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Czechoslovak Mathematical Journal, 42 (117) 1992, Praha 

REGULAR £-SPACES 

R. FRIC, KoSice and D.C KENT, Pullman 

(Received January 4, 1991) 

In [FKE] the notion of regularity for various continuous structures has been dis
cussed in connection with the extension of continuous maps. In the present paper we 
show that the definition of regularity for £-spaces introduced in [FKE] meshes nicely 

with the 7-modification of Butzmann and Beattie. We investigate the relationships 
between regularity and some other properties of £-spaces. Finally, we describe some 
categorical aspects of £-regularity. 

Recall that an C-space X is a pair (X, L) where X ^ 0 is a set and the C-structure 

L C XN x X satisfies the basic two axioms of sequential convergence 

(C\) (5, i ) G L whenever x G X and 5 is the constant sequence S(n) = x, n G N; 

(£2) If (S, s) G L, then (Sos,x) G L for each subsequence 5 o s , where s G MON 

is a strictly monotone map of N into N. 

According to [KNE], an £o-space, i.e. an £-space with unique limits, is said to 

be separated. An £-space satisfying the Urysohn axiom of convergence is called an 
C*-space and a separated £*-space is called an C^-space. 

If there is a (filter) convergence structure q on X such that L = C(q) (i.e. L is 
associated with q), then (X, L) is said to be an C*-space. We have T H x --+ x 

whenever T —* x. Therefore, if (5, x) G L and the sequence T £ XN generates the 
same filter of sections as the sequence 5 A (x), then (T, x) G L. In fact, £I-spaces 
are characterized by this property. 

We use the standard notation for sequential and filter convergence spaces (cf. 
[FKE], [BBU]), where some undefined notions can be found). Recall (cf. [BBU]) 
that if X = (X ,L) is an £-space, then the 7-modification 7(L) of L is defined as 
follows: a filter T 7(L)-converges to x whenever there is a y(L)-basic filler Q (Q 

has a countable base and if S G XN and the filter of sections T(S) is finer than 
Q, then (S,x) G L) such that T D Q; also 7X = (K, 7(L)) is said to be the 7-
modification of X. Finally, if S = (Sn) is a double sequence (i.e. a sequence of 
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sequences Sn £ XN,n £ N), then by «F(«S) we denote the filter generated by sets 

{Sm(k)\ m^n.ke N},n£ N. 

D e f i n i t i o n 0 . 1 . ([FKE]). Let (X ,L ) be an £-space. Let S £ XN be a sequence 

and let x £ X be a point. We say tha t S and x are linked if there exists a double 

sequence S = (Sn) £ (XN)N such that for each k £ N the sequence 5* L-converges 

to S(fc) and if T £ X^ is a sequence such that T(T) D ^ ( 5 ) , then T L-converges 

to x; in this case we say tha t L links S and x. 

D e f i n i t i o n 0 .2 . ([FKE]). Let X = ( K , L ) be an £-space. If a sequence S £ XN 

L-converges to a point x £ X whenever S and x are linked, th- n X is said to be 

regular. 

The obvious proof of the next proposition is left out. 

P r o p o s i t i o n 0 .3 . (i) Each subspace of a regular C-space is regular. 

(ii) An C-product is regular iff each of its factors is regular. 

(iii) An C-sum of regular C-spaces is regular. 

R e m a r k 0 .4 . Since each £-space is an ^-quotient of a disjoint £-sum of conver

gent sequences, it follows readily that an ^-quotient of a regular £-space need not 

be regular. 

1. R E G U L A R I T Y IN £ ' - S P A C E S 

Unless s tated explicitly otherwise, in this section we deal with jC'-spaces. We 

investigate the relationship between regularity and some other properties of £ ' -

spaces. In particular, we prove that an £ y-space X is regular iff its 7-modification 

7 X is a regular (filter) convergence space. 

L e m m a 1.1. Let (Ar,L) be an C*-space and let T ( L ) be the ^-modification OIL. 

