Czechoslovak Mathematical Journal

Svatoslav Staněk
On the boundedness and periodicity of solutions of second-order functional differential equations with a parameter

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 2, 257-270

Persistent URL: http://dml.cz/dmlcz/128331

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON THE BOUNDEDNESS AND PERIODICITY OF SOLUTIONS OF SECOND-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH A PARAMETER

Svatoslav Staněk, Olomouc

(Received July 10, 1989)

1. Problem

Let $t_{0} \in \mathbb{R}$, let X_{1}, X_{2} be subsets of $C^{0}(\mathbb{R})$ and $I=\langle a, b\rangle(-\infty<a<b<\infty)$. Consider the functional differential equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=F\left[y, y^{\prime}, \mu\right] \tag{1}
\end{equation*}
$$

where $F: X_{1} \times X_{2} \times I \rightarrow C^{0}(\mathbb{R}), q(t)>0$ for $t \in \mathbb{R}$, containing the parameter μ. The problems considered are to determine sufficient conditions on q and F that would make possible to choose the parameter μ so that there exist
a) a solution of (1) vanishing at the point t_{0} and such that y and y^{\prime} are bounded on \mathbb{R},
b) a periodic solution of (1) vanishing at the point t_{0}.

The same problems are considered for equation (1) where $F[y, z, \mu]$ does not depend on z.

In the special case with $F[y, z, \mu](t)=f(t, y(t), z(t), \mu)$, where $f(t, y, z, \mu): \mathbb{R}^{3} \times$ $I \rightarrow \mathbb{R}$, the above formulated problems have been considered in [2] and [3].

2. Notation, lemmas

Let $t_{0} \in \mathbb{R}$ and let u, v be solutions of the equation

$$
\begin{equation*}
y^{\prime \prime}=q(t) y, q \in C^{0}(\mathbb{R}), q(t)>0 \quad \text { for } t \in \mathbb{R}, \tag{q}
\end{equation*}
$$

$u\left(t_{0}\right)=0, u^{\prime}\left(t_{0}\right)=1, v\left(t_{0}\right)=1, v^{\prime}\left(t_{0}\right)=0$. Setting

$$
\begin{aligned}
r(t, s) & =u(t) v(s)-u(s) v(t)(=-r(s, t)) \\
r_{1}^{\prime}(t, s) & =u^{\prime}(t) v(s)-u(s) v^{\prime}(t)\left(=\frac{\partial r}{\partial t}(t, s)\right)
\end{aligned}
$$

for $(t, s) \in \mathbf{R}^{2}$, then $r(t, s)>0$ for $t>s, r(t, s)<0$ for $t<s, r_{1}^{\prime}(t, s)>1$ for $t \neq s$ and $r_{1}^{\prime}(t, t)=1$ for $t \in \mathbf{R}$ (see Lemma 1, [1]).

Denote by $Y_{1}\left(Y_{0}\right)$ the Fréchet space of all continuously differentiable (continuous) functions on \mathbf{R} with the usual metric topology, and let $X_{1}\left(X_{0}\right)$ be the subset of $Y_{1}\left(Y_{0}\right)$ defined by

$$
\begin{gathered}
X_{1}=\left\{y ; y \in Y_{1}, y \text { and } y^{\prime} \text { bounded on } \mathbf{R}\right\} \\
\left(X_{0}=\left\{y ; y \in Y_{0}, y \text { bounded on } \mathbf{R}\right\}\right) .
\end{gathered}
$$

Let $F: X_{1} \times X_{0} \times I \rightarrow Y_{0}, F:[y, z, \mu] \rightarrow F[y, z, \mu](t)$ be an operator satisfying some of the following assumptions: there exist positive constants r_{0}, r_{1} such that
(i) F is a continuous operator on $D \times I$, where $D=\left\{\left(y, y^{\prime}\right) ; y \in Y_{1},\left|y^{(i)}(t)\right| \leqslant r_{i}\right.$ for $t \in \mathbb{R}$ and $i=0,1\}$, that is, if $\left\{y_{n}\right\},\left\{\mu_{n}\right\},\left(y_{n}, y_{n}^{\prime}\right) \in D, \mu_{n} \in I$ are convergent sequences and $\lim _{n \rightarrow \infty} y_{n}=y, \lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}$, then $\lim _{n \rightarrow \infty} F\left[y_{n}, y_{n^{\prime}}^{\prime}, \mu_{n}\right]=F\left[y, y^{\prime}, \mu_{0}\right] ;$
(ii) $|F[y, z, \mu](t)| \leqslant q(t) r_{0}$ for $(y, z, \mu) \in H \times I$ and $t \in \mathbf{R}$, where $H=\{(y, z) ; y \in$ $X_{1}, z \in X_{0},|y(t)| \leqslant r_{0},|z(t)| \leqslant r_{1}$ for $\left.t \in \mathbf{R}\right\} ;$
(iii) $F\left[y, y^{\prime}, \mu_{1}\right](t)<F\left[y, y^{\prime}, \mu_{2}\right](t)$ for $\left(y, y^{\prime}\right) \in D, t \in \mathbf{R}, \mu_{1}, \mu_{2} \in I, \mu_{1}<\mu_{2}$;
(iv) $F\left[y, y^{\prime}, a\right](t) . F\left[y, y^{\prime}, b\right](t) \leqslant 0$ for $\left(y, y^{\prime}\right) \in D, t \in \mathbf{R}$;
(v) $2 \sqrt{r_{0}} \sqrt{A+Q r_{0}} \leqslant r_{1}$, where $Q=\sup \{q(t) ; t \in \mathbf{R}\}, A=\sup \left\{\left|F\left[y, y^{\prime}, \mu\right](t)\right|\right.$; $\left.\left(y, y^{\prime}, \mu\right) \in D \times I, t \in \mathbf{R}\right\}\left(\leqslant Q r_{0}\right) ;$
(vi) $F\left[y, y^{\prime}, \mu\right](t)$ is an ω-periodic function for every $\left(y, y^{\prime}\right) \in D, \mu \in I$, where y is ω-periodic.
When $F[y, z, \mu]=G[y, \mu]$ does not depend on z we assume that G satisfies some of the following assumptions:
there exists a positive constant r_{0} such that
(j) G is a continuous operator on $P \times I$, where $P=\left\{y ; y \in X_{0},|y(t)| \leqslant r_{0}\right.$ for $\left.t \in \mathbf{R}\right\}$, that is, if $\left\{y_{n}\right\},\left\{\mu_{n}\right\}, y_{n} \in P, \mu_{n} \in I$ are convergent sequences, $\lim _{n \rightarrow \infty} y_{n}=y$, $\lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}$, then $\lim _{n \rightarrow \infty} G\left[y_{n}, \mu_{n}\right]=G\left[y, \mu_{0}\right] ;$
(jj) $|G[y, \mu](t)| \leqslant q(t) r_{0} \quad$ for $(y, \mu) \in P \times I$ and $t \in \mathbf{R}$;
(jjj) $G\left[y, \mu_{1}\right](t)<G\left[y, \mu_{2}\right](t)$ for $y \in P, t \in \mathbf{R}, \mu_{1}, \mu_{2} \in I, \mu_{1}<\mu_{2}$;
(ju) $G[y, a](t) . G[y, b](t) \leqslant 0 \quad$ for $y \in P, t \in \mathbf{R}$;
(u) $G[y, \mu](t)$ is an ω-periodic function for every ω-periodic function $y \in P$ and $\mu \in I$.

