Czechoslovak Mathematical Journal

Olav Jordens
On modularity in lattices of congruences on ordered sets

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 3, 451-460

Persistent URL:
http://dml.cz/dmlcz/128341

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON MODULARITY IN LATTICES OF CONGRUENCES ON ORDERED SETS

Olav Jordens, ${ }^{1}$ Durban

(Received August 30, 1990)

0 . Introduction and Notation

The following notions are explored in [2]. An ordered triple $\mathbf{L}=\langle O, R, a r\rangle$ is called a language, where O and R are pairwise disjoint sets of operation and relation symbols respectively, and $a r$ is the arity function from $O \cup R$ onto the set of finite cardinals. (It is also specified that for all $r \in R$, we have $\operatorname{ar}(r)>0$.) An L-model is an ordered triple $A=\left\langle A^{\prime}, O^{A}, R^{A}\right\rangle$, where A^{\prime} is a nonempty set (called the universe of $A), O^{A}=\left\langle o^{A} ; o \in O\right\rangle, R^{A}=\left\langle r^{A} ; r \in R\right\rangle$, and for every $o \in O, o^{A}$ is an operation on A^{\prime} of arity $\operatorname{ar}(o)$, and similarly for every $r \in R, r^{A}$ is a relation on A^{\prime} of arity $a r(r)$.

The category L (corresponding to \mathbf{L}) has all L-models as objects and L-morphisms are maps between the universes of \mathbf{L}-models, which preserve both operations and relations in the usual sense.

Let X and Y be sets and let $f: X \rightarrow Y$ be any map. Then the kernel of map f is defined as $\operatorname{ker} f=\{\langle x, y\rangle ; f(x)=f(y)\}$.

For any subcategory K of the category L (corresponding to L) and any K-object A, the set $\operatorname{Con}_{K} A$ of all K-congruences on A is defined as the set of all kernels of K-morphisms from A to any other K-object B.

In this paper we consider the special case where the language L has no operations and only one binary relation, and consider the full subcategory K which consists of all ordered sets (i.e. sets endowed with a reflexive, antisymmetric, and transitive relation). We will always write $A=\left\langle A^{\prime}, \leqslant^{A}\right\rangle$ for a poset where A^{\prime} is the underlying set of A. Thus we have:

[^0]Definition. a. For an ordered set A, an equivalence σ on A^{\prime} is called a congruence on A iff there exists an ordered set B and an order preserving map $f: A \rightarrow B$ such that $\sigma=\operatorname{ker} f$. The set of all congruences on A will be denoted by Con A.

The lattice Con A has been extensively studied and many results about this lattice also hold true for the lattice $\mathrm{Ce} A$ of all convex equivalences on A. (A subset X of an ordered set A is called convex iff for any $x_{1}, x_{2} \in X$ and $y \in A^{\prime}$, if $x_{1} \leqslant^{\boldsymbol{A}} y \leqslant^{\boldsymbol{A}} x_{2}$ then $y \in X$. An equivalence relation on A is called a convex equivalence iff every equivalence class is a convex subset of A.) Many results about $\mathrm{Ce} A$ can be found in [6].
b. It is easily seen that $\mathrm{Ce} A$ is an algebraic closure system on the lattice $E\left(A^{\prime}\right)$ of all equivalences on A^{\prime}, and the fact that Con A is an algebraic closure system on the same lattice follows from [2, corollary 13]. Further it is shown in [3, sec. 36] that $\operatorname{Con} A \subseteq \mathrm{Ce} A$.

For $x, y \in A^{\prime}$ we use the symbols $x<^{A} y$ to denote $x \leqslant^{A} y$ but $x \neq y$, and $x \|^{A} y$ to denote that x and y are incomparable in A. The superscript will be dropped whenever the meaning is clear. Further,

$$
\begin{aligned}
{[x, y] } & \stackrel{\text { def }}{=}\{z ; x \leqslant z \leqslant y \text { or } y \leqslant z \leqslant x\} \cup\{x, y\}, \\
{[x, \infty) } & \stackrel{\text { def }}{=}\{z ; x \leqslant z\}, \quad \text { and } \quad(-\infty, x]
\end{aligned} \stackrel{\text { def }}{=}\{z ; z \leqslant x\} . ~ \$
$$

If is easily seen that $[x, y]$ is the smallest convex subset containing both x and y.
c. The following result comes from [4, sec. 35]: $\operatorname{Con} A=\mathrm{Ce} A$ iff
for every $x, y, u, v \in A$ with $x<y, u<v, x \| u$, and $y \| v$, we have $[x, v] \cap[y, u] \neq \emptyset$.
d. In the same paper (see [4, sec. 30]) it is shown that Con $A=E\left(A^{\prime}\right)$ iff every subchain of A has at most two elements and any two subchains of A with two elements have a nonempty intersection.
e. It is also shown there (see [4, sec. 43]) that: $\operatorname{Con} A$ is a complete sublatice of $E\left(A^{\prime}\right)$ iff
either (i) $\operatorname{Con} A=E\left(A^{\prime}\right)$,
or (ii) A is isomorphic to the ordinal sum $B \oplus C^{\prime} \oplus D$ where C is a nonempty chain and B and D are antichains.