Let S £ XN be a sequence and let x £ A' be a point. Then: 

(i) Let Q be a y(\-)-basic filter converging to x. If T{S) D cJ7(--)-?, then S and x 

are linked; 

(ii) If S and X are linked, then there is a 7(L)-basic fdter Q converging to x such 

that T(S) D c/7(L)(7. 

P r o o f . (i) Let {Gn\ n £ N) he a monotone base of Q. Then {c\y{i_)Gn ; 
00 

n £ N} is a base of c\y^)G. Let T(S) D c\l{L)G. Put (i() = A", Goo = ( ] Gn. Then. 
71=0 

476 



for each k e N, we have S(n) G cl7(L)Gfc for all but finitely many n G N. Given 

S(k), let n(k) be the largest n G {0,1,- -,00} such that S(k) G cl7(L)G„ and let 

Sfc be a sequence in Gn(jk) such that Sk(n) —• S(k). Let 5 = (St) be the resulting 

double sequence. We have T(S) D G- Therefore, if T G XN is a sequence such that 

T(T) D T(S), then T(n) ± x. Thus S links 5 and x. 

(ii) Let S = (5n) G (XN)N be a double sequence linking 5 and x. Since T(S) 

s a countable base and T( 
Clearly, JF(S) D c l 7 ( L ) ^(5) . 

has a countable base and T(n) —* x whenever ^"(T) D -̂ "(*5), we have T(S) —• x 

Theorem 1.2. Let (X, L) be an &-space and let y(L) be the 7-modification of 

L. Then (K ,L) is regular iff(X,j(L)) is regular. 

7(L) 
P r o o f . 1. Let (K ,L) be regular. Let T —-• x. Then there is a 7(L)-basic 

filter G converging to x such that T D G- Thus cly^T D cl7(L)(/. But cl7(L)(? is 

a 7(L)-basic filter converging to x. Indeed, by (i) in Lemma 1.1, if 5 G XN and 

T(S) D cl7(L)^, then S and x are linked and hence S(n) —• x. Since cl7(L)(? has a 
7(L) 

countable base, we have cl7(L)/* —• x. Thus (X, 7(L)) is regular. 

2. Let (K, 7(L)) be regular. Then from (ii) in Lemma 1.1 it follows easily that 

(X,L) is regular. • 

Corollary 1.3. Let (X, q) be a pretopological space and let C(q) be the associated 

C*-structure. lf(X,q) is regular, then (X,C(q)) is regular. 

P r o o f . Let j(q) = y(C(q)) be the 7-modification of C(q). Then q ^ 7(g) and 

C(q) = C(j(q)). Clearly, (X,y(q)) is regular and hence, by Theorem 1.2, (X, C(q)) 

is regular. • 

Observe that if (X, q) is a regular convergence space, then the associated C*-space 

need not be regular. Indeed, let (X,L) be an £^-space which fails to be regular. 

Let <p(L) be the finest convergence structure for X such that T(S) —• x whenever 

S(n) —• x (cf. [BBH]). Then (X,(p(L)) is regular and L is associated with <p(L) (i.e. 

£(rtL)) = L). 

P ropos i t ion 1.4. Let (X,L) be an C*-space. Then the following are equivalent: 

(i) (K ,L) is regular; 

(ii) Let S G XN,x G X and let (S,x) <£ L. Then there exists s G MON such 

that whenever S = (.$'„) G (XN)N is a double sequence such that for each k G N we 

have (Sk,S(s(k))) G L, then for each f G NN there exists g G NN, g > / , such that 

( < V x ) g L , where Sg = {Sn(g(n))). 
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P r o o f , (i) implies (ii). Let S G XN,x G X and let (S,x) £ L. Since L = L*, 
there exists s G MON such that (Sos,x) £ L. Suppose that, on the contrary, there 
exists a double sequence S = (Sn) G (XN)N such that for each k G N we have 
(S*,S(s(ifc))) G L and for some f £ NN we have (Sg,x) G L whenever g e NN, 

g ^ / . Then the double sequence ({Sjt(n + f(k)))) links 5 o s and x. If (X,L) is 
regular, then (S o s, x) G L, a contradiction. 

