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Czechoslovak Mathematical Journal, 42 (117) 1092, Praha 

T2-FRAMES AND ALMOST COMPACT FRAMES 

JAN PASEKA and BOHUMIL ŠMARDA, Brno 

(Received March 3, 1987) 

In the theory of frames (or "pointless topologies"), several authors have tried to 
find a suitable form of separation axioms. Our purpose is to describe a T2-axiom 
in the form usual in the case of regular frames. T2-frames coincide for topological 
spaces with Hausdorff spaces but they are described independently on points. We 
also investigate almost compact frames and H-closed extensions of T2-frames (see 
[3], 6.1., h, for spaces). 

All unexplained facts concerning frames can be found in Johnstone [10] or in [16]. 
Recall that a frame is a complete lattice L in which the infinite distributive law 

aA\/S=\/{aAs: s G 5} 

holds for all a € L, S C L. 

The known facts (see [10] or [16]) indicate the importance of the opposite category 
Loc of locales to the category Frm of frames. We will work in the category Frm. 

If Top is the category of topological spaces, then the set 0(T) of all open sets of 
T E Top is a frame. Frames isomorphic to some 0(T) are called spatial (or a 
topology). 

In [16], frames in which primes (i.e. A-irreducible and -j-- 1 elements) are dual 
atoms (called T\-frames), are investigated. The category of all T\-frames is the 
smallest epireflective subcategory in Frm containing all T\-spaces. Every T\-frame 
is a homomorphic image of a Ti-space and every spatial Ti-frame is a Ti-space. We 
will now investigate similar problems for T2-fra1r.es. 

The category of T^-frames is an epireflective subcategory in Frm containing all 
Hausdorff spaces but there exists a To-frame which is not a homomorphic image of a 
Hausdorff topology. Spatial To-frames are Hausdorff spaces. There exists a compact 
To-frame which is not regular. An almost compact frame which is a homomorphic 
image of a HausdorfT topology is a topology. A compact T2-frame exists which is not 
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a homomorphic image of a Hausdorff topology. An //-closed extension of a T2-frame 

is an almost compact T2-frame. //-closed extension of a frame L is a topology iff L 

is a topology, //-closed extension of a complete Boolean algebra, which is not dually 

atomic, is dually atomic and not conjunctive. 

1 . T2-FRAMES 

The main separation axiom for frames is regularity which is defined in the following 

way: 

A frame L is regular if 

a = \J(beL:b<a) 

holds for all a G L, where 6 < a means 6* V a = 1. 

Dowker and Strauss [5], Simmons [17] (and Kerstan [12], as well) proposed to 

define N2-frames as frames L satisfying the condition (N2): 

For any a, 6 G L with a V 6 -= I, a ^ 1 7-6 there are elements x, y G L such that 

x A y = 0, x ^ a, y ^ 6. 

Spatial N2-frames coincide with Hausdorff spaces and every regular frame is N2. 

However, it does not seem that these N2-frames form an epireflective subcategory in 

Frm. 

Recall that a frame L is conjunctive if for any a, 6 G L with a j£ 6 there is an 

element c G L such that a V c = l , i V c / 1 (see Simmons [17]). If we combine the 

(N2)-condition and the conjunctivity then we obtain the following condition (52): 

For any a, 6 G L with 1 ^ a ^ 6 there is an element c G L such that c* ^ a, c <£ 6. 

This approximation of the Hausdorff axiom on frames fulfilling the condition (62) 

was investigated by P. T . Johnstone and Sun Shu-Hao in [11]. These frames, which 

are called Hausdorff in [11], are N2-frames and need not be conjunctive. Hausdorff 

frames form an epireflective subcategory in Frm (equivalently, closed under arbitrary 

homomorphic images and sums), spatial Hausdorff frames coincide with Hausdorff 

spaces. 

The problem of Hausdorff frames was discussed also by Isbell [9] which introduced 

strongly Hausdorff frames. In a latter paper [6], Dowker and Strauss proposed a 

definition equivalent to IsbelFs strong Hausdorffness. 

The following equivalent of Hausdorff spaces for frames is in [16]. We say that an 

element a G L, a ^ 1 of a frame L is semiprime if 

x A y = 0 -= ->x^a or y ^ ct} 

for any x, y G L. 
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If we denote D(L), P(L) resp., S(L) resp., the set of all dual atoms, points resp., 
semiprime elements resp., in L then D(L) C P(L) C S(L) and a ^ 6, 6 / 1, 
a G S(L) =>be S(L). We say that L is an 5-frame if S(L) = D(L). It is equivalent 
to the fact that semiprime elements form an antichain. The category S of all 5-
frames is a monocoreflective subcategory in Frm such that S 0 Sob = Haus, where 
Sob (Haus, resp.) is the category of all sober (Hausdorff, resp.) spaces. Every 
N2-frame is an 5-frame, 

A. Pultr in [15] defines Hausdorffness on a frame L with the following condition: 
If a, 6 € L, a||6 then elements Jb, I G L exist such that k A / = 0, ib, / -̂  a V 6, k ^ a, 
1 £ 6 . 

We will describe our candidate for a T2-axiom on frames. 

Definition. Let L be a frame and let a D 6 denote a ^ 6 and a* j£ b for a, 6 G L. 
Then L is called a Ti-frame if 

a = \ / ( x G L: x D a ) 

holds for any 1 ^ a G L. 

L is a T2-frame iff for any a, 6 G L with 1 / a jf 6 there is / G L such that / ^ a, 
'* ^ a> ' ^ b- ^ *s evident that T2-frames form a subcategory in Frm which we 
will denote by Frm2. T2-frames are exactly Hausdorff frames introduced by P. T. 
Johnstone and Sun Shu-Hao in [11], 

If L is a frame then we will denote Da = {x G L: x D a} for a G L and 5 L = {' G 

L : / V 0 } . 

