y) -̂  / (y) = <p(f(y)). Thus y? ^ 0 ( / ) and the proof is complete. • 

2.7. Lemma. If y G d o m / # , / ( y ) ^ y and f(y) G dom/ . then / (y) G domy. 

P r o o f . If y G domy and g(y) G dom/ , then f(y) G domy according to 2.2. 
Let either y ^ domy or y(y) ^ dom/ . 

Suppose that /(y) $ domy. We define <p G F(A) such that y? = {[y>y]> [/(y)>y]}« 
if y G domy, then g(y) £ {y, f(y)}. We have that <p is a trivial element of Q(y). 
Further <p(f(y)) = y, /(^>(y)) = f(y) and /(y) -̂  y. Consequently <p <£ Q(f), a 
contradiction. • 

2.8. Lemma. Let (B, fs) have a cycle and suppose that it is not of type r . Then 
B fldomy = B. 

P r o o f . Because (B,fs) is a connected algebra with a cycle C, the relation 
dom fB = B is valid. We have C C domy by 2.5. 

Assume that B — domy -̂ 0. Then we can choose z G B — domy with {/*(-?) : i G 
Af} C domy. 

First let f2(z) £ f(z) and consider k G M such that /*(*) G C , / * " 1 ^ ) £ C\ 
Since y G <2(/), the lemma 2.6 implies fk'l(z) = fk~1(g(f(z))) = g(fk(z)). Further, 
g(fk(z)) G C according to 2.5, which is a contradiction. 

Now let f2(z) = f(z). Put y = f(z). The algebra (B,fB) is not of type r 
and ||£?|| > 1, therefore there exists x G B with f2(x) ^ / ( z ) . Let us define 
<p G K(.A) such that <p = {[z,x], [y,y]}. We get <p G Q(y), but <p £ Q(f), because 
f(z) = y, <p(z) = x, <p(f(z)) = y and f(<p(z)) = f(x) / y. D 

2.9. Lemma. Suppose that (B, fs) has no cycle and that (B, fs) is not a chain. 
Then dom fs C domy. 

P r o o f . Assume that there exists yo G B such that yo G domf — domy. The 
algebra (15, y#) is a component of (A, g) by 1.7, hence | |£ —domy|| -̂  1 and therefore 
/(yo) € domy. Then 2.6 yields that y(/(yo)) = yo-

Let y G -0 be such that f(y) = y0. Then y G domy and g(y) ^ yo according to 
2.2. We can use the partial mapping <p from the proof of lemma 2.7 and we conclude 
a contradictoin with Q(f) = Q(g). Thus yo £ r n g / . 

For k £/f such that fk~1(yo) G d o m / let us put y* = fh(yo). We get y(yi) = yo 
and, by induction, g(yk) = </(/(y*-i)) = /(y(yjb-i)) = /(y*-2) = y*-i-
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Since (B,fs) is not a chain, we can choose a £ B such that f(a) = ym for some 
m e Af and a ^ y m - i - Let us define <p G F(A) as <p = {[yo,a], [yi,ym]}- We have 
<f(f(yo)) = V (̂y1) = ym = / (a ) = /(¥>(yo)), thus y? G £?(/). Further g(<p(yi)) = 
g(ym) = ym-i and <p(g(y\)) = <p(yo) = a, hence <p £ Q(y), a contradiction. • 

2.10. Lemma. Let (B,fs) £ Uc and let gs = g \ B. If dom fs = domgs, then 

/ B = 0B • 

P r o o f . According to the assumption there exists yo ^ dom fs • Denote S = 
{x G dom fs'. g(x) ^ /(-c)}- Assume that 5 ^ 0 . Choose t/ G S. In view of the 
connectivity of (A, f) there exists a positive integer r that fr(yf) = yo- Consider t = 
max {G { 0 , l , . . . , r } : fp(r/) G 5 } . Since y0 $- «?, the relation t < r is valid. Put 

y = ft(y')-
First let us show that there exists no m G JV such that g(y) = ffn(y))m G M. 