Lemma 1. Let $t_{1}, t_{2} \in \mathbf{R}, t_{1}<t_{0}<t_{2}$. If assumptions (i)-(v) hold for positive constants r_{0}, r_{1}, then for every $\varphi,\left(\varphi, \varphi^{\prime}\right) \in D$ there exists a unique $\mu_{0} \in I$ such that the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=F\left[\varphi, \varphi^{\prime}, \mu\right](t) \tag{2}
\end{equation*}
$$

with $\mu=\mu_{0}$ has on the interval $\left\langle t_{1}, t_{2}\right\rangle$ a solution y (which is then unique) satisfying

$$
\begin{equation*}
y\left(t_{1}\right)=y\left(t_{0}\right)=y\left(t_{2}\right)=0 \tag{3}
\end{equation*}
$$

Moreover, $\left|y^{(i)}(t)\right| \leqslant r_{i}$ for $t \in\left\langle t_{1}, t_{2}\right\rangle$ and $i=0,1$.
Proof. Let $\left(\varphi, \varphi^{\prime}\right) \in D$. Setting $h(t, \mu)=F\left[\varphi, \varphi^{\prime}, \mu\right](t)$ for $(t, \mu) \in\left\langle t_{1}, t_{2}\right\rangle \times I$, Lemma 1 follows from Lemma 4 [1].

Remark 1. The solution y in the assertion of Lemma 1 may be written in the form

$$
y(t)=\frac{r\left(t, t_{0}\right)}{r\left(t_{0}, t_{1}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[\varphi, \varphi^{\prime}, \mu_{0}\right](s) \mathrm{d} s+\int_{t_{0}}^{t} r(t, s) F\left[\varphi, \varphi^{\prime}, \mu_{0}\right](s) \mathrm{d} s
$$

Lemma 2. Let $t_{1}, t_{2} \in \mathbf{R}, t_{1}<t_{0}<t_{2}$. If assumptions $(\mathrm{j})-(\mathrm{ju})$ hold for a positive constant r_{0}, then for every $\varphi \in P$ there exists a unique $\mu_{0} \in I$ such that the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=G[\varphi, \mu](t) \tag{4}
\end{equation*}
$$

with $\mu=\mu_{0}$ has on the interval $\left\langle t_{1}, t_{2}\right\rangle$ a solution y (which is then unique) satisfying (3). Moreover, $|y(t)| \leqslant r_{0}$ for $t \in\left\langle t_{1}, t_{2}\right\rangle$.

Proof. Let $\varphi \in P$. Setting $h(t, \mu)=G[\varphi, \mu](t)$ for $(t, \mu) \in\left\langle t_{1}, t_{2}\right\rangle \times I$, Lemma 2 follows from Lemma 5 [1].

For $x, t_{1}, t_{2} \in \mathbf{R}, t_{1}<t_{2}$, define functions $\chi_{t_{1}, t_{2}}, \nu_{x}, \tau_{x}: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
\chi_{t_{1}, t_{2}}(t) & = \begin{cases}1 & \text { for } t \in\left\langle t_{1}, t_{2}\right\rangle, \\
0 & \text { for } t \in \mathbf{R}-\left\langle t_{1}, t_{2}\right\rangle ;\end{cases} \\
\nu_{x}(t) & = \begin{cases}0 & \text { for } t \in(-\infty, x\rangle, \\
1 & \text { for } t \in(x, \infty) ;\end{cases} \\
\tau_{x}(t) & = \begin{cases}1 & \text { for } t \in(-\infty, x), \\
0 & \text { for } t \in\langle x, \infty)\end{cases}
\end{aligned}
$$

Let $t_{1}, t_{2} \in \mathbf{R}, t_{1}<t_{0}<t_{2}$ and let $\varphi \in Y_{1}, \psi \in Y_{0},\left(\varphi, \varphi^{\prime}\right) \in D, \psi \in P$, where D and P are defined in (i) and (j), respectively. Consider the equations
$y^{\prime \prime}-q(t) y=\chi_{t_{1}, t_{2}}(t) F\left[\varphi, \varphi^{\prime}, \mu\right](t)-q(t)\left(1-\chi_{t_{1}, t_{2}}(t)\right) y-\left(\frac{\alpha}{r_{0}}\right)^{2} \nu_{t_{2}}(t) y-\left(\frac{\beta}{r_{0}}\right)^{2} \tau_{t_{1}}(t) y$ and
(6)
$y^{\prime \prime}-q(t) y=\chi_{t_{1}, t_{2}}(t) G[\psi, \mu](t)-q(t)\left(1-\chi_{t_{1}, t_{2}}(t)\right) y-\left(\frac{\alpha}{r_{0}}\right)^{2} \nu_{t_{2}}(t) y-\left(\frac{\beta}{r_{0}}\right)^{2} \tau_{t_{1}}(t) y$,
which depend on the parameters $\mu, \alpha, \beta ; \mu \in I, \alpha, \beta \in \mathbf{R}$. We say that z is a solution of (5) ((6)) on \mathbf{R} if $z \in C^{1}(\mathbb{R}) \cap C^{2}\left(\mathbb{R}-\left\{t_{1}, t_{2}\right\}\right)$ and for $y=z(t)$ the equality (5) ((6)) holds for all $t \in \mathbf{R}-\left\{t_{1}, t_{2}\right\}$.

Lemma 3. Let $t_{1}, t_{2} \in \mathbf{R}, t_{1}<t_{0}<t_{2}$, and let assumptions (i)-(v) hold for positive constants r_{0}, r_{1}. Then for every $\varphi \in Y_{1},\left(\varphi, \varphi^{\prime}\right) \in D$ there exist a unique $\mu_{0} \in I, 0 \leqslant \alpha_{0} \leqslant r_{1}, 0 \leqslant \beta_{0} \leqslant r_{1}$ such that equation (5) with $\mu=\mu_{0}, \alpha=\alpha_{0}$, $\beta=\beta_{0}$ has a solution y (which is then unique) satisfying (3) and

$$
\limsup _{t \rightarrow-\infty} y(t)=r_{0} \operatorname{sign} \beta_{0}, \limsup _{t \rightarrow \infty} y(t)=r_{0} \operatorname{sign} \alpha_{0}
$$

Proof. For $t \in J=\left\langle t_{1}, t_{2}\right\rangle$ equation (5) is of the form

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=F\left[\varphi, \varphi^{\prime}, \mu\right](t), \quad t \in J \tag{8}
\end{equation*}
$$

and by Lermma 1 there exists a unique $\mu_{0} \in I$ such that equation (8) with $\mu=\mu_{0}$ has a solution z (which is then unique), $z\left(t_{1}\right)=z\left(t_{0}\right)=z\left(t_{2}\right)=0$. Moreover, $\left|z^{(i)}(t)\right| \leqslant r_{i}$ for $t \in J, i=0,1$.