P ropos i t ion 1.1. If L is a frame, a,6,c, rf, a,, 6, G L (j G /) then it holds: 

a) Da CI a, 6 G Da =>1 6 C Da; Da =1 a <=> a* ^ 0 
b) a ^ 6 , 6 D c = > a D c ; a D 6 , 6 D c = > a D c 

c) a , D 6 , ( i G / ) = > A ( a l : i G / ) D A ( 6 , : i G / ) 
d) 1 ^ a = > 0 D a ; 1 non Da 

e) a ^ 6, a** D 6** => a D 6 

f) a D 6 => a* ^ 0 => a D a, a D am* 

Definition. We say that a frame L is T2-frame if for any a 6 L, a ^ 1 there is 
an ideal A in L such that a = \/ A and a? D a holds for any x G A. 

It is clear that any TJ-frame is a T2-frame. TJ-frames form a subcategory in Frm 

which we will denote by Frm2. 

Proposition 1.2- A Ti-frame is an S-frame and also a T\ -frame. 
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P r o o f . If a G S(L) and b e L exists such that \ > b > a then 6 ^ a, 6 -̂ 1 and 
therefore / G L exists such that / ^ 6, / j£ a, /* j£ 6. These facts imply /* ^ a ^ 6, a 
contradiction. We have S(L) = D(L) and P(L) = D(L) evidently. D 

Proposition 1.3. For each To-space T the following are equivalent: 

1. T is a Hausdorff topological space. 

2. 0(T) is a T2-frame. 

3. 0(T) is a T^-frame. 

P r o o f . 1 => 3: If 1 ^ a e 0(T) then there exists 7 e T\a and for any a € a 
there exist u, v e 0(T) such that u A v = 0, a e u, y e v. We have lQ = u A a ^ a 
and if /* ^ a then v -̂  ti* ^ /* -̂  a, which is a contradiction with 7 £ a. The ideal 
.4 generated by the set {la : a G a} has the properties a = \J A and x D a for any 
x e A. 0(T) is a 7^-frame. 

3 => 2 is clear. 

2 => 1: The implication follows from 1.2 and [11], Cor. 2.4. D 

R e m a r k . If L is a T2-frame then rf = V(* € L: x < rf) for any d G D(L). 

Definition. Let L be a frame such that for any / 6 L, / ^ 1 there exists rf G D(L), 
d ^ /. Then L is called dually atomic. 

Proposition 1.4. Let L be a dually atomic frame. Then the following are equi

valent: 

1. L is a T2-frame. 

2. L is a T2-frame. 

3. d = V(* € £: * < <0 for any d e D(L). 
4. L is a Hausdorff frame. 

P r o o f . 1 => 3: rf = V(x e L: x < rf) and x D rf implies x < rf. 
3 => 2: If 1 ̂  / e L, / ^ rf e D(L) then I = I Ad = I A\/(x e L: x < d) = \J(l Ax: 

x < rf). Further, x* V rf = 1 implies (x A /)* V rf = V (x A /)* ^ rf, (x A /)* jf /. We 
have I = \/ A, A C D/, where A is the ideal generated by the set {/ A x: x < rf}. 

2 => 1 and 1 => 4 is clear. 

4 => 3: If rf ^ \J(x e L: x < rf) then 1 7- rf ^ V(* € L: x < rf) and thus / G L 
exists such that / ^ V(* G L: x < rf), /* ^ rf. Then / < rf and / -̂  \J(x e L: x <\ d) 

holds, a contradiction. D 

Proposition 1.5. Any regular frame is a conjunctive T^-frame. 

Proof is evident. 
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T h e o r e m 1.6. The categories Frm2 and Frm'2 are closed with respect to homo-

morphic images. 

P r o o f . Let / : K —•• L be a surjective homomorphism of frames and K e Frm^. 

We shall prove tha t L e Frm2: If a ,6 G L, 1 -^ a j£ 6 then we consider elements 

/ ° ( a ) = V ( * e K: f(z) <$ a) and / ° (6) = V(* € K: f(z) ^ 6). Since 1 9- / » j£ 

/ ° (6 ) and x e K exists such that 1 ^ / ° ( a ) , a; jt / ° (6 ) and x* £ f°(a). It means that 

y = f(x) ^ a and if y* $ a then f(x*) ^ / ( x ) * ^ a, i.e., x* t$ / ° ( a ) , a contradiction. 

Together y ^ a, y ^ 6, y* ^ a holds and L is a T2-frame. Moreover, if K G Frm'2 

then x t <$ / ° ( a ) , x, g / ° (6 ) , x* £ f°(a) for i = 1,2 and (x! V x2)* £ f°(a) implies 

yi V y2 ^ a, yi V y2 ^ 6 and (yi V y2)* j£ a for yt = / ( x ; ) , i = 1,2. It means that 

L E Frm2. D 

Now we shall investigate sums of a set (L1: 7 G T) of frames and we shall prove 

tha t F2-frames are closed under sums. Sums of frames were studied by C. H. Dowker 

and D. Strauss in [7], by P. T . Johnstone in [10] and by I. KHz [13]. We shall use 

methods of C. H. Dowker and D. Strauss but results are similar to results of P. T. 

Johnstone. 

Let (Ly : 7 G T) be a set of frames and write B for the set-theoretical product of the 

L 7 . Clearly, B is a frame and the projections 7r7 : B —* L7 are frame homomorphisms. 

Let us define L = {x G B: 7r7(x) = 1 for all but finitely many 7 G T}. Clearly, L 

is a meet semilatice. We define Z = i L to be the frame of all lower sets of L. We 

denote M = {x G L: ( 3 7 G T)(TT 7 (X) = 0)} and Q = {W C L: (3y G r ) ( ^ ( x i ) = 

7r^(x2) for any x i , x 2 G KV and any /3 G T\{7})}.We shall say tha t an element U G Z 

is E-coherent if 

(i) M C ( / , 

(ii) VV G Q, W C 1/ implies IV C (/. 