Further, it is shown that (see [4, sec. 37]), under the assumption that A has an at least three element subchain, A satisfies (ii) iff:
for every $x \in A^{\prime}$ such that there exist $u, v \in A^{\prime}$ with $u<x<v$, we have that for every $w \in A^{\prime}$, either $x \leqslant w$ or $w \leqslant x$.
f. The characterisation theorem given in [3, sec. 19] for congruences on ordered sets is most useful. If X, Y are nonempty subset of A^{\prime}, define:

$$
X \leqslant{ }^{*} Y \text { iff there are } x \in X \text { and } y \in Y \text { such that } x \leqslant y .
$$

Further

$$
\leqslant^{A / \sigma} \stackrel{\text { def }}{=} \bigcup_{n=1}^{\infty}\left(\leqslant^{*} \cap\left(A^{\prime} / \sigma \times A^{\prime} / \sigma\right)\right)^{n} .
$$

We then have that the following properties are equivalent for an ordered set A and an equivalence σ on A^{\prime} :

$$
\begin{align*}
& \sigma \in \operatorname{Con} A \text {. } \tag{3}\\
& \text { If } n \leqslant 1 \text { is an integer and } X_{0}, \ldots, X_{n} \in A^{\prime} / \sigma \text { satisfy } X_{i} \leqslant X_{i+1} \tag{4}\\
& \text { for } i=0, \ldots, n-1 \text { and } X_{n} \leqslant X_{0} \text {, then } X_{0}=\ldots=X_{n} . \\
& \left\langle A^{\prime} / \sigma, \leqslant^{A / \sigma}\right\rangle \text { is an ordered set } . \tag{5}
\end{align*}
$$

g. We need one further result from the paper [7]. Let L be a complete lattice. We say that L is κ-modular (for an infinite cardinal κ) iff for every set I with $|I|<\kappa$ and families $X=\left\{x_{i} ; i \in I\right\} \subseteq L^{\prime}$ and $Y=\left\{y_{i} ; i \in I\right\} \subseteq L^{\prime}$ with $y_{i} \leqslant^{A} x_{j}$ whenever $i, j \in I$ and $i \neq j$, we have:

$$
\bigvee\left\{x_{i} \wedge y_{i} ; i \in I\right\}=(\bigwedge X) \wedge(\bigvee Y)
$$

L is called completely modular iff L is κ-modular for every infinite cardinal κ. It is shown that:
a lattice is modular iff it is ω-modular, where ω is the least infinite cardinal (see [7, sec. 1]).
and also that
(7) every modular algebraic lattice is completely modular. (See [7, sec. 5]).

1. Modularity

1.a Lemma. For ordered set A, let $B \subseteq C e A$ such that
(i) $\langle B, \subseteq\rangle$ is a lattice and $\sigma \cap \tau \in B$ for every $\sigma, \tau \in B$, and
(ii) If X is a convex subset of A, then $X^{2} \cup \operatorname{id}_{A} \in B$.

Then the modularity of $\langle B, \subseteq\rangle$ implies that A satisfies the property (2) of section 0.e above.

Proof. Suppose that A does not have the property. Then there are four different elements $x, y, z, w \in A^{\prime}$ such that $x<y<z$ and $y \| w$. Consider the following equivalences on A^{\prime} :

$$
\begin{aligned}
& \varrho \stackrel{\text { def }}{=}[x, w]^{2} \cup \operatorname{id}_{\mathbf{A}}, \\
& \tau \stackrel{\text { def }}{=}[w, z]^{2} \cup \operatorname{id}_{\mathbf{A}}, \\
& \sigma \stackrel{\text { def }}{=}([y, \infty) \cup[w, \infty))^{2} \cup \operatorname{id}_{\mathbf{A}}
\end{aligned}
$$