Then m > 1 because y G S. Further we obtain fm(y) = f(fm~1(y)) = g(fm~1(y)) = 
/ m _ 1 (y(y) ) = / m _ 1 ( / m ( y ) ) = f2m~l(y)- Hence (BJB) possesses a cycle, which is 
a contradiction with (B,fs) ^Uc. 

Put k = r-t. Then k G -V and /*(y) = y0. Let us define <p = {[y, y0], [/(y), /(y)] , 

. . . , [ / * (y),/*(y)]}. 
Let x G domy and a:, g(x) ^ domy?. Since ^(y) ?- y (in the opposite case we obtain 

/(y) = y by 2.3 with replacement / and g) and g(y) £ { / (y) , / 2 (y) , . . - , /* (y)} , we 
have y(y) £ domy?. It means, that x ^ y. Thus x = fn(y) = <p(x) for some 
neAfyTi < k. Therefore g(x) = f(x). Further <f(g(x)) = <p(fn+1(y)) = fn+1(y) = 
f(fn(y)) = / (*) = g(x) = g(fn(y)) = g(<p(fn(y))) = *(?(*))• ^nd y> G Q(y). 

But y> £ Q( / ) , because y?(y) = y0, <p(f(y)) = f(y) and ^>(y) £ dom/ , which is a 
contradiction. 

We get 5 = 0 and it means that fs = 9B • • 

2.11. Lemma. Let (B,fs) be an algebra of type r and let gs = g \ B. Then 
gB = /B or (B,gBfis of type it and mggB = mgfB. 

P r o o f . Assume that g# ^ fs and that f(x) = a for each x G B. We know 
that g(a) = a by 2.3 and if y G domy^, then g(y) = f(y) = a according to 2.4. Let 
us show that (Bygs) is an algebra of type 7r. 

Suppose that (B, gs) is not of type ir. Hence (By fs) contains a subalgebra (C, fc) 
such that C = {a,6,c},6 G domy and c ^ domy. To agrue the contrapositive 
let us define <p G F(A),<p = {[a,a], [b,c]}. We have <p G Q(f) - Q(</), because 
<p(g(b)) = <p(a) = a and <p(b) £ domy. D 
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3 . T H E SYSTEM EQ(f) FOR A CONNECTED PARTIAL MONOUNARY ALGEBRA (A,f) 

Let us suppose that (A, f) £ Up is connected and \\A\\ > 1. We shall describe the 
partial mappings g of A into A which have the property Q(f) = Q(g). 

3.1. Lemma. Let (A, f) be a chain. Then EQ(f) = {/, h}, where dom/i = r n g / 
and h(f(a)) = a for each a £ dom/ . 

P r o o f . First we shall show that Q(f) = Q(h). Let <p £ Q(f) and suppose 
that y £ dom/i and y, h(y) £ dom<p for some y £ A. We obtain that the relations 
<p(h(y)) £ d o m / and <p(y) = f(<p(y)) are valid, because <p £ Q( / ) , h(y) £ rng/i = 
d o m / and h(y),f(h(y)) £ dom<p. Hence Q(f) C Q(h). The opposite inclusion can 
be proved analogously. Thus {/, h} C EQ(f). 

Suppose that g £ EQ(f). We want to prove that g = f or g = h. To complete 
the proof we shall show the following assertions: 

a) If d o m / fl domy = 0, then g = h. 
b) If d o m / fl domy -̂  0 and there exists xo £ A with y(xo) = /(xo), then g = f. 
c) If d o m / ndomg ^ 0 and f(x) -̂  y(x) for all x £ d o m / fldomy, then g = h. 
a) Assume that d o m / fl domy = 0. Then ||A|| = 2 and thus domy = r n g / . Let 

d o m / = {</}. If (?(/(2/)) = / (y) , then /(y) £ d o m / and /2(y) = /(y) by 2.3, a 
contradiction. We get g(f(y)) = y, i.e., g = h. 

b) Assume that /(xo) = g(xo). Let us define Xk and x_jt for k £ JV* by induction. 
If xjt_i £ dom/ , then put xjb = /(xjfc_i). If there exists x £ d o m / such that 
f(x) = x-k+i, then put x_jb = x. Since (^4,/) is a chain, all elements of A are 
signed. 