Now, we have that L, M are E-coherent. Let us define a map j : Z —+ Z by 

the prescription C »—• A ( ^ ^ ^ : ^ *s ----coherent}. Clearly, the intersection of 

E-coherent elements is again E-coherent. Now, we have C -$ j(C) = j(j(C)) for 

all C G Z and j ( C A D) <J j(C) A j ( D ) for all C,D e Z and write F = {6 G L: 

6 A d e j(C A D) for all rf G £>}• We shall show that E is E-coherent. Let 6 G A/. 

Then 6 A a1 G M C j(C A D) and we have MCE. \f W C E} W e Q, d e D then 

iv A d e j(C A £>), i.e., \/w A d e j(C A D). Now, we have V W G F- If we define 

F = { 6 G L : c A 6 G j(C A D) for all C e E} then F is again E-coherent. Now, we 

have j(C) A j(D) ^ E A F ^ j ( C A D). Hence j is a nucleus on Z and Z, together 

with induced operations \J and A is a frame. 
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Proposition 1.7. Let L7 —> K, 7 6 T be a system of frame homomorphisms. 
Then there exists a unique frame homomorphism f:Zj—>K such that 

/«(!*))= AAKW) 
7€r 

holds for all x e L. 

P r o o f . We shall show that following definition of / is correct: 

WW) = V fw *))for a » y u G z 

x$U 

Let U, V 6 z,i(U) = j(V). We define s(v) = {x € L: f(j({ x)) ^ f(j(U))}. Then 
U C s(U), s(U) is E-coherent. Namely, M C s(U) from the fact that x G M implies 
f(j({ x)) = 0. It is easy to verify that W € Q, W ^ s(U) implies V ^ € s(U). 
Hence V ^ j(V) = j((7) ^ s(U), i.e., / (j(V)) < /(«(!/)) ^ f(j(U)). The symetric 
argument concludes the proof. • 

For each 7 G T, we now define a map i7: L7 —* Zj by the prescription x »--> 
j ( | r7(x)), where r7(x) G L, x7r7(x) = x, */?r7(x) = 1 for any /? G T \ {7} . 

Theorem 1.8. Zj is the sum of frames L7 with injections i7 . 

P r o o f . Clearly, i7 are frame homomorphisms. Let / 7 : L7 —• L, 7 G T be a 
set of frame homomorphisms. Then there exists a unique frame homomorphism / : 
Zj —> K such that / o i7 = / 7 . • 

Lemma 1.9. Let X ^ L, X e Zj hold. Then the following propositions hold: 

(i) If {xi}i£i is a chain, xt G X then \J xt G K. 
«€1 

(ii) IfN(X) = {xeX:y^x^x^yforanyyeX} then N(X) 7- 0 and 
X = \J{lz:zGN(X)} 

(iii) Ifx,ye N(X) then card {7 G T: TT7(X) 7- 1 or ;r7(y) ^ 1} ^ 2. 
(iv) Ifx e N(X), x ^ r7(0) for some 7 G T then TT7($/) ^ TT7(X) for all y G N(K). 

P r o o f , (i) Let us define an ordering on 1 such that i < j iff xt < Xj for all 
hi £ I- Clearly, I is a chain. Since A' / L, I ^ 0 then there exists an index 
i e I and an index 70 G T such that 7r7o(xt) ^ 1.Hence there exists a set Tt = 
{71, • • • »7n} Q r such that 7r7(xt) -̂  1 iff 7 G Tt. Let us define chains {-?[}*>/ f°r 

any / ^ i: TT7(Z[) = 7r7(xt) for 7 7 - 7 / and TT 7 I (4) = 7r7l(xjt). Clearly, z[ ^ xk, 

i.e., zj. G X for all k ^ / ^ i. Obviously, we have V z i € -^ since {-4}*^/ £ Q for 
/̂ fc 
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any / ^ t. Let us consider a chain {ti;/}/^,- defined by the prescription w\ = \J zl
k. 

Then 7ryi(wil) = ^r7l(ti;/a) holds for all l\} h ^ *• By induction we can see that the 
proposition holds. 

(ii) Clearly, |J(i x' x £ W ) ) C X. Let x e X. We define Tx = {71,. . . ,7»} 
to be the set of indices such that 7 E Tx iff 7r7(x) ^ 1. Now, we put x° = x, 
x* = \ /{y ^ xk~l- y € AT,^(y) = *fi(xk~l) for p ± 7*} for 1 <£ k ^ n. Clearly, 
xk e X for any 1 .$ k ^ n and xn e N(X). Namely, if there exists z e X such that 
z > xn then there exists 7, G Tr such that 7r7.(z) > 7r7.(x

n) ^ ^ ( i 1 " 1 ) because 
xn ^ xn~* ^ . . . ^ x1 ^ x°. Now, we can define an element y G x such that 

M y ) = M* ,'~1)> *7.(y) = *7.(*)- T h e n y < *'"- i e > **(*) = *n(v) ^ ** (*•')- a 

contradiction. 
(iii) Let x,y 6 N(X)> card {7: 7r7(x) ^ 1 or 7r7(y) ^ 1} = 1. Then x,y G 7, and 

7T7(x) = 7T7(y) = 1 for 7 6 r \ {70}, *7o(*) £ 1, ^7o(y) ^ 1 a n d *1Q(X)\\*1Q(V)• lt 

implies i V y E X , x V y > x , a contradiction. 

(iv) Let define z G L by the prescription 71*0(2:) = *p(y) if /? ^ 7 and 7r (̂z) = TT7(X) 

otherwise. Then z G K, i.e., z\/ y e X. Now, we have z\/ y ^ y> i.e., 7r7(x) t$ ?r7(y). 
• 

Now, we give an explicit description of the sets S(Zj), P(Zj) and D(Zj). 

n 
Proposition 1.10. (i) Let X G S(Zj). Then x G N(K) implies x = / \ r7t(x7 i). 

•=1 
where x7l G S(Lyi). 

(ii) K G P ( ^ ) <-> K = U (i ry(xy):
 xi € P(L7)). 