It is evident that $\sigma, \tau, \varrho \in B$ and also that $\sigma \supseteq \tau$.
Firstly, we show that $\sigma \cap \varrho=\mathrm{id}_{\mathrm{A}}$. Let $\langle a, b\rangle \in \sigma \cap \varrho$ and suppose $a \neq b$. Then $a, b \in[x, w]$ and $a, b \in[y, \infty) \cup[w, \infty)$. Consider the element a. Clearly, $a \neq x$ for in the opposite case we would have $y \leqslant x$ or $w \leqslant x<y$! Now, if $a \neq w$ then we have $x<a<w$ or $w<a<x$ together with $y \leqslant a$ or $w \leqslant a$. It is readily seen that all four possibilities lead to a contradiction. Hence we must have $w=a$. A similar argument shows that $w=b$ and hence $a=b$! This contradiction shows $\sigma \cap \varrho=\operatorname{id}_{\mathrm{A}}$. Thus we deduce that

$$
(\sigma \cap \varrho) \vee_{B} \tau=\tau
$$

Since $x \varrho w$ and $w \tau z$, we have $\langle x, z\rangle \in \varrho \vee_{B} \tau \in \operatorname{Ce} A$, and so $\{x, y, z, w\}^{2} \subseteq \varrho \vee_{B} \tau$. Hence $\{y, z, w\}^{2} \subseteq \sigma \cap\left(\varrho \vee_{B} \tau\right)$. But $y \notin[w, z]$ and thus $\sigma \cap\left(\varrho \vee_{B} \tau\right) \neq(\sigma \cap \varrho) \vee_{B} \tau$, i.e. $\langle B, \subseteq\rangle$ is not modular.
1.b Proposition. Let $\left|A^{\prime}\right| \geqslant 4$. Then the modularity of Con A or the modularity of Ce A implies that A has an at least three element subchain.

Proof. Notice that $E\left(A^{\prime}\right)$ is modular iff $\left|A^{\prime}\right| \leqslant 3$. Suppose now that every subchain of A has at most two elements. Then evidently $\operatorname{Ce} A=E\left(A^{\prime}\right)$ (see [4, sec. 27] for a characterisation of this equality), and so, since $\left|A^{\prime}\right| \geqslant 4$ we have that $\mathrm{Ce} A$ is nonmodular. We show that Con A is not modular either. We can decompose A^{\prime} into a disjoint union of sets as follows: $A^{\prime}=R \cup S \cup T$, where $R=\left\{a \in A^{\prime}\right.$; $\left.\left(\exists b \in A^{\prime}\right) b<a\right\}$ and $S=\left\{a \in A^{\prime} ;\left(\exists b \in A^{\prime}\right) a<b\right\}$ and $T=A \backslash(R \cup S)$. If either $|R| \leqslant 1$ or $|S| \leqslant 1$ then by section $0 . d$, we have $\operatorname{Con} A=E\left(A^{\prime}\right)$ and again $\operatorname{Con} A$ is not modular.

Thus we suppose $|R| \geqslant 2$ and $|S| \geqslant 2$. It is then easy to see that there are four different elements $x, y, z, w \in A^{\prime}$ such that $x<y$ and $z<w$. Define the following equivalences on A^{\prime} :

$$
\begin{aligned}
& \varrho \stackrel{\text { def }}{=}\{x, w\}^{2} \cup \operatorname{id}_{A}, \\
& \tau \stackrel{\text { def }}{=}\{y, z\}^{2} \cup \operatorname{id}_{A}, \\
& \sigma \stackrel{\text { def }}{=}\{y, z, w\}^{2} \cup \operatorname{id}_{A} .
\end{aligned}
$$

Evidently $\varrho, \sigma, \tau \in \operatorname{Con} A$ and $\sigma \supset \tau$. Now $\sigma \cap \varrho=\operatorname{id}_{\mathrm{A}}$ and so $(\sigma \cap \varrho) \vee \tau=\tau$, where \vee denotes supremum in Con A. In $\varrho \vee \tau$ there are blocks W and W^{\prime} such that $\{x, w\} \subseteq$ W and $\{y, z\} \subseteq W^{\prime}$. Since $W \leqslant^{*} W^{\prime} \leqslant{ }^{*} W$ we deduce from the characterisation theorem of section 0.f, property (4), that $W=W^{\prime}$. Hence $\{x, y, z, w\}^{2} \subseteq \varrho \vee \tau$ and so $\sigma \cap(\varrho \vee \tau)=\sigma$. Thus Con A is not modular.
1.c Lemma. If X is a convex subset of A then $\operatorname{Con}\left\langle X, \leqslant^{A} \cap X^{2}\right\rangle$ is embeddable into Con A in such a way that all nonempty infima and suprema are preserved. If $\sigma \in \operatorname{Con} A$, then $\operatorname{Con}\left\langle A^{\prime} / \sigma, \leqslant^{A / \sigma}\right\rangle$ is isomorphic to the principal filter in Con A generated by σ.

Proof. To prove the first statement define $f: \operatorname{Con} X \rightarrow \operatorname{Con} A$ by $f(\sigma)=$ $\sigma \cup \mathrm{id}_{\mathrm{A}}$. It is easily verified that f is the required mapping.