For $t \in\left(-\infty, t_{1}\right)$ and $t \in\left(t_{2}, \infty\right)$ equation (5) is of the form

$$
\begin{equation*}
y^{\prime \prime}=-\left(\frac{\beta}{r_{0}}\right)^{2} y \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime \prime}=-\left(\frac{\alpha}{r_{0}}\right)^{2} y \tag{10}
\end{equation*}
$$

respectively. We see that equation (9) ((10)) has on the interval $\left(-\infty, t_{1}\right\rangle\left(\left\langle t_{2}, \infty\right)\right)$ a solution $y_{1}\left(y_{2}\right)$ satisfying $y_{1}^{(i)}\left(t_{1}\right)=z^{(i)}\left(t_{1}\right)$ for $i=0,1$ and $\limsup _{t \rightarrow-\infty} y_{1}(t)=$ $r_{0} \operatorname{sign}\left|z^{\prime}\left(t_{1}\right)\right|\left(y_{2}^{(i)}\left(t_{2}\right)=z^{(i)}\left(t_{2}\right)\right.$ for $i=0,1$ and $\left.\limsup _{t \rightarrow \infty} y_{2}(t)=r_{0} \operatorname{sign}\left|z^{\prime}\left(t_{2}\right)\right|\right)$ if and only if $y_{1}(t)=r_{0} \sin \left(\frac{z^{\prime}\left(t_{1}\right)}{r_{0}}\left(t-t_{1}\right)\right)\left(y_{2}(t)=r_{0} \sin \left(\frac{z^{\prime}\left(t_{2}\right)}{r_{0}}\left(t-t_{2}\right)\right)\right)$. Setting $\beta_{0}=\left|z^{\prime}\left(t_{1}\right)\right|, \alpha_{0}=\left|z^{\prime}\left(t_{2}\right)\right|$ we have $0 \leqslant \beta_{0} \leqslant r_{1}, 0 \leqslant \alpha_{0} \leqslant r_{1}$ and the function

$$
y(t)= \begin{cases}z(t) & \text { for } t \in J, \tag{11}\\ r_{0} \operatorname{sign} z^{\prime}\left(t_{1}\right) \sin \left(\frac{\beta_{0}}{r_{0}}\left(t-t_{1}\right)\right) & \text { for } t \in\left(-\infty, t_{1}\right) \\ r_{0} \operatorname{sign} z^{\prime}\left(t_{2}\right) \sin \left(\frac{a_{0}}{r_{0}}\left(t-t_{2}\right)\right) & \text { for } t \in\left(t_{2}, \infty\right)\end{cases}
$$

is the unique solution of (5) with $\mu=\mu_{0}, \alpha=\alpha_{0}, \beta=\beta_{0}$ having the properties demanded in the lemma.

Lemma 4. Let $t_{1}, t_{2} \in \mathbb{R}, r_{1}<t_{0}<t_{2}, t_{2}-t_{1} \geqslant 2$ and let $Q_{0}=\max \{q(t) ; t \in$ $\left.\left\langle t_{1}, t_{2}\right\rangle\right\}$. Assume that assumptions (j)-(ju) hold for a positive constant r_{0}. Then for every $\psi \in P$ there exist a unique $\mu_{0} \in I, 0 \leqslant \alpha_{0} \leqslant 2 r_{0}\left(1+Q_{0}\right), 0 \leqslant \beta_{0} \leqslant 2 r_{0}\left(1+Q_{0}\right)$ such that equation (6) with $\mu=\mu_{0}, \alpha=\alpha_{0}, \beta=\beta_{0}$ has a solution y (which is then unique) satisfying (3) and (7).

Proof. Since for $t \in J=\left\langle t_{1}, t_{2}\right\rangle$ we may write equation (6) in the form

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=G[\psi, \mu](t), \quad t \in J \tag{12}
\end{equation*}
$$

there exists (by Lemma 2) a unique $\mu_{0} \in I$ such that equation (12) with $\mu=\mu_{0}$ has a solution z (which is then unique), $z\left(t_{1}\right)=z\left(t_{0}\right)=z\left(t_{2}\right)=0$. Moreover, $|z(t)| \leqslant r_{0}$ for $t \in J$. Since $|G[\varphi, \mu](t)| \leqslant r_{0} Q_{0}$ for $t \in J$ (by (jj)) we have $\left|z^{\prime \prime}(t)\right| \leqslant 2 r_{0} Q_{0}$ for $t \in J$. Next, $z\left(t_{1}+1\right)-z\left(t_{1}\right)=z^{\prime}(\xi), z^{\prime}(\xi)-z^{\prime}\left(t_{1}\right)=z^{\prime \prime}(\tau)\left(\xi-t_{1}\right)$, where $\xi \in\left(t_{1}, t_{1}+1\right)$, $\tau \in\left(t_{1}, \xi\right)$, thus $\left|z^{\prime}\left(t_{1}\right)\right| \leqslant\left|z\left(t_{1}+1\right)-z\left(t_{1}\right)\right|+\left|z^{\prime \prime}(\tau)\right|\left(\xi-t_{1}\right) \leqslant 2 r_{0}\left(1+Q_{0}\right)$. Analogously $\left|z^{\prime}\left(t_{2}\right)\right| \leqslant 2 r_{0}\left(1+Q_{0}\right)$. Setting $\beta_{0}=\left|z^{\prime}\left(t_{1}\right)\right|, \alpha_{0}=\left|z^{\prime}\left(t_{2}\right)\right|$ as in the proof of Lemma 3 we can verify that the function y defined by (11) is the unique solution of (6) with $\mu=\mu_{0}, \alpha=\alpha_{0}, \beta=\beta_{0}$ satisfying (3) and (7).

Remark2. From the proofs of Lemmas 3 and 4 we see that the solution y of (5) $((6))$ in Lemma 3 (Lemma 4) satisfies $\left|y^{(i)}(t)\right| \leqslant r_{i}$ for $t \in \mathbb{R}$ and $i=0,1\left(|y(t)| \leqslant r_{0}\right.$, $\left|y^{\prime}(t)\right| \leqslant 2 r_{0}\left(1+Q_{0}\right)$ for $\left.t \in \mathbb{R}\right)$.

Lemma 5. Let $t_{1}, t_{2} \in \mathbb{R}, t_{1}<t_{0}<t_{2}$. Assume that assumptions (i)-(v) hold for positive constants r_{0}, r_{1}. Then there exist $\mu_{0} \in I, 0 \leqslant \alpha_{0} \leqslant r_{1}, 0 \leqslant \beta_{0} \leqslant r_{1}$ such that the equation
$y^{\prime \prime}-q(t) y=\chi_{t_{1}, t_{2}}(t) F\left[y, y^{\prime}, \mu\right]-q(t)\left(1-\chi_{t_{1}, t_{2}}(t)\right) y-\left(\frac{\alpha}{r_{0}}\right)^{2} \nu_{t_{2}}(t) y-\left(\frac{\beta}{r_{0}}\right)^{2} \tau_{t_{1}}(t) y$
with $\mu=\mu_{0}, \alpha=\alpha_{0}, \beta=\beta_{0}$ has a solution y satisfying (3) and $\left(y, y^{\prime}\right) \in D$.
Proof. Let $S=\left\{y ; y \in Y_{1},\left(y, y^{\prime}\right) \in D\right\}$ and let $J=\left\langle t_{1}, t_{2}\right\rangle$. By Lemma 3 for every $\varphi \in S$ there exist a unique $\mu_{0} \in I$ and unique $\alpha_{0}, \beta_{0}, 0 \leqslant \alpha_{0} \leqslant r_{1}, 0 \leqslant \beta_{0} \leqslant r_{1}$ such that equation (5) with $\mu=\mu_{0}, \alpha=\alpha_{0}, \beta=\beta_{0}$ has a solution y (which is then unique) satisfying (3), (7) and $\left(y, y^{\prime}\right) \in D$ (see Remark 2). Setting $T(\varphi)=y$ we obtain an operator $T: S \rightarrow S$. S is evidently a closed convex and bounded subset of the Fréchet space Y_{1}.