(ii) implies (i). Let S G K",* G K and let 5 = (Sn) G ( K " ) N be a double 
sequence which links S and x. Suppose that, on the contrary, (S, x) & L. Since for 
each s G MON the double sequence (S,(n)) links S o s and x, this would contradict 
(ii). D 

Recall (cf. [FRI]) that a topological space (X,q) is said to be c-regular if a se

quence 5 G XN L(g)-converges to x G X whenever f(S) D clqAfx, where Mx is the 

neighborhood filter of x. 

Proposition 1.5. Let (X,q) be a c-regular topological space and let L be the 

associated C*-structure. Then the following holds: 

(iii) Let S G XN,x G X and let (S,x) £ L. Then there exists s G MON such 

that whenever S = (Sn) G (XN)N is a double sequence such that for each k E N we 

have (Sky S(s(k))) G L. then there exists f G NN such that for each g G NN, g ^ / , 

we have (Sg,x) £ L. 

P r o o f . Let S G XN,x G X and let (S,x) £ L. Then there exists a closed 

neighborhood U of x and s G MON such that for all ib G N we have S(s(Jb)) £ U. 

Let «S = (5n) G (XN)N be a double sequence such that for each k G N we have 

(Srfc,5(s(ib))) G L. Let V be an open neighborhood of x such that U D cl7V. Then 

for each ib G N there exists /(Ar) G N such that Sk(n) & V for all n ^ /(fc). Thus 

(Sg,x) £ L whenever g G NN and g ^ f. • 

Corollary 1.6. Let (K, q) be a c-regular topological space and let (X,L) be the 

associated £*—space. Then (X,L) is regular. 

Corollary 1.7. Let (X, L) be a sequentially regular C^-space. Then (X, L) is 

regular. 

The next two examples show that the converse of both corollaries are false. 

Example 1.8. Let (X,q) be the regular topological space on which each continu
ous function is constant, constructed by J. Novak in [NOR]. It is a sequential space 
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having unique sequential limits. The associated £J-space fails to be sequentially 

regular, but, by Corollary 1.6, it is regular. 

Example 1.9. Let (X,q) be the sequentially regular Frechet space which fails 
to be regular, constructed in [FNO]. By Corollary 1.7, the associated £J-space is 
regular. 

Remark 1.10. The topological sum of the associated £g-spaces from the previous 

two examples shows that there is a regular £J5-space whose topological modification 

is neither regular nor sequentially regular. 

2. CATEGORIES OF £-SPACES 

For the readers convenience and a later reference, in this section we survey some 
categorical C-folklore. Additional information can be found, e.g., in [FKO], [HER], 
[BBH], [KNE]. 

Our reference category will be the topological category C of £-spaces and £-
continuous maps. Recall that in C monomophisms are exactly one-to-one continuous 
maps and epimorphisms are exactly continuous onto maps. Let (X, L) be an £-space. 
Consider the following additional axioms of convergence: 

(AC) US£XN and ((S(n + 1)), x) G L, then (5, x) € L; 

(CC) If (5,x) 6 L and T 6 XN is defined by T(2n - 1) = S(n) and T(2n) = x, 
n e N (i.e. T = 5 A (*)), then (T, x) 6 L; 

(MC) If (5 ,x) , (T,x) € L and U € XN is defined by U(2n - 1) = S(n) and 
U(2n) = T(n), n£N (i.e. U = S A T), then (U, x) € L. 

In addition to C* and £*, consider the following (full and isomorphisms-closed) 
subcategories of C: 

Ca of all £-spaces satisfying (AC); 

Cl of all £-spaces satisfying (CC); 

Cm of all £-space satisfying (MC)\ 

and, further, 

£* = Ca O £' of all spaces satisfying (AC) and (££); 

similar "intersection" notational convention will be applied to other categories as 
well, e.g., Cl = C% O £ 0 . Denote T = { a , / , m j j , * } . For c 6 T , £ c will be the 
corresponding subcategory of £. 
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Good properties of various subcategories of £ follow from the fact that £-axioms 

behave extremely well with respect to intersections of £-structures. The obvious 

proofs of the next few propositions are omitted. 