For the second statement, denote the principal filter by $[\sigma)$ and let $A / \sigma=$ $\left\langle A^{\prime} / \sigma, \leqslant^{A / \sigma}\right\rangle$. Define two maps

$$
g: \operatorname{Con}(A / \sigma) \rightarrow[\sigma) \quad \text { and } \quad h:[\sigma) \rightarrow \operatorname{Con}(A / \sigma)
$$

by: for $\varrho \in \operatorname{Con}(A / \sigma), g(\varrho) \stackrel{\text { def }}{=}\{\langle x, y\rangle ;(x / \sigma, y / \sigma\rangle \in \varrho\}$, and for $\tau \in[\sigma), h(\tau) \stackrel{\text { def }}{=}$ $\{\langle x / \sigma, y / \sigma\rangle ;\langle x, y\rangle \in \tau\}$. It is easily verified that g and h are mutually inverse isomorphisms.
1.d Theorem. Let A be an ordered set with $\left|A^{\prime}\right| \geqslant 4$. The following properties are equivalent:
(i) $\operatorname{Con} A$ is modular.
(ii) $\operatorname{Con} A$ is completely modular.
(iii) $\mathrm{Ce} A$ is modular.
(iv) $\mathrm{Ce} A$ is completely modular.
(v) A has an at least three element subchain and A is isomorphic to the ordinal sum $B \oplus C \oplus D$ where C is nonempty chain and B and D are antichains of at most two elements.

Proof. Since Con A and Ce A are know to be algebraic lattices, we see by section $0 . g$, property (7), that (i) implies (ii), and also that (iii) implies (iv). Also,
as complete modularity implies modularity by section $0 . g$, property (6), and using lemma 1.a and proposition 1.b, we see that from either assumption (ii) or from assumption (iv) we can deduce that A satisfies the property (2) of section $0 . e$, and also that A has an at least three element subchain. As mentioned in section 0.e, property (2), under the assumption that A has an at least three element subchain, is equivalent to A being isomorphic to an ordinal sum $B \oplus C \oplus D$ where C is nonempty chain and B and D are antichains. It remains to show that $\left|B^{\prime}\right| \leqslant 2$ and $\left|D^{\prime}\right| \leqslant 2$. Also note that by section $0 . c$ we have that $\operatorname{Con} A=\operatorname{Ce} A$ and so we refer only to Con A. Since C^{\prime} is nonempty, pick $c \in C^{\prime}$, and let $X=(-\infty, c]$ and $Y=X \cap C^{\prime}$. Then both X and Y are convex subsets of A, and so by lemma 1.c, we have that Con $\left\langle X, \leqslant^{A} \cap X^{2}\right\rangle$ is modular also. Define $\sigma=Y^{2}$ Uid $_{\mathbf{A}}$. Then $\sigma \in \operatorname{Con}\left\langle X, \leqslant^{A} \cap X^{2}\right\rangle$ and hence $\operatorname{Con}(X / \sigma)$ is modular by lemma 1.c. Now in view of proposition 1.b we have immediately that $\operatorname{Con}(X / \sigma)=E(X / \sigma)$ and $|X / \sigma| \leqslant 3$. Thus $\left|B^{\prime}\right| \leqslant 2$. Similarly we show $\left|D^{\prime}\right| \leqslant 2$.

All that remains is to prove that (v) implies both (i) and (iii). However, under condition (v), we see from section 0.c that $\operatorname{Con} A=\operatorname{Ce} A$ and hence condition (i) and (iii) are the same. We will therefore only mention Con A. So assume (v) and let $\sigma, \varrho, \tau \in \operatorname{Con} A$ with $\sigma \supseteq \tau$. We show that $(\sigma \cap \varrho) \vee \tau \supseteq \sigma \cap(\varrho \vee \tau)$ where \vee denotes the supremum in Con A. Take $x, y \in A^{\prime}$ with $x \neq y$ and $\langle x, y\rangle \in \sigma \cap(\varrho \vee \tau)$. Then $x \sigma y$ and by section $0 . \mathrm{e}$ we have that $\operatorname{Con} A$ is a complete sublattice of $E\left(A^{\prime}\right)$ and so there exists a sequence $x=x_{0}, x_{1}, \ldots, x_{n}=y$ of not necessarily distinct elements of A^{\prime} such that $x=x_{0} \varrho x_{1} \tau \ldots \varrho x_{n}=y$. Suppose that the sequence is as short as possible. There are two possibilities:

CASE1. $x \| y: B y(v)$ we have in this case that either $B^{\prime}=\{x, y\}$ or $D^{\prime}=$ $\{x, y\}$. Assume the former, a similar argument holding for the latter. Let x_{k} be the first element of the sequence different from x, and let x_{l} be the last element of the sequence different from y. (From the assumption that the sequence is as short as possible, we have that $k=1$ or $k=2$, and also that $l=n-2$ or $l=n-1$.) If $x_{k}=y$ or if $x_{l}=x$ then, as $x \sigma y$, it is readily seen that $\langle x, y\rangle \in(\sigma \cap \varrho) \vee \tau$. So we suppose $x_{k} \neq y$ end $x_{l} \neq x$. Since, by definition $x_{k} \neq x$ and $x_{l} \neq y$ we have $x_{k}, x_{l} \in C^{\prime} \cup D^{\prime}$. If both $x_{k}, x_{l} \in D^{\prime}$ then by the convexity of the congruence classes and by the nonemptiness of C^{\prime}, we have that: There exists a $c \in C^{\prime}$ such that $x(\varrho \cup \tau) c(\varrho \cup \tau) y$.