7€r 
(iii) K G D(Z>) ^ K = (J (I r7(*7: x7 G D(Ly)). 

7€r 

P r o o f , (i) Let x G N(K), x7 = TT7(X) / 1 for some 7 G T. If x7 g 5(L7) then 
there exist elements u7, v7 G L7 such that u7 A u7 = 0, w7, v7 ^ x7. Let us define 
elements u, v G 7, by the prescription np(u) = itp(v) = 7T (̂x), for /? -jr. 7, 7r7(tx) = u7, 
7r7(v) = v7. Clearly, u,t> G K. Now, we have j([ u) A j(i v) = M, j(i u) ^ K, 
i ( l v) ^ -̂ » a contradiction. 

(ii) Let X G P(Zj)> x G N(X). As in (i) we can verify that x7 = 7r7(x) ^ 1 
implies x7 G P(Ly). Let 71,72 G T such that 7r7l(x) G -°(7,7l), ^ ( s ) € P(Ll2), 
7i 7̂  72- Then we can define elements y, z G 7, by the prescription 7r (̂y) = np(x) for 
/? # 72, */-?(*) = M * ) for 0 ^ 71 and 7r7a(y) = TT7I(Z) = 1. Clearly, y, z G 7,. Now, 
we have j(i y) A j(i z) ^ X, j(J, y) jf K, j(i z) ^ K, a contradiction. From 1.9, 
(iv) the proposition follows. 

Conversely, let X = (J (i r7(x7): x7 G P(L7)) and 7, J G Z,, 7 A J ^ K. Let 
7€r 

y ^ K, y G 7. Jhen for any 7 G T we have y7 = 7r7(y) ^ x7. If z G J then 
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j(l y) A j ( | z) -̂  X , i.e., there exists 70 G T such that yl0 Ax 7 o ^ x 7 o . Now, we have 

7̂0 ^ x7o> i e > z ^ r7o(*7o)- Clearly, J C X. 

(iii) Let x G N(X), X G D(Zj). If x 7 = TT7(X) / 1, x 7 £ D ( L 7 ) for some 7 G T 

then there exists an element uy G L7 such that u7 / 1, u7 > x 7 . Let us define 

an element u G L such that 7r^(t/) = 7r^(x) for /? -̂  7 and 7T7(ii) = ti7 . Clearly, 

X ^ X V j(i tx), X -7- X V j({ tz), X V j({ u) 9- L, a contradiction. 

Conversely, let X = | j ( i r 7 ( x 7 ) : x 7 G D(L1)) and let y ^ X . Then for any 
7 € r 

7 G T we have y7 = 7r7(y) ^ x 7 , i.e. x 7 V y7 = 1. We define Ty C T such that 

7r7(y) 7- 1 O 7 G r y . Clearly, Ty is finite, Ty = { 7 1 , . . . , 7 n } - Then we have 

i ( i y) V \ / i d r7.(*t)) = -• Now, 1 ^ X implies I V X = L. • 
t= i 

The preceding proposition has the following consequences: 

Coro l lary 1 .11. (i) A sum of T\-frames is a T\-frame. 

(ii) A sum of S-frames is an S-frame. 

P r o o f , (i) It follows immediately from 1.10, (ii) and (ii). 

(ii) It follows from 1.10, (i) and (iii) and 1.9, (iv). • 

T h e o r e m 1.12. A sum of T2-frames is a Ti-frame. 

P r o o f . Let X G Zh X 7- L. Then X = |J{1 x: x £ N(X))}. For any x G 

N(X) let us define R([ x) — W A'7, where K1 — L1 if 7r7(x) = 1 and K1 = D7r7(x) 
76V 

otherwise. Then \j R([ x) = j x, R(\ x) C • J x. Let us show that R([ x) C Dx. Let 

y G R([ x) , y ^ Dx . Then there exists 70 G T such that 7T7o(y) ^ 1 and we can define 

an element / G L such that nl0(l) = 7r7o(y)*, TT7(/) = 1 for all 7 G T \ {70}- Since 

y £ DA' then / G X", i.e., there exists an element z G N(X) such that z ^ /. Now, we 

have 7r7(z) = 1 for all 7 G T \ {70}, i.e., 7r7o(x)||7r7o(;r), because 7r7o(/) ^ nl0(x) and 

x ^ : . Let us define an element z G L such that 7r7o(5) = 7r7o(2), 7T7(Z) = TT7(X) for 

all 7 G r \ { 7 o } - Clearly, z G A', i.e., z Vx G X. But z Vx > x, a contradiction. • 

An alternative proof of this Theorem may be given in the same way as in [11], 

Th. 2.9. 

We do not know whether To-frames are closed under sums. 

Coro l lary 1.13. T2-frames form a monocoreflective subcategory in frm. 

Proof follows from 1.12, 1.6 and [8], 37.4. 

Let us recall that for a frame L we put N = {(x , y) G L x L : J- A ?/ = ()}. 
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Proposit ion 1.14. Let L be a Hausdorff frame, P G P(L + L), P D N. Then 

P =[ (m, 1)V | ( l ,m) for some me D(L). 

P r o o f . Clearly, P = | (m, 1)V | ( l ,n) for some m,n G D(L). Let m ^ n. 
Then there exists an element / G L such that /* j£ n, / ^ m. Then (/,/*) G N, i.e., 
j ( l (/,/*)) <J P. Now, we have P >\ (m, 1)V i (l,n)V 1 (/,/*) >\ (1,/*)V i ( l ,n) = 
| (1, 1), a contradiction. • 

An alternative proof of 1.14 follows [11], Proposition 1.8 and Definition 2.2. 

2. ALMOST COMPACT FRAMES 

A Hausdorff topological space which is not regular has no T2-compactification 
because a compact T2-space is normal. It is natural to ask if some T2-extension of 
the Hausdorff space exists with some properties of compactification. Of course, a 
compact Hausdorff space is closed in any T2-extension. Therefore, it is necessary to 
restrict on non compact Hausdorff spaces and it is known (see cf. [3], 6.1.h, pp. 238-
241) that suitable spaces for this situation are exactly almost compact spaces. These 
spaces are //-closed and T2-extensions with some properties of compactifications are 
Katetov H-closed extensions. We shall consider these problems for frames. 