Lemma 2.1. Let X and A be nonempty sets and for each a £ A let La be an 

C-structure for X. Put LA = f] L« = {(5, x) G XN x X; (5, x) G La for all a e A}. 
a£A 

Then 
(i) LA is an C-structure for X; 

(ii) If each L a ,a G A, satisfies an axiom (•) G {(CQ),(AC),(CC),(MC),(TC), 

(£3)}, then so does LA-

Let X and A be nonempty sets and for each a G A let (Yay Ma) be an £-space and 

fa a map of X into Ya. Then the initial £-structure for X given by {fa; a G -4}, i.e. 

the coarsest £-structure L for K such that each fa is £-continuous, can be described 

as follows: 

for a G -4, put La = {(-?,*) G XN x K; (/a o SJa(x)) G M a}; then La is an 

£-structure and L = L>| = f ] La. 
a£A 

Lemma 2.2. If each Ma, a G .4, satisfies an axiom (•) G {(-4£), (££) , (MC)> 

(PC), (£3)}, iAe/i so does the initial C-structure LA given by the family {/a ; a £ A}. 

If for each (S,x) G LA and for each y G X, y / x, there exists a G A such that 

(Si y) & La, then LA is separated. 

Corollary 2.3. Let c G T . Then 

(i) £ c is closed under formation of products and subspaces (i.e. subobjects) in C; 

(ii) £ c is epireflective in C. 

Let (K ,L) be an £-space. Let c G T. Since XN x X is an £*-structure and 

hence £c-structure for X, we can form Lc, the intersection of all £c-structures for X 

coarser than L. 

Lemma 2.4. Let f be a continuous map of an C-space (X,L) into an C-space 

(y, M). Tijen / is a continuous map of(X,Lc) into (V, IWV r^ach identity of an 

C-space (X}L) to the Cc-space (K,LC) is Cc-universal. 

Corollary 2.5. Let c G T . Then: 

(i) £ c is a bireflective subcategory of C; 

(ii) £ c is a topological category. 
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P r o o f , (i) is a trivial consequence of Lemma 2.4 and (ii) follows from (i) and 

Theorem 2.2.12 in [PRE]. • 

Definition 2.6. Let c £ T. Let (X,L) be an £-space. Then Lc is said to be the 

Cc-modification of L, resp. (K, Lc) is said to be the Cc-modification of (X ,L). 

Remark 2.7. It is easy to see that if (K ,L) is an £a-space and / is a map of 

X into a set V, then the final ^-structure Mj for Y need not satisfy axiom (AC). 

A final structure in Ca is the ^"-modification of the corresponding final structure 

formed in C. Similarly for other axioms. Observe that extremal epimorphisms in 

Cc,c £ T, are exactly quotients. 

Now, let us turn to the category Co of all separated £-spaces and its subcategories. 

Since the quotient of a separated £-space need not be separated, Co fails to be a 

topological category. Recall that in Co epimorphisms are exactly continuous maps 

with topologically dense range, monomorphisms are exactly one-to-one continuous 

maps, Co is well- and co-well-powered and (epi, extremal mono)-factorizable and 

(extremal epi, mono)-factorizable. Thus (cf. [PRE]), a subcategory of Co is epireflec-

tive if it is closed under formation of products and closed subspaces (i.e. subobjects) 

in C. 

Corollary 2.8. Let c € T. Then: 

(i) CQ = Cc O Co is closed under formation of products and subspaces (i.e. subob

jects) in C; 

(ii) CQ is epireflective in Co. 