It is easy to see, by induction, that if X* £ dom/ , then Xk £ domg and f(xk) = 
g(xk) for k £ JV. 

Further let us show, by induction on k, that if x_jfc £ dom/ , then x_jt £ dome? 
and /(x_fc) = y(x_jk). Suppose that the assertion holds for k — 1. We have 
/(x_jb) £ d o m / according to the facts that (-4,/) is a chain and xo £ dom/ . 
If f(x-k) £ domy, then x_fc £ dom</. Namely, if x_jb ^ domy, we can define 
<p £ F(,4), <p = {[x_fc, x_*], [/(x_fc), x_jfc]}. Then <p £ Q(y) - Q( / ) , a contradiction 
with Q(f) = Q(g). Further the relation Q(f) = Q(g) and the induction assumption 
yield f(g(x.k)) = g(/(x_*)) = g(x_jb+i) = /(x_*+i) = / ( / (x_ f c ) ) . Since (A , / ) is 
a chain this implies g(x_fc) = /(x_jk). 

We have proved that d o m / C dom^f and that f(x) = g(x) for each x £ dom/ . 
The relation d o m / 7- dom</ implies that domg = A and that there exists y £ A 

such that d o m / = A — {y}. Then (̂ 4, / ) £ Uc and f̂(y) ^ y. Namely if y(y) = y, then 
in view of 2.3 we would have y £ dom/ , which is a contradiction. Put y7 = g(y). 
There exists k £ JV such that /fc(y ;) = y. Then yfc+1(y) = gk(g(y)) = gk(yf) = 
fk(y') = y. Hence (A,g) has a cycle. Since the assumptions g £ Q(f) and Q(f) = 
Q(g) imply / £ Q(g) we can interchange / and g in the assertion 2.8 and conclude 
that d o m / = d o m / O A = A, a contradiction. Thus d o m / = domg, as desired. 
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c) Let d o m / D domg ^ 0 and g(x) / f(x) for each x G d o m / H domy. 
Suppose that ||A|| = 2. Then d o m / = {z} for some z G -4. According to the 

assumption z G domg and 5f(z) ^ f(z)- Consequently g(z) = z and 2.1 implies 
/ (z) = z, a contradiction. Therefore \\A\\ > 2. 

We want to prove that domg = r n g / and g(f(a)) = a for each a G dom/ . We 
shall proceed as follows: First we show that r n g / C domy. In the second step we 
prove there is no y G d o m / having the property that g(f(y)) ^- y. Finally (in the 
third step) we show that r n g / = domg. 

(1) Assume that z G d o m / and f(z) G domy. Define £ G PX-4), C = {[ 2 , z ] , 
[f(z),z]}. Since p(z) -̂  z and / (z ) ^ domy, the mapping £ is a trivial element of 
Q(g). It is obvious that £ ^ Q(f)- We arrived at a contradiction. Consequently 
r n g / C domy. 

(2) Let y G dom / and g (f(y)) ^ y. In view of the assumptions of c) we have 
either y £ domy or g(y) 9-- / (y ) . If we replace the element z by the element y in the 
definition of £, then we obtain £ G Q(y) — Q(f)-

(3) Suppose that r n g / ^ domy. Then domy = A and there exists u G -4 with 
A — r n g / = {u} . Since ||A|| > 2, the relation f(u) G d o m / is valid. According to the 
relation g G Q(f) we get f(g(f(u))) = d(f(f(u))) = f(u)- Since / is injective, this 
implies g(f(u)) = u. Next g G <2(/) and u G dom/, u,f(u) G domy, which yield 
that y(u) G d o m / and f(g(u)) = g(f(u)) = u. Therefore it G r n g / , a contradiction. 