Definition. We say that a frame L is almost compact if the following condition 
is fulfilled: 

If V(x»: i G /) = 1 then a finite subset K C / exists such that (V(*t * * G K))** = 
1 where x, G L for i G /. 

R e m a r k . Recall that L is a compact frame if the facts X C L, \J X = 1 
imply the existence of a finite set K C L with properties K C X, y K = 1. Every 
compact conjunctive frame is spatial ([9], 2.11). Stone-Cech compactification for 
frames is investigated by Banaschewski and Mulvey in [2]. 

Proposition 2.1. 1. A compact frame is almost compact. 
2. A frame L is not almost compact iff an ideal Q in L exists such that Q C SL 

and\/Q= 1. 

P r o o f . 1. follows from Definition immediately. 

2. If L is not almost compact then a set {x,: i G /} exists such that V(x* : 

i G /) = 1 and thus [\/(x,: i G A')]** ?- 1 for any finite subset K C /. If we put 
Q = < {xi: i E 1} > then Q is an ideal in L such that Q C SL and \ / Q = 1. 

If Q is an ideal in L, Q C 5L, \/Q = 1 and L is almost compact then q G Q exists 
such that q*m = 1, a contradiction. • 
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Proposition 2.2. For a Hausdorff frame L the following are equivalent: 

1. L is almost compact and regular. 
2. L is compact and conjunctive. 

P r o o f . 1=>2: Clearly, any regular frame is conjunctive. If V(*»: * € / ) = 1 
then V(%\ : yji < *iJi € / , ,* G /) = 1 where x, = V(%.: %. < *t,ii € J,) for 
any i G / , Jif)Jj £ Q => i = j . These facts imply that a finite set K C (j(^«: 

i G / ) exists such that 1 = [\/(yk: t G K)]**. Clearly, [V(y*: * € K)]** < V(*. : 

ib € J, for * G K), i.e., V(*. : * G J, for ib G K) = 1. 
2 => 1: If L is compact and conjunctive then L is spatial, i.e., L is a Hausdorff 

topology. Hence L is regular and almost compact (see 2.1). D 

Proposition 2.3. Let L be a frame, Lr be a Boolean algebra of regular elements 

in L (Lr = {a**: a G L}). Then K(L) = {(u,v): u G L} v G Lr} u ^ t;} is a frame 
with the following properties: 

1. L is dually atomic iff K(L) is dually atomic. 

2. L is compact iff K(L) is compact. 

3. K(L) is a T2-frame iff L is a T2-frame and L fulfils the condition: 

d G D(L) => d* = 0. 
4. K(L) is not conjunctive. 

5. L is almost compact iff K(L) is almost compact. 

P r o o f . 1. d e D(L) *> (d, 1) G D(K(L)). 

2. Let V((x«>2/«'): * € / ) = (1, 1). Then V(x» : * G /) = 1, i.e., there exists a finite 
subset K C I such that V((x->S/») = (1> !)• Conversely, if V(x* : * G /) = 1, Xj G / 
then V((x«> 1): *' G /) = (1, 1), i.e., there exists a finite subset K C I such that 
V((*„ 1): i G A') = (1,1), i.e., V(*.: . G A) = 1. 

3. =>: Clearly, L is a homomorphic image of K(L). Let d G D(L)} d* -̂  0, i.e., 
d = d**. Then (1,1) ^ (d, 1) £ (d,d). If there exist x,ye K(L) such that x A y = 0, 
x = (x! ,x2) j£ (d, 1), 2/ = (yi,y2) £ (d,rf) then y ^ (d, 1), i.e., y2 ^ d, yx <£ d, 
«2 ^ d. Now, x2 Ay2 = 0, i.e., X2 ^ d, a contradiction. 

<=: Let L be a Hausdorff frame. If (tii.vi), (u2l v2) G K(L), (1,1) ?- (t/i,vi) ^. 
(^2, ^2) then we have the following cases: 

a) If 1 7- ui ^ u2 then/ G L exists such that / £ u2, /* ^ Hi. Hence (/,/**) G K(F), 
(/*,/*) G K(L) and (/,/") £ (ti2>t>2), (/*,/') £ (m,t>i). 

b) If 1 -̂  xi\ ^ r̂ 2, 1 7̂  v\ j£ V2 then / G L exists such that / j£ v2, I* £v\. Hence 
(0 , /") G K(L), (/*,/*) G A'(L) and (0,/**) £ (u2,v2), (/*,/*) £ (ux,vx). 

c) If 1 ^ u. ^ u2, 1 = vi £ v2 then u\ ^ u2 ^ v2 ^ I holds. If v2 £ «i 
then 1 ^ v2 £ ui and (O.vj) € A'(L), (t>2,t>2) G A'(L). Now, we have (0, i^) £ 
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(ti2, V2),(v2,v2) £ (HI , vi). If vi = tii then ui = ti2 = v2 ^ 1. Clearly, v2 / 0, i.e., 
v2 G D(L) = S(L) and thus we can find x G L such that x ^ v2,a>* j£ v2. Therefore 
we have (0,**) G tf(L), ( * " , * " ) G # ( L ) and (0,**) £ (u2,t;2), (**,**) £ (uuvx). 
Finally, K(L) is a Hausdorff frame. 

The same way we can verify the property 3. 
4. We have (0,0), (0,1) G K(L), (0,1) £ (0,0) and (0,1) V (ti, v) = (1,1) for 

(uyv) e K(L) implies u = 1 = v, i.e., (ti, v) = (1,1). Finally, K(L) is not conjunc
tive. 