Lemma 2.9. Let c € T. Then: 

(i) Let (A',L) be a separated C-space. Then (X,LC) is separated; 

(ii) Let (X ,L) be a separated C-space. Then the identity map of (K ,L) into 

(X ,L r ) is CCQ-universal; 

(iii) CQ is a birefiective subcategory of Co-

P r o o f , (i) follows form Lemma 2.1. The straightforward proofs of the other 

assertions are omitted. • 
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3 . REGULAR MODIFICATIONS 

In this section we investigate regularization, i.e. a process of replacing an C-

structure with a coarser one satisfying a certain regularity condition. By a regu

larity condition we mean that if a sequence S and a point x are linked with a double 

sequence S = (Sk) of a specified type, then S converges to x. In order to avoid 

pathological situations, it is natural to require that a convergent sequence is always 

linked with its limit. Consequently, for a given type of linkage it is natural to work in 

a suitable subcategory of £-spaces. For the regularity defined in [FKE] and adopted 

in the present paper the suitable subcategory is &. In C* the following holds: if 

S converges to x, then the double sequence (Sk), where Sk is the constant sequence 

generated by S(k), links S and x. 

Lemma 3.1. (i) Let Y = (Y, M) be a regular C*-space. Let X -̂  0 be a set, let 

g be a map of X into Y, and let Lg be the initial C*-structure for X generated by 

g. Then X = (Ar, L^) is a regular space. 

(ii) Let {La ; a G A} be a set of regular C*-structures for the same set X ^ 0. 

Then L^ = | ) La is a regular C*-structure. 
a£A 

P r o o f . (i) Let S G XN and x G X. Let S = (Sk) G (XN)N be a double 

sequence linking S and x in (X, L^). Clearly, g o S = (g o Sk) G (YN)N links g o S 

and g(x). Thus (g o 5, g(x)) G M and hence (5, x) G L r 

(ii) is trivial. • 

Since for each set X ^ 0, XN x X is an £*-structure on X, it follows from Lemma 

3.1 that for each C*-structure L on X there is a regular ^-s t ructure L r (resp. £*-

structure Lr*) on X such that L C L r (resp. L C Lr*) which is the finest of all such 

/..'-structures (resp. £*-structures). 

Definition 3.2. Let X = (X, L) be an C*-space (resp. £*-space). Then L r (resp. 

Lri*) is said to be the regular modification of L in & (resp. in C*) and rX = (X,L r ) 

(resp. r*X = (X,L r*)) is said to be the regular modification of X in £ 7 (resp. in 

£•). 

Problem 3.3. Does there exist an £*-space X = (X,L) such that L r ^ Lr*? 

Denote by Cr the (full and isomorphism-closed) subcategory of C* whose objects 

consist of all regular spaces. 

Proposition 3.4. Let X = (X.L) be an C*-space and let rX = (X,L r ) be its 

regular modification in C*. Then 
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(i) If g is a continuous map ofX into a regular C*-space Y, then g is a continuous 

map ofrlL into Y; 

(ii) The identity map ofX into rX is C-universal. 

P r o o f , (i) Let L^ be the initial £I-structure on X generated by g. By Lemma 

3.1, (X,Lg) is regular. Since L C Lgi we have L r C Lg and the assertion follows. 

(ii) is a straightforward consequence of (i). D 

Remark 3.5. An analogous result holds for £*-spaces and regular modifications 

in£* . 

Corollary 3.6. (i) Cr is a bireflective subcategory of C* and Cr DC* is a bire-

flective subcategory of C*. 

(ii) CQ = £ r n £ o is an epireflective subcategory of C? and £ r n £ J is an epireflective 

subcategory ofC*. 

Next we describe how the epireflection of C* into CQ is split into an extremal 

epireflection and a bireflection. The objects of the category in the middle will be 

defined analogously to the /2-Hausdorff spaces in [KRI]. 

Definition 3.7. Let X be an £^-space and let rX be its regular modifica

tion. If rX is separated, then X is said to be r-separated. Denote Cr the (full 

and isomorphism-closed) subcategory of C* consisting of r-separated spaces. 

Observation 3.8. Since L c U , it follows that every r-separated space is sepa

rated. 

Lemma 3.9. Let X = (X, L) be an &-space and let rX = (X, L r) be its regular 

modification. Assume that whever x, y G X, x ^ y, then there is a continuous map 

of X into an r-separated space Y = (V.M) such that f(x) -̂  f(y). Then (5, x) € L r 

implies (S,y) £ Lr. 

