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AN INFINITE COLLECTION OF ABSOLUTELY CONVEX 

SUBGROUPS 

HERBERT A. HOLLISTER, Bowling Green 

(Received November 19, 1990) 

A subgroup H of an orderable group G is said to be absolutely convex if H is 

convex in every ordering of G. The literature contains very few examples of such 

groups. We show that a well known infinite collection has this property . 

Torsion free nilpotent groups are known to be orderable [3]. The following theorem 

provides a sufficient condition for the center of a nilpotent o-group to be convex. 

T h e o r e m . If the center Z(G) of a nilpotent o-group G is Archimedean, then it 

is convex. 

P r o o f . Let b E Z(G)y a E G , with e < a < b. 

Suppose a £ Z(G). Then there exists a largest non-trivial commutator w s tar t ing 

with a. 

w = [a,a,i ,2r2 , . . . , * « ] . 

By the maximality of lenght, w £ Z(G). 

Let y = [a, # 1 , . . . , £ n - i ] - (It may be that y = a.) 

Since G is nilpotent, it is weakly abelian [4]. Therefore, |y| ^ a < 6, and, without 

loss of generality, y < b. Again, because G is weakly abelian, 

[y,xn] < a . 

Thus 

[y,xn] < b i.e. IU < b. 

This contradicts the Archimedean property of Z(G). Thus no such non-trivial com

mutator exists and a E Z(G). • 
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Corol lary. If the center of a torsion free nilpotent group is of rank 1, then it is 

absolutely convex. 

P r o o f . Every order of a rank 1 group is Archimedean. 

An infinite collection of absolutely convex subgroups: 

Let S be a unitary subring of the rational numbers, e.g. the integers or finite 

decimals. Let n be a positive integer greater than 1 and let G be the group of all 

n x n lower triangular matrices with Vs on the diagonal and entries from S. G is 

known to be nilpotent of class n — 1 and to be orderable. 

The center Z(G) consists of all such matrices whose only possible non-zero non-

diagonal entry is in the corner. This is isomorphic to the additive structure of 5 and, 

therefore, has rank 1. By the corollary, Z(G) is absolutely convex. • 
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