The other possibility is that x_{k} and x_{l} are comparable, but then the smaller of the two serves as a $c \in C^{\prime}$ as required above. Hence in either case (*) must hold and so we have 4 possibilities:

- $x \varrho c \varrho y$ implies $x \varrho y$ and so $\langle x, y\rangle \in \sigma \cap \varrho \subseteq(\sigma \cap \varrho) \vee \tau$.
- $x \tau c \tau y$ implies $\langle x, y\rangle \in \tau \subseteq(\sigma \cap \varrho) \vee \tau$.
- x@cry together with $\tau \subseteq \sigma$ and $x \sigma y$ yields $c \sigma y \sigma x$ and so $x \sigma c$ and $\langle x, y\rangle \in(\sigma \cap$ @) $\vee \tau$.
- $x \tau c \varrho y$ together with $\tau \subseteq \sigma$ and $y \sigma x$ yields $y \sigma x \sigma c$ and so $c \sigma y$ and $\langle x, y\rangle \in(\sigma \cap$ @) $\vee \tau$.

CASE 2. $x<y$ or $y<x$: We assume the former, a similar argument holding for the latter. If $x \in B^{\prime}$ then for every x_{i} we have $x \leqslant x_{i}$ or $x \| x_{i}$. If $x \in C^{\prime}$ then let x_{k} be the last element of the sequence with $x_{k} \leqslant x$. Then $x_{k+1}>x$ and by the convexity of the congruence class containing x_{k} and x_{k+1} we see that $x(\varrho \cup \tau) x_{k+1}$. However, the sequence was assumed to be as short as possible and so we may assume that in either case $x \leqslant x_{i}$ or $x \| x_{i}$ for all $i=0, \ldots, n$. Similarly we may assume that for all $i=0, \ldots, n$ we have $x_{i} \leqslant y$ or $x_{i} \| y$. Now for all the x_{i} such that $x \leqslant x_{i} \leqslant y$ we have by the convexity of the σ-equivalence classes that $x \sigma x_{i} \sigma y$. If $x_{k} \| x$ then $x \neq x_{k} \neq y$, and $x_{k-1} \varrho x_{k} \tau x_{k+1}$ or else $x_{k-1} \tau x_{k} \varrho x_{k+1}$. Since $\tau \subseteq \sigma$, and the sequence is as short as possible, we can deduce that there is an x_{l} with $x_{k} \neq x_{l}$ such that $x_{k} \sigma x_{l}$. If $x_{l} \neq x$ then either $x \leqslant x_{l} \leqslant y$ or $y \| x_{l}$. In the first case we have immediately that $x \sigma x_{l}$, but in the second case we use the fact that $C^{\prime} \neq \emptyset$ and so, picking $c \in C^{\prime}$, we see $x_{l} \sigma c \sigma x$. Thus in all cases we have $x_{l} \sigma x$, and so $x_{k} \sigma x$. A similar argument applies to any x_{k} which is incomparable to y. Thus we have that $\left\{x_{0}, \ldots, x_{n}\right\}^{2} \subseteq \sigma$. Hence it follows that $\langle x, y\rangle \in(\sigma \cap \varrho) \vee \tau$.

Thus under the assumption (v) we have shown that $\operatorname{Con} A=\operatorname{Ce} A$ is modular and this completes the proof of the theorem.

2. n-PERMUTABILITY

In the light of \mathbf{B}. Jónson's result that every 3-permutable sublattice of an equivalence lattice is modular (see [1, theorem 4.67]), the following theorem is quite surprising:
2.a Theorem. For any ordered set $A=\left\langle A^{\prime}, \leqslant\right\rangle$ and for any natural number $n \geqslant 2$, the following conditions are equivalent:
(i) $\operatorname{Con} A$ in n-permutable.
(ii) $\mathrm{Ce} A$ is n-permutable.
(iii) $E\left(A^{\prime}\right)$ is n-permutable.
(iv) $\left|A^{\prime}\right| \leqslant n$.