• 

3.2. Lemma, Let (-4,/) G % be neither a chain nor an algebra with a cycle. 
Let g G Q( / ) . IfV(y) G domy for each y G -4, -4 - domg = {2/0} and g(f(yo)) = 2/o, 
then Q(/ ) # Qfo). 

P r o o f . Put t/fc = fk(yo) for each t G jV. Then y(yi) = t/o- Let k > 1. 
We have t/fc-i G d o m / and yk-i,yk € domy. Inasmuch as y G Q(/ ) we obtain 
g(yk) = g(f(yk-i)) = f(g(yk-i)) = /(yjb-2) = yk-i by induction. There exist 
z & {yk,k G JV} and m G JV such that f(z) = ym according to the assumption. 
Let us define <p G F(A), <p = {[yo, <*], [2/1, ym]}- It is obvious that (p G Q(f)- Further 
<p(d(yi)) = <p(yo) = z and y(<p(yi)) = g(ym) = ym-i, hence y? £ Q(y). D 

3.3. Lemma. Suppose that (A, f) is a connected monounary algebra beeing not 
a chain, which is not of type r . 

Then EQ(f) D (Q(f) - H(f)) = 0. 

P r o o f . It is necessary to show that g G Q(f) and domy -̂  A imply Q(f) ^ 
Q(g). Assume that g G Q(f) and domy -̂ A. Since (-4,y) is connected in view 
of 1.7, there is yo G A with A — domy = {yo}. If (-4,/) possesses a cycle, then 
Q(f) ± Q(g) by 2.8. Let (A,f) contain no cycle. Then 2.6 implies g(f(yo)) = y0 

and 3.2 yields Q(f) ^ Q(g). D 
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3.4. Lemma. Let (A, f) be of type r, rng/ = {a}. Then EQ(f) = {f,h}, where 
(A, h) is an algebra of type ~, dom/i = {a}. 

P r o o f . From 2.11 it follows that {/, h} D EQ(f). It suffices to prove that 
Q(f) = Q(h). Let <p G Q(h). If a ^ dom<p, then <p is a trivial quasi-endomorphism 
of (A,f). If a G domV, then <p(a) = a. Let x G A and x , / (x ) G dom^. We get 
? ( / (* ) ) = <p(a) = a = f(<p(x)). Thus <p G £ ( / ) and Q(h) C Q(f). 

Conversely suppose that <p G Q(f)- Let a G domy?. Then <p(a) = a. If x G A is 
such that x G dom/i, then x = a and <£>(/i(a)) = ^>(a) = a = /i(<p(a)). Therefore 
p G Q(/i). D 

3.5. Lemma. Suppose that (A, f) is a connected monounary algebra beeing not 
a chain and having no cycle. Then EQ(f) = {/}. 

P r o o f . We have EQ(f) C EH0(f) according to 3.3 and 1.4. Consider the 
greatest chain (It!, fn), which is a subalgebra of (A, f). 

If there exists x G A with f(x) £ R or if there exists x' G R with x' £ rng / , then 
Thm.3 of the paper [2] implies EH0(f) = {/}. 

Let R = rng / . Since (A, f) is not a chain, let us choose a G A — R. Further there 
are y,\f G R such that f(y) = / (a) , f(y') = y. We have EH0(f) = {/,#}, where 
g(y) =z g(a) = y' and g(f(a)) = y according to Thm.l of the paper [2]. Let us define 
<p G F(A) such that <p = {[a, f(a)], []/, f(y)]}. Then <p is a trivial element of Q( / ) , 
but <p £ Q(g), because g(<p(a)) = g(f(a)) = y and <p(g(a)) = <£>(</) = f(v)- Thus 
Q(f) ± Q(g) and EQ(f) = {/}. D 

3.6. Lemma. Suppose that (A, f) is a connected monounary algebra having a 
cycle C and beeing not of type r. 

a) If there is x 'A-C, then EQ(f) = {/}. 
b) If A = C, then EQ(f) = {fjp~1}, where p=\\C\\. 