To prove that T is a continuous operator let $\left\{y_{n}\right\}, y_{n} \in S$ be a convergent sequence, $\lim _{n \rightarrow \infty} y_{n}=y$, and let $z_{n}=T\left(y_{n}\right), z=T(y)$. Then, by Lemma 3 and its proof and by

Remark 1, there exist a sequence $\left\{\mu_{n}\right\}, \mu_{n} \in I$ and $\mu_{0} \in I$ such that

$$
\begin{gathered}
z_{n}(t)= \begin{cases}\frac{r\left(t_{0}, t\right)}{r\left(t_{1}, t_{0}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s \\
+\int_{t_{0}}^{t} r(t, s) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s & \text { for } t \in J, \\
r_{0} \operatorname{sign} z_{n}^{\prime}\left(t_{1}\right) \sin \left(\frac{\beta_{n}}{r_{0}}\left(t-t_{1}\right)\right) & \text { for } t \in\left(-\infty, t_{1}\right), \\
r_{0} \operatorname{sign} z_{n}^{\prime}\left(t_{2}\right) \sin \left(\frac{\alpha_{n}}{r_{0}}\left(t-t_{2}\right)\right) & \text { for } t \in\left(t_{2}, \infty\right),\end{cases} \\
z(t)= \begin{cases}r\left(t_{0}, t\right) \\
r\left(t_{1}, t_{0}\right) & \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s \\
+\int_{t_{0}}^{t} r(t, s) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s & \text { for } t \in J, \\
r_{0} \operatorname{sign} z^{\prime}\left(t_{1}\right) \sin \left(\frac{\beta_{0}}{r_{0}}\left(t-t_{1}\right)\right) & \text { for } t \in\left(-\infty, t_{1}\right), \\
r_{0} \operatorname{sign} z^{\prime}\left(t_{2}\right) \sin \left(\frac{\alpha_{0}}{r_{0}}\left(t-t_{2}\right)\right) & \text { for } t \in\left(t_{2}, \infty\right),\end{cases}
\end{gathered}
$$

where

$$
\begin{aligned}
\left(\left|z_{n}^{\prime}\left(t_{1}\right)\right|=\right) \quad \beta_{n}= & \left\lvert\, \frac{r_{1}^{\prime}\left(t_{1}, t_{0}\right)}{r\left(t_{0}, t_{1}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s\right. \\
& +\int_{t_{0}}^{t_{1}} r_{1}^{\prime}\left(t_{1}, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s \mid \\
\left(\left|z_{n}^{\prime}\left(t_{2}\right)\right|=\right) \quad \alpha_{n}= & \left\lvert\, \frac{r_{1}^{\prime}\left(t_{2}, t_{0}\right)}{r\left(t_{0}, t_{1}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s\right. \\
& +\int_{t_{0}}^{t_{2}} r_{1}^{\prime}\left(t_{2}, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s \mid
\end{aligned}
$$

$$
\begin{aligned}
\left(\left|z^{\prime}\left(t_{1}\right)\right|=\right) \quad \beta_{0}= & \left\lvert\, \frac{r_{1}^{\prime}\left(t_{1}, t_{0}\right)}{r\left(t_{0}, t_{1}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s\right. \\
& +\int_{t_{0}}^{t_{1}} r_{1}^{\prime}\left(t_{1}, s\right) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s \mid
\end{aligned}
$$

$$
\left(\left|z^{\prime}\left(t_{2}\right)\right|=\right) \quad \alpha_{0}=\left\lvert\, \frac{r_{1}^{\prime}\left(t_{2}, t_{0}\right)}{r\left(t_{0}, t_{1}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s\right.
$$

$$
+\int_{t_{0}}^{t_{2}} r_{1}^{\prime}\left(t_{2}, s\right) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s \mid
$$

If $\left\{\mu_{n}\right\}$ is not a convergent sequence then $\lim _{n \rightarrow \infty} \mu_{k_{n}}=\lambda_{1}, \lim _{n \rightarrow \alpha} \mu_{r_{n}}=\lambda_{2}, \lambda_{1}<\lambda_{2}$ for subsequences $\left\{\mu_{k_{n}}\right\},\left\{\mu_{r_{n}}\right\}$ of $\left\{\mu_{n}\right\}$ and by (i)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} z_{k_{n}}(t)= & \frac{r\left(t_{0}, t\right)}{r\left(t_{1}, t_{0}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y, y^{\prime}, \lambda_{1}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r(t, s) F\left[y, y^{\prime}, \lambda_{1}\right](s) \mathrm{d} s, \\
\lim _{n \rightarrow \infty} z_{r_{n}}(t)= & \frac{r\left(t_{0}, t\right)}{r\left(t_{1}, t_{0}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y, y^{\prime}, \lambda_{2}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r(t, s) F\left[y, y^{\prime}, \lambda_{2}\right](s) \mathrm{d} s
\end{aligned}
$$

uniformly on J. Since $\frac{r\left(t_{0}, t_{2}\right)}{r\left(t_{1}, t_{0}\right)} r\left(t_{1}, s\right)<0$ for $s \in\left(t_{1}, t_{0}\right\rangle, r\left(t_{2}, s\right)>0$ for $s \in\left\langle t_{0}, t_{2}\right)$ and $F\left[y, y^{\prime}, \lambda_{1}\right](s)<F\left[y, y^{\prime}, \lambda_{2}\right](s)$ for $s \in J$ (by (iii)) we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(z_{k_{n}}\left(t_{2}\right)-z_{r_{n}}\left(t_{2}\right)\right)= & \frac{r\left(t_{0}, t_{2}\right)}{r\left(t_{1}, t_{0}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right)\left\{F\left[y, y^{\prime}, \lambda_{1}\right](s)-F\left[y, y^{\prime}, \lambda_{2}\right](s)\right\} \mathrm{d} s \\
& +\int_{t_{0}}^{t_{2}} r\left(t_{2}, s\right)\left\{F\left[y, y^{\prime}, \lambda_{1}\right](s)-F\left[y, y^{\prime}, \lambda_{2}\right](s)\right\} \mathrm{d} s<0
\end{aligned}
$$

which contradicts $z_{n}\left(t_{2}\right)=0$ for all $n \in N$. Consequently, $\left\{\mu_{n}\right\}$ is convergent and we may write $\lim _{n \rightarrow \infty} \mu_{n}=\mu^{*}$. Then

$$
\begin{aligned}
\left(z^{*}(t)=\right) \lim _{n \rightarrow \infty} z_{n}(t)= & \frac{r\left(t_{0}, t\right)}{r\left(t_{1}, t_{0}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y, y^{\prime}, \mu^{*}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r(t, s) F\left[y, y^{\prime}, \mu^{*}\right](s) \mathrm{d} s
\end{aligned}
$$

uniformly on J and z^{*} is the unique solution of the equation

$$
z^{\prime \prime}-q(t) z=F\left[y, y^{\prime}, \mu^{*}\right](t), \quad t \in J
$$