Proof. We first define our notation. For equivalences σ and τ, define $(\sigma, \tau)^{1}=$ σ. Then we define recursively:

$$
\begin{aligned}
& (\sigma, \tau)^{2 n}=(\sigma, \tau)^{2 n-1} \circ \tau, \quad \text { for } n \geqslant 1, \text { a natural number, and } \\
& (\sigma, \tau)^{2 n+1}=(\sigma, \tau)^{2 n} \circ \sigma, \quad \text { for } n \geqslant 1, \text { a natural number. }
\end{aligned}
$$

Then the condition that σ and τ are n-permutable can be expressed as $(\sigma, \tau)^{n}=$ $(\tau, \sigma)^{n}$.
(iv) \Rightarrow (iii): Let $\sigma, \tau \in E\left(A^{\prime}\right)$ and suppose $\langle x, y\rangle \in(\sigma, \tau)^{n}$. Then there exist $n+1$ elements z_{0}, \ldots, z_{n} such that $x=z_{0} \sigma z_{1} \tau \ldots \sigma z_{n}=y$ or $x=z_{0} \sigma z_{1} \tau \ldots \tau z_{n}=y$, depending on whether n is even or odd. However, we have assumed that $\left|A^{\prime}\right| \leqslant n$ and so for some $j \neq k$ we have $z_{j}=z_{k}$. Hence, either $\langle x, y\rangle \in(\sigma, \tau)^{l}$ or $\langle x, y\rangle \in(\tau, \sigma)^{l}$ for some $l<n$, and so using the reflexivity we see that $\langle x, y\rangle \in(\tau, \sigma)^{n}$.
(iii) \Rightarrow (ii): Immediate as $\operatorname{Ce} A \subseteq E\left(A^{\prime}\right)$.
(ii) \Rightarrow (i): Immediate as $\operatorname{Con} A \subseteq \mathrm{Ce} A$.
(i) \Rightarrow (iv): For ease of notation we consider the case where n is odd. The case for n even follows mutatis mutandis. Suppose to the contrary that $\left|A^{\prime}\right| \geqslant n+1$ and let $n+1=2 m$. Let $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}$ denote $n+1$ different elements of A^{\prime}. By Szpilrajn's result (see [8]), there exists a linear order \preceq which extends the original order of $\left\{a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right\}$ as a subordered set of A. We may as well assume that $a_{1} \prec b_{1} \prec a_{2} \prec b_{2} \prec \ldots \prec a_{m} \prec b_{m}$.

Define the following relations on A^{\prime} :

$$
\begin{aligned}
& \sigma \stackrel{\text { def }}{=}\left[a_{1}, b_{1}\right]^{2} \cup\left[a_{2}, b_{2}\right]^{2} \cup \ldots \cup\left[a_{m}, b_{m}\right]^{2} \cup \mathrm{id}_{\mathrm{A}} \\
& \tau \stackrel{\text { def }}{=}\left[b_{1}, a_{2}\right]^{2} \cup\left[b_{2}, a_{3}\right]^{2} \cup \ldots \cup\left[b_{m-1}, a_{m}\right]^{2} \cup \mathrm{id}_{\mathrm{A}}
\end{aligned}
$$

where the intervals $\left[a_{i}, b_{i}\right]$ and $\left[b_{j}, a_{j+1}\right]$ are taken in the ordered set A.
Observations.

$$
\begin{array}{ll}
a_{i} \in\left[a_{j}, b_{j}\right] \text { implies } i=j ; & b_{i} \in\left[a_{j}, b_{j}\right] \text { implies } i=j ; \tag{a}\\
a_{i} \in\left[b_{j}, a_{j+1}\right] \text { implies } i=j+1 ; & b_{i} \in\left[b_{j}, a_{j+1}\right] \text { implies } i=j
\end{array}
$$

We prove the first statement, the other three follow analogously. Suppose $i \neq j$. Then as a_{i}, a_{j}, b_{j} are different elements, we have $\left[a_{j}, b_{j}\right] \neq\left\{a_{j}, b_{j}\right\}$. Hence, $a_{j} \leqslant a_{i} \leqslant b_{j}$ or $b_{j} \leqslant a_{i} \leqslant a_{j}$. By definition of $\underline{\mathfrak{Q}}$ we have $a_{j} \preceq a_{i} \preceq b_{j}$ or $b_{j} \preceq a_{i} \preceq a_{j}$. In the first case we have $j \leqslant i \leqslant j$, i.e. $i=j$, and in the second case we have $j+1 \leqslant i \leqslant j$! In both cases we contradict our original assumption and hence we conclude $i=j$.
(b) For $i \neq j$ we have $\left[a_{i}, b_{i}\right] \cap\left[a_{j}, b_{j}\right]=\emptyset$ and $\left[b_{i}, a_{i+1}\right] \cap\left[b_{j}, a_{j+1}\right]=\emptyset$. and for $i \neq j$ and $i \neq j+1$ we have $\left[a_{i}, b_{i}\right] \cap\left[b_{j}, a_{j+1}\right]=\emptyset$.