P r o o f . We have EQ(f) C EH0(f) by 3.3 and 1.4. If there exists x e A with 
f(x) £ C, then Thm.3 of the paper [2] implies EH0(f) = {/}. 

Assume that f(x) G C for each x G A. Then ||C|| > 1, because (A, f) is not of type 
r. Further EH0(f) = {fk : 1 ^ k < p, k G M, k and p are relatively prime } according 
to Thm.2 of the paper [2]. The assertion is obvious for p = 2. Let 1 < k < p — 1 and 
choose z G C. Define <p G F(A) such that <p = {[z, z], [fk(z), f(z)]}. The mapping 
<p is a trivial element of Q(f). We obtain <p(fk(z)) = f(z) and /* (<p(z)) = fk(z), 
thus <p i Q(fk), therefore Q(fk) ± Q(f). 

Further let k = p - 1 and a ^ A-C. Then / (a) = /(6) for some 6 G C. Let us 
define ip = {[a, / (a)] , [/p_1(6), P"1^)]}. Since p > 2, rp is a trivial element of Q(f). 
The relations ^ ( / ^ ( a ) ) = rp(fp~l(b)) = / ^ H 6 ) ^ d / p _ 1 ( ^ ( a ) ) = / p (a ) = 6 
yield that ip £ Q(fp~1)- The proof of the first assertion is complete. 
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Now assume that A = C. Let C G Q(f). lfx,p~l(x) G dom< then C{fp~l(z)) = 
PiCif-H*))) = /P _ 1(C(/PW)) = P-'ia*))- Thus Q(f) C Q(F~l). Similarly 
Q(fp~l) c Q(f). a 

3.7. Lemma. Let (A, f) £ Uc and let (A, f) be not a chain. Then EQ(f) = { / } . 

P r o o f . Let g G Q(f) be such that Q(f) = Q(g). Then 2.9 implies d o m / C 
dom0. Since (A, / ) is not a chain, (A, g) is not a chain as well in view of 3.1. Further 
(A, f) contains no cycle, hence (A,g) has no cycle by 3.6. We obtain dom0 C d o m / 
using 2.9. Therefore d o m / = domy and 2.10 implies g = f. • 

3.8. Theorem. Let (A, f) G Up be connected. 
1° If \\A\\ = 1, then EQ(f) = {01,02}, where dom01 = A, dom02 = 0. 
2° If (A, f) is a chain, then EQ(f) = {/, h}} where dom h = rng / and h(f(y)) = y 

for each y G dom/. 
3° If(A,f) is of type r with a value a, then EQ(f) = {/, 0}, where (A,g) is of 

type 7r with a value a. 
4° If (A, f\ is a cycle, \\A\\ = p > 2, then EQ(f) = {/, j " " 1 } . 
5° Otherwise EQ(f) = { / } . 

P r o o f . If ||i4|| = 1, then / = gx or / = g2 and {gi,g2} = Q(gi) = Q(g2) = 
EQ(f). 

The second assertion is proved in 3.1, the third one in 3.4 and the fourth one in 
3.6. 

Suppose that (̂ 4, / ) fails to satisfy the assumptions of 1° — 4°. If (A, f) £ Uc, then 
(A, f) is not a chain and 3.1 implies EQ(f) = {/}. If (̂ 4, / ) G Uc and (A, f) contains 
a cycle, then EQ(f) = {/} by 3.6. Finally, if (A, f) G Uc and (A,f) possesses no 
cycle, then EQ(f) = {/} in view of 3.5. • 

4. ALGEBRAS WITH COMMON QUASI-ENDOMORPHISMS 

In this section the characterization of the set EQ(f) of an arbitrary partial mono-
unary algebra (̂ 4, / ) will be given. 

4.1. Lemma. Suppose that (A, f) G UP,(B, / # ) is a component of (A, / ) , | |5 | | > 
1 and 0 G EQ(f). Ifg\B = fB, then g = f. 