5. Let L be almost compact, V((x«>2/«): • € J) = ( M ) , (*iiW € J-^(J') - ° r 

i G J). Then V(a:« : * € J) = 1, i.e., there exists a finite set K C / such that 

[V(*,: • € # ) ] " = 1. Now, we have [\f(xiyVi): i G K]** > [\/(x{: i G K), (V(*. : 

• € # ) ) • • ] • • = (1,1). 

Conversely, let /C(L) be almost compact, V(*i: t G / ) = 1, x» G .£ for i G J. Then 
V((x«) XV): * € J) = (1> *)» * e>there exists a finite set K C / such that [V(x«> XV) '• 

i G #)]*• = (1,1), i.e., ( V s . -T = A *? = 0. Now, we have [V(*,-: t € X)]** = 1. 

D 

R e m a r k . Proposition 2.3 is motivated by the paper of Murchiston and Stanley 

([14], example 2). 

Proposition 2.4. There exists a compact Hausdorff frame which is not regular. 

P r o o f . Let L be the closed interval [0,1] with usual topology. Clearly, O(I) is 
a compact Hausdorff frame and d G D(0(I)) implies d* = 0. Now, we have from 2.3 
that K(0(I)) is a compact Hausdorff frame, which is not regular. • 

Corollary 2.5. There exists a compact Hausdorff frame which is not spatial. 

Definition. Let / : K —• L be a surjective homomorphism of frames, /°(0) = 
\/(x G K: f(x) = 0) and let f(a) = /(6) =» a V /°(0) = 6 V /°(0) hold for any 
a, 6 G K. Then / is called a closed homomorphism. 

R e m a r k s . 1. If / : K —• L is a closed homomorphism of frames then an 
isomorphism t: T /°(0) -+ L exists such that f(k) = i(k V /°(0)) for any k G K. 

2. The composition of closed homomorphisms is a closed homomorphism. 

Definition. A homomorphism f': K —> L of frames is called dense (codense, 
resp.) if f(k) = 0 => k = 0 (/(*) = 1 =-> k = 1, resp.) holds for any k G K. 

Proposition 2.6. Let f: K —• L be a surjective homomorphism ofT2-frames and 

R = | /°(0) . IfL is almost compact then R is almost compact and f(D(R)) = D(L). 
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P r o o f . R is a TJ-frame because R is a homomorphic image of K. 

Now, let / : R —• L be a map such tha t / = /|/.». Evidently, / is a dense homo-

morphism and we shall prove that / is also codenseAf f(r) = 1, r -^ 1 then r = \J A, 

where A C Or is an ideal, A C SR. Because L is almost compact there exists a G A 

such that [7(a)]** = 1, a ^ r , a* ^ r. Namely, a* ^ 0 holds. We can prove tha t 

7 (z )* for any x e R and therefore 7(a*) = [7(a)]** A 7(a*) = [7(a)]** A 7(a)* = 0, 

which is in a contradiction with density of / . 

Immediately, we get that R is almost compact because V( x * : * ' € / ) = 1 implies 

V ( 7 ( * i ) : i G I) = 1, i.e., a finite set H C I exists such that [\/(f(xt): i G H)]** = 1. 

Hence 7 ( (V(*» : * € II))**) = 1 and from codensity of 7 we get [\/(A *:: t G H)]** = 1. 

If m G £>(#) and / ( m ) £ -9(L) then 7 ( m ) ^ - holds and an element y G L, y G 1 

exists such tha t 7 ( m ) < 2/- Since y = f(x) for suitable x G IZ we have x £ m and 

also y = 7(-*0 V 7 ( m ) = 7 ( x V m) = 7(1) = 1) a contradiction . • 

P r o p o s i t i o n 2 .7 . Let T be a Ti-space, / : O(T) —• L be a codense surjective 

homomorphism of frames. Then L is spatial. 

P r o o f . Clearly, f(D(0(T))) = D(L) and thus L is dually atomic. Let us 

show tha t is conjunctive. Now, let a j£ 6, a, 6 G L. Then there exist elements 

c,d G O ( T ) such tha t c ^ rf, / ( c ) = a, /(a1) = b. Since O(T) is spatial and 

P(0(T)) = D(0(T)) we have an element m G (D(0(T)) such that m V c = 1, 

m^d. Evidently, n = f(m) G D(L), n V a = 1, 1 ?- n ^ 6. 

Finally, L is conjunctive and dually atomic, i.e., L is spatial. • 

P r o p o s i t i o n 2 .8 . An almost compact frame which is a homomorphic image of a 

Hausdorff topology is a topology. 

P r o o f . Let T be a T^-space, L a frame and / : 0(T) —• L be a surjective 

homomorphism. Clearly, L is a T^-frame and R =] / ° ( 0 ) is a Hausdorff topology. 

If we put / = f\R then we have from 2.6 that J is codense. Now, by 2.7 L is a 

topology. • 

The preceding results (2.5 and 2.8) establish the following. 

Coro l lary 2 .9 . A compact Hausdorff frame exists which is not a homomorphic 

image of a Hausdorff topology. 

Coro l lary 2 .10 . Frames which are homomorphic images of Hausdorff topologies 

are either Hausdorff topologies or T'2-frames which are not almost compact. 
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Proposition 2.11. Let L be a frame. Then a subframe T(L) = {(«, v) G L x L: 
u ^. v} has following properties: 

1. L is compact iffT(L) is compact 
2. L is almost compact iffT(L) is almost compact. 
3. T(L) is not conjunctive. 
4. T(L) is a T2-frame iff L is a T2-frame and D(L) = 0. 

P r o o f . The proof is similar to the proof of 2.3. D 

Proposition 2.12. If L is an almost compact frame then S(L) ^ 0. 

P r o o f . Let F be a maximal filter in L. We put a = \/{x*: x G F}. Clearly, 
a -^1 . If z, y G L, x A t/ = 0, x £ a then x* £ F, i.e., x** G F and it implies x* ^ a 
and y ^ a. We have a G •S'(L). • 

Corollary 2.13. If L is an almost compact Hausdorff frame then D(L) ^ 0. 