Again, we prove only the first statement; the other two follow analogously. Suppose to the contrary that there exists $y \in\left[a_{i}, b_{i}\right] \cap\left[a_{j}, b_{j}\right]$ for $i \neq j$. Then by observation (a) above we see that $y \notin\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$. Thus we must have $a_{i} \leqslant y \leqslant b_{i}$ and $a_{j} \leqslant y \leqslant b_{j}$. (Notice that $b_{i} \leqslant y \leqslant a_{i}$ and $b_{j} \leqslant y \leqslant a_{j}$ are both impossible as they
imply $b_{i} \preceq a_{i}$ and $b_{j} \preceq a_{j}$ respectively.) Hence we have $a_{i} \preceq b_{j}$ and $a_{j} \preceq b_{i}$ which implies $i \leqslant j \leqslant i$ i.e. $i=j$! This contradiction proves the result.
(c)

For each i we have $\left[a_{i}, b_{i}\right] \cap\left[b_{i}, a_{i+1}\right]=\left\{b_{i}\right\}$ and also $\left[b_{i}, a_{i+1}\right] \cap\left[a_{i+1}, b_{i+1}\right]=\left\{a_{i+1}\right\}$.

We show the first statement. By observation (a) we have that $a_{i} \notin\left[b_{i}, a_{i+1}\right]$ and $a_{i+1} \notin\left[a_{i}, b_{i}\right]$. Suppose that $y \in\left[a_{i}, b_{i}\right] \cap\left[b_{i}, a_{i+1}\right]$ and that $y \neq b_{i}$. Then $a_{i} \leqslant y \leqslant b_{i}$ and $b_{i} \leqslant y \leqslant a_{i+1}$. (Again the other possibilites are excluded as in observation (b) above.) Thus $b_{i} \leqslant y \leqslant b_{i}$ i.e. $y=b_{i}$! This contradiction gives the result.

Claim. $\sigma, \tau \in \operatorname{Con} A$.
It follows from observation (b) that $\sigma, \tau \in E\left(A^{\prime}\right)$. We show that $\sigma \in \operatorname{Con} A$, a similar argument holds for τ. Suppose $\sigma \notin \operatorname{Con} A$. Then, by the characterisation theorem of section $0 . f$, property (4), there exists a sequence X_{1}, \ldots, X_{k} of distinct elements of A^{\prime} / σ with $k \geqslant 2$ such that $X_{1} \leqslant X_{2} \leqslant{ }^{*} \ldots \leqslant_{k} \leqslant^{*} X_{1}$. Lets assume that k is the shortest length of such a sequence. If $k=2$, then neither of the X_{i} are singletons by the convexity of the σ-equivalence classes. If $k>2$ then there is also no singleton class, as its removal would yield a similar sequence of shorter length. Thus all the X_{i} 's are nontrivial equivalence classes. Hence, let $X_{i}=\left[a_{l_{i}}, b_{l_{i}}\right]$ for $i=1, \ldots, k$. Now take $i, j \in\{1, \ldots, k\}$ and $i \neq j$, and suppose $X_{i} \leqslant X_{j}$. Then there exist $u \in X_{i}$ and $v \in X_{j}$ with $u \leqslant^{A} v$. There are four possibilities as ($u \in\left\{a_{l_{i}}, b_{l_{i}}\right\}$ or $a_{l_{i}} \leqslant^{A} u \leqslant^{A} b_{l_{i}}$) and ($v \in\left\{a_{l_{j}}, b_{l_{j}}\right\}$ or $\left.a_{l_{j}} \leqslant^{A} v \leqslant^{A} b_{l_{j}}\right)$. It is a simple verification to show that all four possibilities yield $l_{i} \leqslant l_{j}$. But then we have $l_{1} \leqslant l_{2} \leqslant \ldots \leqslant l_{k} \leqslant l_{1}$! This shows that no such cycle can exist and hence $\sigma \in \operatorname{Con} A$.

We now complete the proof of the theorem. By the definition of σ we have

$$
a_{1} \sigma b_{1} \tau a_{2} \sigma b_{2} \tau \ldots \sigma b_{m-1} \tau a_{m} \sigma b_{m}
$$

and hence $\left\langle a_{1}, b_{m}\right\rangle \in(\sigma, \tau)^{2 m-1}=(\sigma, \tau)^{n}$. The proof is complete once we have shown that $\left\langle a_{1}, b_{m}\right\rangle \notin(\tau, \sigma)^{n}$. Suppose to the contrary. Then there exists a sequence x_{1}, $\ldots, x_{m-1}, y_{1}, \ldots, y_{m-1}$ of elements of A^{\prime} such that

$$
a_{1} \tau x_{1} \sigma y_{1} \tau x_{2} \sigma y_{2} \tau \ldots \tau x_{m-1} \sigma y_{m-1} \tau b_{m}
$$