P r o o f . We can assume that (A, f) contains more then one component. Choose 
z G dom/js such that f(z) -̂  z. 

First we shall show that d o m / = domy. Suppose that x G dom0. Define rp G 
F(A) as V = i[z,x],[g(z),g(x)]}. We obtain V G Q(g)- Let x G dom0 - d o m / . 
Then i/> £ Q(/) , because t/>(f(z)) = 1>(g(z)) = g(x) and xp(z) = x £ dom/ . The 
proof for x G d o m / — dom0 is analogous. 
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Consider x G d o m / . Therefore we get g(x) = \f>(g(z)) = ^(f(z)) = f(ip(z)) = 
f(x) for each x G d o m / = domg. D 

4.2. Lemma. Suppose that (A, f) G Up,(B,fs) is a component of (A, f) and 
B± A. If(B,fB) is an algebra of type r, then EQ(f) = {/}. 

P r o o f . Assume that g G Q(f) is such that Q(f) = Q(g)- Further let rng/# = 
{a}. If g \ B = / e , then g = f according to 4.1. 

Let gs ^ / B , where gs = g \ B. Then Q(gB) = Q(/B) is valid in view of 1.8 
and dorngs = {a},g(a) = a in view of 3.8. Choose x,z G A as follows: x £ B 
and z € B such that / (z) / z. Put <p = {[z,x], [a,a]}. The mapping ?̂ belongs to 
Q(g), because z £ domg and g(f(z)) = g(a) = a, <p(g(a)) = <p(a) = a = g(<p(a)). 
Since <p(f(z)) = <p(a) = a G B and <p(z) £ d o m / or f(<p(z)) = f(x) £ B, we have 
<p fi Q( / ) , a contradiction. D 

4.3. Lemma. Let (A, f) G Wpj||-4|| > \,Kd^ A and let g G EQ(f). If a G Kd, 
then a G domg and g(a) = f(a). 

P r o o f . It suffices to show that a G domg in view of 2.L 
Suppose that a £ domg. The assumptions \\A\\ > 1 and Kd ^ A allow us to choose 

x G A such that either x £ d o m / or f(x) -̂  x. Now we define <p G F(A), <p = {[a, x]}. 
Then <peQ(g)-Q(f). D 

4.4. Lemma. Let (A, f) G Up be of type 8. Then EQ(f) = {/, g}, where 
domg = 0. 

P r o o f . Since / is the identity on A, we conclude Q(f) = E(A). It is easy to 
see that Q(g) = F(A). Thus {f,g} C EQ(f)}. 

Assume that h G Q(f) is such that h ^ g,h ^ f and Q(h) = Q(f). Then 
dom/i / 0. Further dom/i ^ ^4, because /i(z) = z for each z G dom/i according 
to 2.1. Thus we can to choose a G dom/i and 6 ^ dom/i. Consider >̂ G F(A), 
ip = {[a,b]}. We have <p G Q(/) — Q(h), which is a contradiction. D 

4.5. Corollary. Let (A, f) G Up be of type 7. Then EQ(f) = {/, g}7 where g is 
the identity on A. 

P r o o f . Analogously as the proof of the last assertion. D 

4.6. Lemma. Suppose that (A, f) G £/p,||A|| > \,(A,f) is neither of type IT 
nor of type 7 and g G EQ(f). If a £ Knt then a £ domg and ({a},ga), where 
ga — g \ {a}, is a component of(A,g). 

P r o o f . Let a £ Kn. Assume that there exists a component (B,gs) of (A,g) 
such that HHII > 1 and a G B. By virtue of 1.8 we get Q(gB) = <3(/B), where 
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fB = f \ B, and thus (B,gs) is of type r by 3.8. That means B = A according to 
4.2 and consequently, (A, f) is of type 7r. Thus ({ci),ga) is a component of (A,g). 

Since (A, f) is not of type 7, the algebra (A,g) is not of type 6 by 4.5. Let us 
choose x G A such that either x ^ dom (7 or ^f(x) -̂  x. 