$z^{*}\left(t_{1}\right)=z^{*}\left(t_{0}\right)=z^{*}\left(t_{2}\right)=0$. Consequently, by Lemma $1 \mu^{*}=\mu_{0}$ and $z^{*}(t)=z(t)$ for $t \in J$, hence $\lim _{n \rightarrow \infty} \alpha_{n}=\alpha_{0}, \lim _{n \rightarrow \infty} \beta_{n}=\beta_{0}$ and $\lim _{n \rightarrow \infty} z_{n}(t)=z(t)$ locally uniformly on $\left(-\infty, t_{1}\right\rangle \cup\left\langle t_{2}, \infty\right)$.

Next, the equalities

$$
z_{n}^{\prime}(t)= \begin{cases}\frac{r_{1}^{\prime}\left(t, t_{0}\right)}{r\left(t_{0}, t_{1}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s & \\ +\int_{t_{0}}^{t} r_{1}^{\prime}(t, s) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s & \text { for } t \in J, \\ z_{n}^{\prime}\left(t_{1}\right) \cos \left(\frac{\beta_{n}}{r_{0}}\left(t-t_{1}\right)\right) & \text { for } t \in\left(-\infty, t_{1}\right) \\ z_{n}^{\prime}\left(t_{2}\right) \cos \left(\frac{\alpha_{n}}{r_{0}}\left(t-t_{2}\right)\right) & \text { for } t \in\left(t_{2}, \infty\right),\end{cases}
$$

$$
z^{\prime}(t)= \begin{cases}\frac{r_{1}^{\prime}\left(t, t_{0}\right)}{r\left(t_{0}, t_{1}\right)} \int_{t_{0}}^{t_{1}} r\left(t_{1}, s\right) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s & \\ +\int_{t_{0}}^{t} r_{1}^{\prime}(t, s) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s & \text { for } t \in J, \\ z^{\prime}\left(t_{1}\right) \cos \left(\frac{\beta_{0}}{r_{0}}\left(t-t_{1}\right)\right) & \text { for } t \in\left(-\infty, t_{1}\right), \\ z^{\prime}\left(t_{2}\right) \cos \left(\frac{\alpha_{0}}{r_{0}}\left(t-t_{2}\right)\right) & \text { for } t \in\left(t_{2}, \infty\right)\end{cases}
$$

imply $\lim _{n \rightarrow \infty} z_{n}^{\prime}(t)=z^{\prime}(t)$ locally uniformly on \mathbb{R}. Consequently, $\lim _{n \rightarrow \infty} T\left(y_{n}\right)=T(y)$ and T is a continuous operator.

Let $z \in T(S)$ and let $Q_{0}=\max \{q(t) ; t \in J\}, B=\max \left\{\frac{r_{1}^{2}}{r_{0}}, r_{0} Q_{0}+A\right\}$. Then $z=T(y)$ for some $y \in S$ and since $\left|z^{\prime \prime}(t)\right|=\left|q(t) z(t)+F\left[y, y^{\prime}, \mu_{0}\right](t)\right| \leqslant r_{0} Q_{0}+A$ for $t \in J$, where $\mu_{0} \in I$ is an appropriate number, $\left|z^{\prime \prime}(t)\right|=\left|\frac{\beta_{0}^{2}}{r_{0}} \sin \left(\frac{\beta_{0}}{r_{0}}\left(t-t_{1}\right)\right)\right| \leqslant \frac{r_{1}^{2}}{r_{0}}$ for $t \in\left(-\infty, t_{1}\right),\left|z^{\prime \prime}(t)\right|=\left|\frac{\alpha_{0}^{2}}{r_{0}} \sin \left(\frac{\alpha_{0}}{r_{0}}\left(t-t_{2}\right)\right)\right| \leqslant \frac{r_{1}^{2}}{r_{0}}$ for $t \in\left(t_{2}, \infty\right)$, we have $\left|z^{\prime \prime}(t)\right| \leqslant B$ for $t \in \mathbb{R}$. Then $T(S) \subset K=\left\{y ; y \in Y_{1} \cap C^{2}\left(\mathbb{R}-\left\{t_{1}, t_{2}\right\}\right),\left(y, y^{\prime}\right) \in D,\left|y^{\prime \prime}(t)\right| \leqslant B\right.$ for $\left.t \in \mathbb{R}-\left\{t_{1}, t_{2}\right\}\right\}$ and since K^{\prime} is a compact subset of $Y_{1}, T(S)$ is a relative compact subset of Y_{1}.

Therefore by the Schauder-Tychonoff fixed point theorem there exists a fixed point $y \in S$ of T satisfying the conclusion of Lemma 5 .

Lemma 6. Let the assumptions of Lemma 4 hold. Then there exist $\mu_{0} \in I$, $0 \leqslant \alpha_{0} \leqslant 2 r_{0}\left(1+Q_{0}\right), 0 \leqslant \beta_{0} \leqslant 2 r_{0}\left(1+Q_{0}\right)$ such that the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=\chi_{t_{1}, t_{2}}(t) G[y, \mu]-q(t)\left(1-\chi_{t_{1}, t_{2}}(t)\right) y-\left(\frac{\alpha}{r_{0}}\right)^{2} \nu_{t_{2}}(t) y-\left(\frac{\beta}{r_{0}}\right)^{2} \tau_{t_{1}}(t) y \tag{13}
\end{equation*}
$$

with $\mu=\mu_{0}, \alpha=\alpha_{0}, \beta=\beta_{0}$ has a solution y satisfying (3) and

$$
\begin{equation*}
|y(t)| \leqslant r_{0}, \quad\left|y^{\prime}(t)\right| \leqslant 2 r_{0}\left(1+Q_{0}\right) \quad \text { for } t \in \mathbb{R} . \tag{14}
\end{equation*}
$$

Proof. Let $S=\left\{y ; y \in Y_{1} \cap P,\left|y^{\prime}(t)\right| \leqslant 2 r_{0} Q_{0}\left(t_{2}-t_{1}\right)\right.$ for $\left.t \in \mathbb{R}\right\} \subset Y_{0}$. S is evidently a closed convex bounded subset of the Fréchet space Y_{0}. By Lemma 4 (see also Remark 2) for every $\psi \in S$ there exist a unique $\mu_{0} \in I$ and unique $0 \leqslant \alpha_{0} \leqslant 2 r_{0}\left(1+Q_{0}\right), 0 \leqslant \beta_{0} \leqslant 2 r_{0}\left(1+Q_{0}\right)$ such that equation (6) with $\mu=\mu_{0}$, $\alpha=\alpha_{0}, \beta=\beta_{0}$ has a solution y (which is then unique) satisfying (3), (7) and (14). Setting $T\left(\psi^{\prime}\right)=y$ we obtain an operator $T: S \rightarrow S$. Proceeding analogously to the proof of Lemma 5, with evident modifications, we can prove that T is a continuous operator and $T(S)$ is a relative compact subset of Y_{0}. By the Schauder-Tychonoff fixed point theorem there exists a fixed point $y \in S$ of T, and from the definition of T we see that Lemma 6 holds.