If any $x_{i}=y_{i}$, then by the transitivity of τ we can form a shorter sequence by the removal of both x_{i} and y_{i} which yields $\left\langle a_{1}, b_{m}\right\rangle \in(\tau, \sigma)^{n-2}$. Similarly, if any $y_{i}=x_{i+1}$, then by the transitivity of σ we can shorten the sequence by the removal
of both y_{i} and x_{i+1}. Repeating this process we can transform the above sequence to obtain

$$
a_{1} \tau u_{1} \sigma w_{1} \tau u_{2} \sigma w_{2} \tau \ldots \tau u_{k} \sigma w_{k} \tau b_{m}
$$

where $k \leqslant m-1$ and for $i=1, \ldots, k$ we have $u_{i} \neq w_{i}$ and for $i=1, \ldots, k-1$ we have $w_{i} \neq u_{i+1}$. (Obviously $k \geqslant 1$).

We now arrive at a contradiction. By observation (a), we see immediately that $a_{1} / \tau=\left\{a_{1}\right\}$. Hence $u_{1}=a_{1}$. Now $w_{1} \in\left(a_{1} / \sigma\right) \cap\left(u_{2} / \tau\right)$ and since $w_{1} \neq u_{2}$, we see that $u_{2} / \tau \neq\left\{u_{2}\right\}$, and so $w_{1} \in\left[a_{1}, b_{1}\right] \cap\left[b_{l}, a_{l+1}\right]$ for some $l=1, \ldots, k-1$. By observations (b) and (c) we have $l=1$ and $w_{1}=b_{1}$. Proceed by induction: Let $1 \leqslant j<k$ and suppose we have shown that $u_{j}=a_{j}$ and $w_{j}=b_{j}$. rihen consider the subsequence

$$
\ldots \tau a_{j} \sigma b_{j} \tau u_{j+1} \sigma w_{j+1} \tau \ldots
$$

of the above sequence. Then $u_{j+1} \in\left(b_{j} / \tau\right) \cap\left(w_{j+1} / \sigma\right)$, and as $u_{j+1} \neq w_{j+1}$ we have $w_{j+1} / \sigma \neq\left\{w_{j+1}\right\}$. Thus $u_{j+1} \in\left[b_{j}, a_{j+1}\right] \cap\left[a_{l}, b_{l}\right]$ for some $l=1, \ldots, k$. Observations (b) and (c) give us that either $u_{j+1}=b_{j}$, or $u_{j+1}=a_{j+1}$. However, the former is not possible by our restrictions on the sequence. Hence we conclude that $u_{j+1}=a_{j+1}$ and similar argument shows that $w_{j+1}=b_{j+1}$. Thus by induction we have that for all $i=1, \ldots, k$ we must have $u_{i}=a_{i}$ and $w_{i}=b_{i}$. Especially, we see that $b_{k} \tau b_{m}$ where $k \leqslant m-1$, i.e. $b_{m} \in\left[b_{k}, a_{k+1}\right]$ for $k \leqslant m-1$. However, observation (a) shows that this is impossible!

Thus, finally, $\left\langle a_{1}, b_{m}\right\rangle \notin(\tau, \sigma)^{n}$ and hence we have shown that $\left|A^{\prime}\right| \geqslant n+1$ implies Con A is not n-permutable. This completes the proof of the theorem.

References

[1] R. N. McKenzie, G. F. McNulty, W. F. Taylor: Algebras, Lattices, Varieties. Volume 1, Wadsworth and Brooks/Cole, Monterey, California, 1987.
[2] I. G. Rosenberg and T. Sturm: Congruence relations on finitary models, Czechoslovak Math. J. 42 (117) (1992), 461-470.
[3] T. Sturm: Verbände von Kerner isotoner Abbildungen, Czechoslovak Math. J. 22 (1972), 126-144.
[4] T. Sturm: Einige Charakterisationen von Ketten, Czechoslovak Math. J. 23 (1973), 375-391.
[5] T. Sturm: On the lattice of kernels of isotonic mappings, Czechoslovak Math. J.. 27 (1977), 258-295.
[6] T. Sturm: Lattices of convex equivalences, Czechoslovak Math. J. 29 (1979), 396-405.
[7] T. Sturm: Modular algebraic lattices are completely modular, Proc. of the 17th International Symposium on Multiple-valued Logic, Boston 1987, p. 122-124.
[8] E. Szpilrajn: Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), 386-389.
Author's address: Department of Mathematics and Applied Mathematics, University of Natal, King George V Avenue, Durban 4001, South Africa.

[^0]: ${ }^{1}$ I am indebted to Professor Teo Sturm as this paper originated from his seminar seric:s on Algebraic Structures.