Consider a G domg. We obtain g(a) = a, because ({a},<7a) is a component 
of (A,g). Take >̂ = {[a,-p]}. We have <p G Q(f) — Q(g), a contradiction with 
Q(f) = Q(g). This gives the desired conclusion that a £ domg. D 

4.7. Corollary. Let (A, f) G Up and g G -EQ(/). 
1) IfK^A, then f \K = g\K. 
2) IfK = A,Kn±% and \\Kd\\ > 1, then f = g. 

P r o o f . Let K 7- A. Then the relation f \ Kd = g \ Kd follows from 4.3 and 
the relation / f Kn = g \ Kn follows from 4.6. 

Let the assumptions of the second assertion be satisfied in the algebra (A, f). Then 
as well as the assumptions of 4.3 and 4.6 are satisfied. We get f = f \ (Kd U Kn) = 
g\(KdU Kn) = g. D 

4.8. Lemma. Let (A, f) G Up and let (A, f) be of type a. Then EQ(f) = {f,g}} 

where domg = r n g / and g(f(a)) = a for each a G dom/ . 

P r o o f . First we will show that Q(f) = Q(g). Suppose that <p G Q(f)- Further 
let x G domg and x,g(x) G dom^. We can choose y G d o m / such that f(y) = x 
and y = g(f(y)) = g(x) G dom<p. We obtain g(<p(x)) = g(<p(f(y))) = g(f(<p(y))) = 

<p(y) and <p(g(x)) = <p[g(f(y))j = <p(y), because y G d o m / and y, f(y) G dom<p. 

Therefore <p G Q(g). 
Using d o m / = mgg and f(g(a)) = a for each a G dom<7, the inclusion Q(g) C 

Q(f) can be proved in the same way. 
Assume that h G EQ(f), h ^ f. To complete the proof, let us show that hs = gB 

for a set B such that (B, / # ) is a component of (A, / ) , wher.e hs = h \ B,gs = g \ B. 
If IIHH = 1, then hs = / B = gB follows from 4.7 and from the definition of algebras 

of type a. 
Now let IIHH > 1. We get Q(fB) = Q(hB) by 1.8. The algebra (B,fB) is either a 

chain or a cycle and consequently hs = gB in view of 3.8. D 

4.9. Lemma. Suppose that (A, f) EUP,K ^ A and that (A, f) is neither of type 
T nor of type a. Then EQ(f) = {/}. 

P r o o f . If (A,f) is connected, then EQ(f) = {/} according to 3.8. Assume 
that (A,f) is not connected. Then there exists a component (B,fs) of (A, f) such 
that IIHH > 1 and (B,fs) is neither a cycle nor a chain. According to 4.2 we have 
EQ(f) = {f}ioi(B,fB)oityVeT. 

Let (B,fB) be not of type r and h G EQ(f). We conclude Q(fB) = Q ( ^ B ) and 
hB = SB by 1.8 and 3.8. That means h = f in view of 4.1. D 
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4 .10 . T h e o r e m . Let(AJ)eUp. 

1° If (A J) is of type a, then EQ(f) = {f,g}, where domg = r n g / and g(f(a)) = 

a for each a G dom / . 

2° If (A J) is of type r with a vaiue a, then EQ(f) = {/,</}, where (A,g) is of 

type w with a vaiue a. 

3° If (A J) is of type ir with a vaiue a, then EQ(f) = {f,g}, where (A J) is of 

type T with a vaiue a. 

4° If (A, f) is of type S, then EQ(f) = {/, g}, where (A, g) is of type y. 

5° If (A J) is of type j , then EQ(f) = {f,g}, where (A,g) is of type 6. 

6° Otherwise EQ(f) -=-{/} . 

P r o o f . The assertion is the consequence of 3.8, 4.4, 4.5, 4.7, 4.8 and 4.9. • 

4 . 1 1 . Corol lary. The relation \\EQ(f)\\ ^ 2 is valid for each (A, f) G Up. 
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