Lemma 7. Assume that assumptions (i)-(vi) hold for positive constants r_{0}, r_{1}, and q is ω-periodic. Then for every ω-periodic function $\varphi \in Y_{1},\left(\varphi, \varphi^{\prime}\right) \in D$ there exists a unique $\mu_{0} \in I$ such that equation (2) with $\mu=\mu_{0}$ has an ω-periodic solution y satisfying

$$
\begin{equation*}
y\left(t_{0}\right)=0 \tag{15}
\end{equation*}
$$

This solution y is unique and $\left(y, y^{\prime}\right) \in D$.
Using the method of the proof of Lemma 4 [3] we can easily prove

Lemma 8. Assume that assumptions (j)-(u) hold for a positive constant r_{0} and q is ω-periodic. Then for every ω-periodic function $\varphi \in P$ there exists a unique $\mu_{0} \in I$ such that equation (4) with $\mu=\mu_{0}$ has an ω-periodic solution y satisfying (15). This solution y is unique and

$$
|y(t)| \leqslant r_{0}, \quad\left|y^{\prime}(t)\right| \leqslant 2 r_{0} \omega Q_{1} \quad \text { for } t \in \mathbb{R}
$$

where $Q_{1}=\max \left\{q(t) ; t \in\left\langle t_{0}, t_{0}+\omega\right\rangle\right\}$.

3. Boundedness of solutions

Theorem 1. Assume that assumptions (i)-(v) hold for positive constants r_{0}, r_{1}. Then there exists $\mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ has a solution y, $y\left(t_{0}\right)=0$ and $\left(y, y^{\prime}\right) \in D$.

Proof. Let $\left\{t_{n}\right\},\left\{x_{n}\right\}$ be sequences, $\ldots<t_{n+1}<t_{n}<\ldots<t_{1}<t_{0}<x_{0}<$ $x_{1}<\ldots<x_{n}<x_{n+1}<\ldots, \lim _{n \rightarrow \infty} t_{n}=-\infty, \lim _{n \rightarrow \infty} x_{n}=\infty$, and let $Q=\sup \{q(t) ; t \in$ $\mathbb{R}\}, B=\max \left\{\frac{r_{1}^{2}}{r_{0}}, r_{0} Q+A\right\}$. By Lemma 5 and its proof, the equation
$y^{\prime \prime}-q(t) y=\chi_{t_{n}, x_{n}}(t) F\left[y, y^{\prime}, \mu\right]-q(t)\left(1-\chi_{t_{n}, r_{n}}(t)\right) y-\left(\frac{\alpha}{r_{0}}\right)^{2} \nu_{x_{n}}(t) y-\left(\frac{\beta}{r_{0}}\right)^{2} \tau_{t_{n}}(t) y$ has a solution $y_{n}, y_{n}\left(t_{n}\right)=y_{n}\left(t_{0}\right)=y_{n}\left(x_{n}\right)=0,\left(y_{n}, y_{n}^{\prime}\right) \in D,\left|y_{n}^{\prime \prime}(t)\right| \leqslant B$ for $t \in \mathbb{R}-\left\{t_{n}, x_{n}\right\}$ with $\mu=\mu_{n}, \alpha=\alpha_{n}, \beta=\beta_{n}$, where $\mu_{n} \in I, 0 \leqslant \alpha_{n} \leqslant r_{1}, 0 \leqslant \beta_{n} \leqslant$ r_{1}. Consider the sequence $\left\{y_{n}(t)\right\}$. Using the Ascoli theorem and Cauchy's diagonal method we may assume, without loss of generality, that $\left\{y_{n}(t)\right\},\left\{y_{n}^{\prime}(t)\right\}$ are locally uniformly convergent on \mathbb{R}. Since $\left\{\mu_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ are bounded sequences, we may also assume that they are convergent, $\lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}, \lim _{n \rightarrow \infty} \alpha_{n}=\alpha_{0}, \lim _{n \rightarrow \infty} \beta_{n}=\beta_{0}$.

Let $y(t)=\lim _{n \rightarrow \infty} y_{n}(t)$ for $t \in \mathbb{R}$ and let $J \subset \mathbb{R}$ be a compact interval. Then $y\left(t_{0}\right)=0$, ($\left.y, y^{\prime}\right) \in D$ and by letting $n \rightarrow \infty$ in the equalities

$$
\begin{aligned}
y_{n}^{\prime \prime}(t)-q(t) y_{n}(t)= & \chi_{t_{n}, x_{n}}(t) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](t)-q(t)\left(1-\chi_{t_{n}, x_{n}}(t)\right) y_{n}(t) \\
& -\left(\frac{\alpha_{n}}{r_{0}}\right)^{2} \nu_{x_{n}}(t) y_{n}(t)-\left(\frac{\beta_{n}}{r_{0}}\right)^{2} \tau_{t_{n}}(t) y_{n}(t), \\
& t \in \mathbb{R}-\left\{t_{n}, x_{n}\right\}, n \in N,
\end{aligned}
$$

we obtain

$$
y^{\prime \prime}(t)-q(t) y(t)=F\left[y, y^{\prime}, \mu_{0}\right](t) \quad \text { for } t \in J
$$

Since J is an arbitrary interval, we see that y is a solution of (1) with $\mu=\mu_{0}$, $y\left(t_{0}\right)=0,\left(y, y^{\prime}\right) \in D$.

Example 1. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=\frac{1}{\pi} \int_{-\mathrm{ch} t}^{t^{2}} \frac{y(s)}{1+s^{2}} \mathrm{~d} s+\cos \left(y^{\prime}(\psi(t))+t\right) \exp (y(\varphi(t))-1)+\mu \tag{16}
\end{equation*}
$$

where $\varphi, \psi, q \in C^{0}(\mathbb{P}), 4 \leqslant q(t) \leqslant Q$ for $t \in \mathbb{R}$. Assumptions (i)-(v) hold with $r_{0}=1, r_{1}=2 \sqrt{Q+4}$ and $I=\langle-2,2\rangle$. Therefore by Theorem 1 there exists $\mu_{0} \in\langle-2,2\rangle$ such that equation (16) with $\mu=\mu_{0}$ has a solution $y, y\left(t_{0}\right)=0$, $|y(t)| \leqslant 1,\left|y^{\prime}(t)\right| \leqslant 2 \sqrt{Q+4}$ for $t \in \mathbb{R}$.