3. / / -CLOSED EXTENSIONS 

Finally, we investigate some properties of the KatStov //-closed extension for 
frames. The construction of the H-closed extension for a given Hausdorff topological 
space is described for example in [4]. 

Definition. Let L be a frame. We say that a set F C L, F / 0 is an ct-filier if 

(i) 0 £ F, 
(ii) a,6G F => A6 G F, 

(iii) a G F , 6 ^ a = t > 6 G F , 

(iv) V(«* • € F) = 1 hold. 

A maximal a-filter is called a 0-filter. Evidently, / \ F = 0 for any a-filter F. 

Proposition 3.1. A frame L is not almost compact iff there exists a (3-filter in L. 

P r o o f . If L is not almost compact then 2.1.2 implies that an ideal 0 in L exists 
such that Q C SL and \JQ = 1. If F is a filter in L generated by {a*: a G Q} then 
1 = \/(a**: a G Q) and F is an a-filter in L. 

If L is almost compact and F is a /5-filter in L then V(a* • « G F) = 1 and there 
exists a finite set K C F such that 1 = \\J{a* : a G A')]** = [/\(a: a G A)]*- It 
means that 0 = /\ A' G F, a contradiction. • 
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Lemma 3.2. If L is a frame and Fi, F2 are ^-filters in L, F2 ^ Fi then for all 
x G F2\ F\ there exists y G Fi such that x A y = 0. 

P r o o f . L e t x € F 2 \ F i . We put U = {6 G L: b A x ^ a A x for a suitable 

element a G Fi}. The set U fulfils (ii), (iii) and (iv) from the Definition of a-filters 

and x G U holds. These facts imply that U D Fi, U ^ Fi and thus 0 G U because 

U is not a /?-filter. It means that ar A y = 0 for a suitable element y G Fi • D 

Definition. Let L be a frame and {FJ: j G J} be the set of all /^-filters in L. 
The frame Lp C L x 2-1, generated by {(/ ,•) : / G L} U {(a,{j}): a G Fj) with 
operations (m, Ii) A (a2, I2) = (ai A a 2 , / i n I 2 ) , (ai, Ii) V (a2, I2) = (ai V a 2 , I i U I 2 ) 
is an H-closed extension of L. 

Let us remark that x G Lp iff x = (a, /) where a G C)(Fj : j G /) and / C J. 

Let a 6 i . Then we shall denote Ia = {j G «/: a G Fj }. 

Lemma 3.3. /f L is a frame tnen (/, / )* = (/*, //•) holds in Lp. 

P r o o f . We have (/,/) A (/*,//•) = ( M ) because 0 = / A/* G F, for i G / n / , . . 
If (/, /)* = (*, K) then k ^ /* and now we have K C Ik C //•. D 

R e m a r k . Let L be a frame, gi: Lp —• L be a map such that 0i,((a, /)) = a for 
any (a, I) E Lp. Then <7£, is a dense surjective homomorphism of frames. 

Proposition 3.4. An H-closed extension of a T2-frame is a T2-frame. 

P r o o f . Let L be a Hausdorff frame, (1,J) ^ ( a i , / i ) i ( a 2 , / 2 ) . Then we have 
the following cases: 

(i) If 1 ^ ai i b\ then there exists an element / G L such that /* i a\, I i a2. 

Clearly, (/*,•) A (/,•) = ((),•), (/*,•) i (axJx), (/,•) i ( a 2 , / 2 ) . 

(ii) If 1 = ai i a2 then there exists jo G J \ Ji- Now, there exists an element s G 

Fjo such that s* i a2. Clearly; (s, {j0}) A (s\ •) = (0,8), (s,{Jo}) £ (ai , / | ) , 
(**,•) £ (a 2 , / 2 ) . 

(iii) Let ai ^ a2, J -̂  Ji i l2. Then there exist j \ G A \ /2, 72 £ / . , i.e., 
there exist elements x G F>,, j / G Fj2 such that x A y = 0. Now, we have 

(*, Ui}) A (y, {j2}) = (0,0), (*, {j,}) £ (a2, /2), (y, {j2}) £ («,, / ,) . 
(iv) Let ai ^ a2, J = I\ i I2. Then a\ £ \ and there exists an index j 0 G 

J \ l2. Now, there exists an element s G Fj0 such that sm i a\. Clearly, 
( ^{ io} )A(5*J ) = ( 0 , » ) , ( 5 , { i o } ) ^ ( a 2 , / 2 ) , ( . s * , « ) ^ ( a 1 , / i ) . 

If L is a T2-frame then by the same arguments as in the first part we can verify 
that Lp is a T^-frame. D 
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Theorem 3.5. If L is a frame then Lp is an almost compact frame. 

P r o o f . If L is almost compact then J = 0 and thus L = Lp is almost compact. 
Let L be not almost compact. Then J / 0 and let us suppose that Lp is not almost 
compact. Then an ideal Q in Lp exists such that Q C Sift, \/Q = (1,J). Namely, 
V(a: ( a , / ) € ( 3 = 1 , i.e., Q = {a £ L: (a, /) G Q} is an ideal in L such that Q C SL, 

\JQ = 1. If we consider an a-filter F generated by {a*: a E Q) then a /^-filter 
Fj0 D F exists. There exists an element a G Fj0 such that (a, /) e Q, jo G / . But 
a* A a = 0, which is in a contradiction with the fact that Fj0 is a /^-filter. D 

R e m a r k . It is well known (see [3] or [4] that if L is a spatial T2-frame then Lp 

is a spatial almost compact T2-frame. 

Definition. A frame L is called T2-closed, if L is a T^-frame, and any surjective 
homomorphism / : A' —• L is closed, where K is a T2-frame. 

Proposition 3.6. An T^-closed frame L is almost compact. 

P r o o f . If L is not almost compact then gi: Lp —+ L is a dense surjective 

homomorphism, i.e., gi is an isomorphism and Lp is almost compact, a contradiction. 