P r o o f . The assertion follows from (ii) of Proposition 3.4. • 

Theorem 3.10. Let X be an C* -space. Then the following are equivalent: 

(i) X is r-separated; 

(ii) Whenever x,y G X,x -̂  y, then there is a continuous map f of X into an 

r-separated C*-space Y such that f(x) -̂  f(y). 

P r o o f , (i) => (ii) is trivial. The converse follows from Lemma 3.9. • 
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Recall tha t extremal epimorphisms in C* are exactly quotients. 

Coro l lary 3 . 1 1 . (i) Cr is closed under formation of products and weak subobjects 

in C (and hence in C*). 

(ii) Cr is extremal epireflective in C*. 

P r o o f , (i) follows from Theorem 3.10. (ii) follows from (i) and Theorem 2.2.4 

in [PRE]. • 

R e m a r k 3 .12 . (ii) can be proved directly as follows. Let X = ( X , L ) be an £ I -

space. Define an equivalence relation on X by x ~ y iff for each continuous m a p / of 

X into each r-separated space Y we have f(x) = f(y). Let gx be the quotient map 

of X onto X/ ~ and let L~ be the final /^ - s t ruc ture on X/ ~ . The rest is clear. 

The next two propositions are straightforward consequences of the previous results. 

P r o p o s i t i o n 3 .13 . (i) Let X = ( X , L ) be an r-separated space and let r X = 

( X , L r ) be its regular modification. Then the identity map of X into r X is CQ-

universal. 

(ii) Cr is bireflective in Cr
0. 

(iii) An C*-space is r-separated iff it is a weak subobject (in C ) of a regular 

CQ -space. 

P r o p o s i t i o n 3 .14 . Let X = (A', L) be an C*-space. Let ~ be the equivalence 

relation described in Remark 3.12, let gx be the corresponding quotient map of X 

into X~ = X/~, and let Lr be the induced quotient C*-structure on X ~ . Let 

r X ~ = ( X ~ , L ~ ) be the regular modification ofXS* = ( X ~ , L ^ ) . Then idx~ ogx is 

the epireflection ofX into CQ. 

R e m a r k 3 .15 . Analogous relationships are valid for £*-spaces, r-separated C*-

spaces and regular £j$-spaces. 

Using a construction analogous to that of the "regularity series" for filter conver

gence space (see [KRI]), we next define inductively a chain of & -structures which 

terminate in the r-modification of an & -structure L on A'. 

Let ( X , L ) be an £ y -space . Define rL C XN x A' as follows: (5 , x) G rL if S and 

x are linked. It is easy to see that rL is an £ ; - s t ruc tu re coarser than L. Inductively, 

define Lo = L, L a + i = r L a and L a = I ) Lp if a is a limit ordinal. Clearly, each L a 

P<cx 

is an iCI-structure. Let (X, L r ) be the regular modification of (X, L) . Since L r D L a 
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for each ordinal number a , there exists the least ordinal number a ( L ) = a such tha t 

L r = L a . For 7 = 7(L) define a mapping 71 of X into the power set of all filters on 

X as follows: T E 7 i ( z ) if there is a filter Q which 7-converges to x and T D c\yQ. 

Clearly, 71 is a filter convergence structure on X. 

P r o p o s i t i o n 3 .16 . L i = £(71) . 

P r o o f . The assertion follows by Lemma 1.1. D 

P r o b l e m 3 .17 . Let ( X , L ) be an £ ' - space . Is it true that 7 ( L i ) = 71? 

P r o b l e m 3 .18 . Characterize the smallest ordinal number a such that a ( L ) ^ a 

for each £ I - space ( K , L ) . 

R e m a r k 3 .19 . As pointed out in [FKE], the notion of linkage between a sequence 

S and a point via a double sequence S can be modified by imposing on S various di

agonal conditions (cf. [FVO], [NOC], [FZA]). Observe that in different subcategories 

of £-spaces different conditions can be used to define a suitable notion of ^-regularity 

and £-regular modification. 
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