Theorem 2. Assume that assumptions (j)-(ju) hold for a positive constant r_{0} and $Q=\sup \{q(t) ; t \in \mathbb{R}\}<\infty$. Then there exists $\mu_{0} \in I$ such that the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=G[y, \mu] \tag{17}
\end{equation*}
$$

with $\mu=\mu_{0}$ has a solution $y, y\left(t_{0}\right)=0$ and $|y(t)| \leqslant r_{0}$ for $t \in \mathbb{R}$.
Proof. Let $\left\{t_{n}\right\},\left\{x_{n}\right\}$ be as in the proof of Theorem 1, $x_{1}-t_{1} \geqslant 2$. By Lemma 6 the equation

$$
\begin{aligned}
y^{\prime \prime}-q(t) y= & \chi_{t_{n}, x_{n}}(t) G[y, \mu]-q(t)\left(1-\chi_{t_{n}, x_{n}}(t)\right) y \\
& -\left(\frac{\alpha}{r_{0}}\right)^{2} \nu_{x_{n}}(t) y-\left(\frac{\beta}{r_{0}}\right)^{2} \tau_{t_{n}}(t) y
\end{aligned}
$$

has a solution $y_{n}, y_{n}\left(x_{n}\right)=y_{n}\left(t_{0}\right)=y_{n}\left(x_{n}\right)=0,\left|y_{n}(t)\right| \leqslant r_{0},\left|y_{n}^{\prime}(t)\right| \leqslant 2 r_{0}(1+Q)$ for $t \in \mathbb{R}$ with $\mu=\mu_{n}, \alpha=\alpha_{n}, \beta=\beta_{n}$ where $\mu_{n} \in I, 0 \leqslant \alpha_{n} \leqslant 2 r_{0}(1+Q)$, $0 \leqslant \beta_{n} \leqslant 2 r_{0}(1+Q)$. As in the proof of Theorem 1 we may assume that $\left\{y_{n}(t)\right\}$ is locally uniformly convergent on $\mathbb{R}, \lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}, \lim _{n \rightarrow \infty} \alpha_{n}=\alpha_{0}, \lim _{n \rightarrow \infty} \beta_{n}=\beta_{0}$. Setting $y(t)=\lim _{n \rightarrow \infty} y_{n}(t)$ for $t \in \mathbb{R}$ we have $y\left(t_{0}\right)=0,|y(t)| \leqslant r_{0}$ for $t \in \mathbb{R}$ and it is obvious that y is a solution of (17) with $\mu=\mu_{0}$.

Example 2. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=\arctan t\left(1+\sup _{0 \leqslant s \leqslant|t|} y(s)\right) \mathrm{e}^{y(\varphi(t))} \int_{t^{3}}^{\ln (1+|t|)} \mathrm{e}^{-|s|} y(s) \mathrm{d} s+\mathrm{e}^{\sin t} \mu \tag{18}
\end{equation*}
$$

where $q, \varphi \in C^{0}(\mathbb{R}), 3 \pi \mathrm{e}^{2}\left(1+\mathrm{e}^{2}\right) \leqslant q(t)$, $\sup \{\dot{q}(t) ; t \in \mathbb{R}\}<\dot{\infty}$. Since the assumptions of Theorem 2 are satisfied for $\mu \in\left\langle-6 \pi \mathrm{e}^{3}, 6 \pi \mathrm{e}^{3}\right\rangle$ and $r_{0}=2$ there exists $\mu_{0} \in\left\langle-6 \pi \mathrm{e}^{3}, 6 \pi \mathrm{e}^{3}\right\rangle$ such that equation (18) with $\mu=\mu_{0}$ has a solution $y, y\left(t_{0}\right)=0$, $|y(t)| \leqslant 2$ for $t \in \mathbb{R}$.

4. Periodicity of solutions

Theorem 3. Let assumptions (i)-(vi) be satisfied for positive constants r_{0}, r_{1} and let q be ω-periodic. Then there exists $\mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ has an ω-periodic solution $y,\left(y, y^{\prime}\right) \in D$ and $y\left(t_{0}\right)=0$.

Proof. By Lemma 7 for every ω-periodic $\varphi \in Y_{1},\left(\varphi, \varphi^{\prime}\right) \in D$ there exists a unique $\mu_{0} \in I$ such that equation (2) with $\mu=\mu_{0}$ has an ω-periodic solution y, $y\left(t_{0}\right)=0$ and $\left(y, y^{\prime}\right) \in D$. This solution y is unique and we may write it in the form

$$
\begin{aligned}
y(t)= & \frac{r\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[\varphi, \varphi^{\prime}, \mu_{0}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r(t, s) F\left[\varphi, \varphi^{\prime}, \mu_{0}\right](s) \mathrm{d} s, \quad t \in \mathbb{R} .
\end{aligned}
$$

Setting $T(\varphi)=y$ we obtain an operator $T: S \rightarrow S$ with $S=\left\{y ; y \in Y_{1},\left(y, y^{\prime}\right) \in D\right.$, y is ω-periodic $\}$. To complete the proof of Theorem 3 it is sufficient to prove that T has a fixed point.

We will prove that T is a completely continuous operator. Let $\left\{y_{n}\right\}, y_{n} \in S$ be a convergent sequence, $\lim _{n \rightarrow \infty} y_{n}=y$, and let $z_{n}=T\left(y_{n}\right), z=T(y)$. Then there exist $\left\{\mu_{n}\right\}, \mu_{n} \in I$ and $\mu_{0} \in I$ such that

$$
\begin{aligned}
z_{n}(t)= & \frac{r\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r(t, s) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s, \quad t \in \mathbb{R},
\end{aligned}
$$

and

$$
\begin{aligned}
z(t)= & \frac{r\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r(t, s) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s, \quad t \in \mathbb{R} .
\end{aligned}
$$

Obviously

$$
\begin{aligned}
z_{n}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r_{1}^{\prime}(t, s) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s, \quad t \in \mathbb{R} .
\end{aligned}
$$

If $\left\{\mu_{n}\right\}$ is not a convergent sequence then there exist convergent subsequences $\left\{\mu_{k_{n}}\right\}$, $\left\{\mu_{r_{n}}\right\}, \lim _{n \rightarrow \infty} \mu_{k_{n}}=\lambda_{1}, \lim _{n \rightarrow \infty} \mu_{r_{n}}=\lambda_{2}, \lambda_{1}<\lambda_{2}$, and consequently

$$
\begin{aligned}
\lim _{n \rightarrow \infty} z_{k_{n}}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[y, y^{\prime}, \lambda_{1}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r_{1}^{\prime}(t, s) F\left[y, y^{\prime}, \lambda_{1}\right](s) \mathrm{d} s
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} z_{r_{n}}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[y, y^{\prime}, \lambda_{2}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r_{1}^{\prime}(t, s) F\left[y, y^{\prime}, \lambda_{2}\right](s) \mathrm{d} s
\end{aligned}
$$

uniformly on \mathbb{R}. Since z_{n} are ω-periodic, we have

$$
\begin{align*}
& 0=\lim _{n \rightarrow \infty}\left(z_{k_{n}}^{\prime}\left(t_{0}+\omega\right)-z_{k_{n}}^{\prime}\left(t_{0}\right)\right)=\int_{t_{0}}^{t_{0}+\omega} k(s) F\left[y, y^{\prime}, \lambda_{1}\right](s) \mathrm{d} s, \tag{19}\\
& 0=\lim _{n \rightarrow \infty}\left(z_{r_{n}}^{\prime}\left(t_{0}+\omega\right)-z_{r_{n}}^{\prime}\left(t_{0}\right)\right)=\int_{t_{0}}^{t_{0}+\omega} k(s) F\left[y, y^{\prime}, \lambda_{2}\right](s) \mathrm{d} s,
\end{align*}
$$