• 

Lemma 3.7. If L is a frame then it holds: 

1. If I e L, /* = 0 then I e F for any /^-filter F in L. 

2. L is Boolean algebra iff I* ^ 0 holds for any 1 ^ / G L. 

P r o o f . 1. I f / ^ F then f (/ A F) ^ F holds and it means that there exists 

/o € F such that / A /o = 0, i.e., 0 ^ /n ^ /*, a contradiction. 

2. We have (/ V /*)* = 0 and thus / V /* = 1. Hence /* is a complement of / and L 
is a Boolean algebra. Q 

Proposition 3.8. Let L be a frame which is not almost compact. Then it holds: 

1. If d is a dual atom in L then (d} J) is a dual atom in Lp. 

2. If (a, I) is a dual atom in Lp then (a, /) = (1, J \ {j}) for a suitable element 
j e J or (a, / ) = (a\ J) where d G D(L). 

P r o o f . 1. Let us suppose that a /?-filter Fj exists such that d £ Fj. Namely, 
d ^ x for any x e Fj, i.e., dVx = 1. Since x* = x* A(rfVi) ^ d holds for any x £ Fj 

we have 1 = \/(x*: x G Fj) ^ d, a contradiction. 

2. If (a, I) e D(Lp) and a = 1 then j G J\/ exists such that (a , / ) = ( l , J \ { i ) ) . 
In the case a ^ 1 it holds a = d G F>(L) and (a, /) = (d, J). 

Now we give an explicit description of the sets S(Lp) and P(Lp). • 
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Proposition 3.9. Let L be a frame which is not almost compact. Then the 

following propositions hold: 

1. (a,I)eS(Lp) iffa= 1, I = J\{j} for some j e J oraeS(L), I = J. 

2. (a, I) 6 P(Lp) iff a = 1, I = J \ {j} for some j G J or a G P(L), I = J. 

P r o o f . 1. =>: Let (a, I) G S(Lp). Then a G S(L) U {1}. Namely, if a ^ 1, 
a £ S(L) then there exist elements x,y G L such that x A j/ = 0, x ^ a, t/ j£ a. 
Clearly, (x, 0) A (y, 0) = (0, 0), (x, 0) £ (a, I), y, 0) ^ (a, I), a contradiction. 

(i) Let a = \. If I -j£ J \ {j} for any j G J then there exist j i , j'2 £ <I, ji ^ ,72 
such that j \ £ U, j 2 g I. Clearly, (x, {j\} A (y, {j2}) = (0,0), (x}{j\}) £ (a, I), 
(j/> {.I2}) .^ (a, I) for suitable elements x G F;i, y G Fj2 such that x A y = 0. 

(ii) Let a ^ 1, a G 5(L) . If I G «I then there exists j G <I \ I. Now, there exists an 
element x G Fj such that x* £ a. Clearly, (x, {j}) A(x*,0) = (0,0), (x, {j}) £ (a, I), 
(x*, 0) ^ (a, I), a contradiction. 

<=: Clearly, (1, J \ {j}) G F>(L/?) C S(Lp). Consider (a, J) for some a G 5(L) . If 
(xi, Ii) A (x2, I2) = (0,0) then x\ A x2 = 0, i.e., x\ ^ a or x2 ^ a. Now, we have 
h QlnQJ or I2 C 1X2 C J, i.e., (a, j) G 5(1^). 

2. The proof for P(Lp) is similar. D 

Corollary 3.10. (i) An H-closed extension of a T\-frame is a T\-frame. 

(ii) An II-closed extension of an S-frame is an S-frame. 

(iii) L is dually atomic implies Lp is dually atomic. 

Proof follows from 3.8 and 3.9. 

Proposition 3.11. Let L be a frame. Then the following conditions are equiva

lent: 

1. L is spatial. 

2. Lp is spatial. 

P r o o f . If L is almost compact we are ready. Let L be not almost compact. 
1 => 2: Let (1, J) -̂ (a, I) G Lp. Then we have the following cases: 
(i) If a = 1 then we have (a, /) = A { 0 , J \ {j}) - j $ / } • 
(ii) If a ± 1 then (a, I) = A{(p, IP): P 5* «, P € P(L)} A A { ( U \ {;}): j <£ U}. 

2 => 1: Let 1 7- a G L. Then we have (a,0) = A{(P> -V) £ -°(-w0: (P^/>) ^ 
( a , 0 ) A A { ( l , < / \ { i } ) : i € J } . • 

Proposition 3.12. Let L be a complete Boolean algebra. Then Lp is dually 

atomic. 

P r o o f . Let {(x,, J): Xi -̂  1 for i G /} be a chain in Lp, V (x,;, J) = (1, J). 

Since L# is almost compact there exists a finite set K C / such that (VJ) = 
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JM{(xi,J): i G K}]** = (xjb,J)M = (x\\J) = (xkJ) for a suitable Jfc G K, a 
contradiction. The rest follows from 3.8. D 

Corollary 3.13. Let L be a complete Boolean algebra which is not dually atomic. 
Then K(L)p is an almost compact Ti-frame which is not dually atomic. 

P r o o f . UaeL, \ aC\D(L) = 0 then (a, 1) G K(L), T (a, 1)H D(K(L)) = (see 
2.3) and ((a, 1), J) G K(L)p. The rest follows from 3.8. • 

Corollary 3.14. Let L be a complete Boolean algebra which is not dually atomic. 

Then Lp is not conjunctive. 

Proof follows immediately from 3.11 and from the fact that L is not a topology. 

Corollary 3.15. Homomorphic images of Hausdorff topologies form a subcate

gory in Frm which is not closed under H-extensions. 

P r o o f . Let L be a complete Boolean algebra which is not dually atomic. Then 

from 2.8 we have that Lp is not a homomorphic image of a Hausdorff topology. • 

We do not know whether our class of F2-frames is the monocoreflective hull of 
Hausdorff spatial frames. This problem for regular frames was solved negatively by 
I. KHz. 
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