where $k(t)=\frac{r_{1}^{\prime}\left(t_{0}+\omega, t_{0}\right)-1}{r\left(t_{0}, t_{0}+\omega\right)} r\left(t_{0}+\omega, t\right)+r_{1}^{\prime}\left(t_{0}+\omega, t\right)$ for $t \in\left\langle t_{0}, t_{0}+\omega\right\rangle$. Since $k(t)>0$ on $\left\langle t_{0}, t_{0}+\omega\right\rangle$ by Lemma 2 [3] and $F\left[y, y^{\prime}, \lambda_{1}\right](t)<F\left[y, y^{\prime}, \lambda_{2}\right](t)$ for $t \in\left\langle t_{0}, t_{0}+\omega\right\rangle$ (by (iii)) we have

$$
\int_{i_{0}}^{t_{0}+\omega} k(s)\left\{F\left[y, y^{\prime}, \lambda_{1}\right](s)-F\left[y, y^{\prime}, \lambda_{2}\right](s)\right\} \mathrm{d} s<0
$$

which contradicts (19). Therefore $\left\{\mu_{n}\right\}$ is convergent and we may write $\lim _{n \rightarrow \infty} \mu_{n}=$ μ^{*}. Then

$$
\begin{aligned}
\left(z^{*}(t)=\right) \lim _{n \rightarrow \infty} z_{n}(t)= & \frac{r\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[y, y^{\prime}, \mu^{*}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r(t, s) F\left[y, y^{\prime}, \mu^{*}\right](s) \mathrm{d} s
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} z_{n}^{\prime}(t)= & \frac{r_{1}^{\prime}\left(t, t_{0}\right)}{r\left(t_{0}, t_{0}+\omega\right)} \int_{t_{0}}^{t_{0}+\omega} r\left(t_{0}+\omega, s\right) F\left[y, y^{\prime}, \mu^{*}\right](s) \mathrm{d} s \\
& +\int_{t_{0}}^{t} r_{1}^{\prime}(t, s) F\left[y, y^{\prime}, \mu^{*}\right](s) \mathrm{d} s \quad\left(=z^{*^{\prime}}(t)\right)
\end{aligned}
$$

uniformly on \mathbb{R}. Hence z^{*} is an ω-periodic solution (which is then unique) of the equation

$$
z^{\prime \prime}-q(t) z=F\left[y, y^{\prime}, \mu^{*}\right](t)
$$

$z^{*}\left(t_{0}\right)=0,\left(z^{*}, z^{*^{\prime}}\right) \in D$. By Lemma $7 \mu_{0}=\mu^{*}$ and $z=z^{*}$ and therefore $\lim _{n \rightarrow \infty} T\left(y_{n}\right)=T(y)$, thus T is a continuous operator.

Let $y \in S$ and $z=T(y)$. Then $z^{\prime \prime}(t)=q(t) z(t)+F\left[y, y^{\prime}, \mu_{0}\right](t)$ for $t \in \mathbf{R}$, where $\mu_{0} \in I$ is an appropriate number, and thus $\left|z^{\prime \prime}(t)\right| \leqslant r_{0} Q+A(=B)$ for $t \in \mathbf{R}$. Since $T(S) \subset L=\left\{y ; y \in C^{2}(\mathbb{R}) \cap S,\left|y^{\prime \prime}(t)\right| \leqslant B\right.$ for $\left.t \in \mathbb{R}\right\}$ and L is a compact subset of $Y_{1}, T(S)$ is a relative compact subset of Y_{1}. By Schauder's fixed point theorem there exists a fixed point of T. This completes the proof.

Using Lemma 8 we may prove

Theorem 4. Let assumptions (j)-(u) be satisfied for a positive constant r_{0} and let q be ω-periodic. Then there exist $\mu_{0} \in I$ such that equation (.17) with $\mu=\mu_{0}$ has an ω-periodic solution $y, y\left(t_{0}\right)=0,|y(t)| \leqslant r_{0}$ and $\left|y^{\prime}(t)\right| \leqslant 2 r_{0} \omega Q_{1}$ for $t \in \mathbb{R}$, where Q_{1} is defined as in Lemma 8.

Example 3. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=\exp \left(-\left|y^{\prime}(t+\sin t)\right|+1\right) \operatorname{ch}\left(|y(t+1)|^{n}\right)+\mu \exp (\cos t) \tag{20}
\end{equation*}
$$

where $q \in C^{0}(\mathbf{R})$ is a 2π-periodic function, $q(t) \geqslant \mathrm{e}\left(1+\mathrm{e}^{2}\right)$ ch 1 for $t \in \mathbf{R}$ and n is a positive integer. The assumptions of Theorem 3 are satisfied with $I=\left\langle-\mathrm{e}^{2}\right.$ ch 1,0\rangle, $r_{0}=1$ and $r_{1}=2 \sqrt{\mathrm{e}\left(1+\mathrm{e}^{2}\right) \operatorname{ch} 1+Q}$, where $Q=\max \{q(t) ; t \in\langle 0,2 \pi\rangle\}$. Thus there exists $\mu_{0} \in\left\langle-\mathrm{e}^{2}\right.$ ch 1,0\rangle such that equation (20) with $\mu=\mu_{0}$ has a 2π-periodic solution $y, y\left(t_{0}\right)=0,|y(t)| \leqslant 1,\left|y^{\prime}(t)\right| \leqslant 2 \sqrt{\mathrm{e}\left(1+\mathrm{e}^{2}\right) \operatorname{ch} 1+Q}$ for $t \in \mathbf{R}$.

Example 4. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=\cos (2 \pi t) \ln \left[y^{2 n}(y(t)+t)+\mathrm{e}\right]+\mu \tag{21}
\end{equation*}
$$

where $q \in C^{0}(\boldsymbol{R})$ is a 1-periodic function, $q(t) \geqslant 2 \ln (1+\mathrm{e})$ for $t \in \mathbf{R}$ and n is a positive integer. The assumptions of Theorem 4 are satisfied with $I=\langle-\ln (1+\mathrm{e}), \ln (1+\mathrm{e})\rangle$ and $r_{0}=1$. Therefore there exists $\mu_{0} \in\langle-\ln (1+e), \ln (1+e)\rangle$ such that equation (21) with $\mu=\mu_{0}$ has a 1-periodic solution $y, y\left(t_{0}\right)=0,|y(t)| \leqslant 1$ and $\left|y^{\prime}(t)\right| \leqslant 2 Q_{1}$ for $t \in \mathbf{R}$, where $Q_{1}=\max \{q(t) ; t \in\langle 0,1\rangle\}$.

References

[1] S. Stanèk: Three-point boundary value problem for nonlinear second-order differential equation with parameter, Czech. Math. J. 42(117) (1992), 241-256.
[2] S. Staneek: On the boundedness of solutions of nonlinear second-order differential equations with parameter, to appear.
[3] S. Staneèk: Periodic solutions of nonlinear second-order differential equations with parameter, to appear.

Author's address: 77200 Olomouc, trída Svobody 26, Czechoslovakia (PF UP).

