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AS SPACES OF MEASURES I 

WOLFGANG FILTER, Zurich 

(Received June 20, 1988) 

INTRODUCTION 

Representation theory plays an important role in the theory of Riesz spaces, and 
a number of papers on this subject have appeared, e. g. [N], [Y], [MO], [O], [Vu], [P], 
[JK1, 2], [Vel-3], [Frl], [B], [BN], [VL], [HI, 2], [MW], [Ko], [We], [Wn], [L], [BR], [Fl] 
in the case of abstract Riesz spaces, and [KK1, 2], [Kal, 2], [BK], [D], [M], [Scl], [Wo], 
[G], [FP1, 2] in the case of Banach lattices. But in almost all of them, Riesz spaces 
are represented as spaces of continuous functions. It seems that representations as 
spaces of measures have been treated only in the case of abstract (L)-spaces (see 
Kakutani [Kal, 2]) or in the case the Riesz space in question is a space of (abstract) 
measures itself (see Constantinescu [C]). Of course the possibility of representing 
Riesz spaces with separating order continuous dual as spaces of measures follows— 
by applying the Radon-Nikodym Theorem—already from Fremlin's Theorem [Frl], 
which states that such spaces are isomorphic to spaces of locally integrable functions. 

In the present paper we give concrete representations for these spaces which reflect 
many properties of the duality. Applying our results, we can introduce measure 
theoretic notions such as atomical and atomfree elements, Hellinger integrability, or 
measurability in Riesz spaces (see [Fi2, 5, 6]). 

We will show (Corollary 2.17) that a Riesz space E can be represented as an order 
dense Riesz subspace of a band jtf of measures iff it is separated by the set E* of 
its order continuous linear forms; E is an ideal of ^t iff E is Dedekind complete; 
E = ^tf iff E is hypercomplete (Hypercomplete Riesz spaces are investigated in 
[Fi3, 4]). This representation can even be given in the following concrete form: 
Applying the Ogasawara-Maeda Theorem for the extended order continuous dual 
EQ of E, we show that if E* separates E, if e is a weak unit of EQ and if R C E* is a 
set of components of e with e = sup R (such pairs (e, R) always exist), then there is 
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a locally compact hyperstonian space Y (unique up to a canonical homeomorphism) 
with the following properties: There exist an injective Riesz homomorphism 

v: E —+ ~d((Y) := {/i: /i is a normal Radon measure on Y} 

and a Riesz isomorphism 

ti: Ee -+ Coo(Y) := { / € RK : / is continuous, {yeY: \f(y)\ ^ 00} is dense in Y} 

such that vE is order dense in ^((Y)y tie = ly , supp ly is compact for all g e R, 
Y = (J supptiflf, and £(x) = fu£d(vx) for all (x,£) e E x EQ with £(x) e R 

(Theorem 2.16, Corollary 2.20). In the special case where E is a space of (abstract) 
measures, this result was proved by Constantinescu [C; 2.3.6, 2.3.8]. As an imme
diate consequence (Corollary 2.18) of our theorem we obtain the well-known result 
that each AL-space is Riesz isomorphic and isometric to M{y) for some compact 
hyperstonian space Yy from which one can easily deduce Kakutani's Theorem on 
AL-spaces. 

Some more properties of these representations are discussed in the last part of 
section 2. In particular we prove the existence of a greatest representation (Proposi
tion 2.22) and investigate the relations of the representations of a Riesz space to the 
representations of its subspaces. 

In the appendix we show that Fremlin's Theorem is an easy consequence of our 
theorem. 

I wish to thank Prof. C. Constantinescu for some very useful discussions on the 
subject and Prof. A. C. Zaanen for a helpful suggestion concerning the appendix. 

1. NOTATIONS AND TERMINOLOGY 

Let E be a Riesz space. We set 

£+ :={xG E: O 0}. 

If x e E+, then y e E is called a component of x iff inf(y, x — y) = 0. 
For AC E, 

AL :={yeE: inf(|*|, \y\) = 0 for all x e A}. 

A Riesz subspace F of E is called order dense in E iff for every x G E+, x = sup{t/ € 
F : 0 ^ j / ^ x } . If E is Archimedean, an equivalent formulation is: For each x € F+, 
i ^ O , there is an y £ F with 0 < y ^ x [AB; 1.14]. 
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E is called laterally complete iff each disjoint family in E+ has a supremum. If E 
is laterally complete and Archimedean, then E possesses weak units [AB;23.2]. E is 
called universally complete iff E is Dedekind complete and laterally complete. If F 
is a universally complete Riesz space such that E is an order dense Riesz subspace 
of F, then F is called a universal completion of E. 

We put 

F+ := {£ G RE: f is an order bounded linear form on K}, 

E* := {£ £ E+ : £ is order continuous}. 

We call E a 7r-space iff E* separates E. Each 7r-space is Archimedean [Z;88.2]. If F 

is an ideal or an order dense Riesz subspace of F, then we have £\F G F* for each 
{ G ^ , which implies that F is a 7r-space if E is one. 

Let E be Archimedean. We denote by E6 the extended order continuous dual of E 
[LM]; hence if we put $ := {F: F is an order dense ideal of £ } , then E6 = (J F* 

Fe<t> 
is the inductive limit of the spaces F* with respect to the injective maps F* —• G*, 

t • - £|G (F, G 6 <*, G C F), where we identify £ G F* and 7/ 6 G* if £|FnG = ÎPnG 
(F, G G $) . For each £ € E6 there exists a greatest order dense ideal E[£] of E on 
which £ is defined as an order continuous linear form [LM;1.3]. E6 is a universally 
complete Riesz space [LM; 1.5]. If E is a 7r-space, then F* is an order dense ideal of 
E6 whenever F G $ [LM;3.1], and E6 is the universal completion of E*. 

We say that R C (-5*)+ satisfies the he-condition iff for each upward-directed 
family (x t ) t € / from E+ with supg(xt) < 00 for every g € R, there exists sup{x4: 

-6 / 
t G / } in E. If e is a weak unit of EQ and # C (F*)+ is a set of components 
of e satisfying the he-condition, then we call (e,R) an he-pair of E. E is called 
hypercomplete iff there exists an he-pair of E. 

For a set X and a subset A of X, let 1* or simply 1,4 denote the characteristic 
function of A (on X). Given / , ( /GR , we put {/ = g} := {x € X: / (x) = p(x)}, 
and we define analogously the sets {/ < #}, {/ = a} , . . . (a G R). 

If fH is a 8-ring of subsets of X, then we set 

= {ft G R1*: /x is <7-additive}, 

= {A* G ^ ( 9 1 ) : ^ is bounded}, 

= {/i6 ~^(SH): X\A is /i-null for some A £ SH}. 

If ^ is a band of ^T(SH), then we put Jth := ^ O ^ i ( l H ) and ./fc : = . / ^ n ^ ( f H ) . 
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Let y be a Hausdorff space. We set 

CiY) 

Cb(Y) 

Cc(Y) 

Coo(Y) 

®с(У) 

= {/ e R y : / is continuous}, 

= {feC(Y): / i s bounded}, 

= {/ € C(Y): supp / is compact}, 
Y 

= { / e R : / is continuous, {|/| = 00} is nowhere dense}, 

= {B: B is a relatively compact Borel set of Y). 

H G Jt(*Bc(Y)) is called normal iff/i is interior regular with respect to approximation 

by open sets. 

^K(Y) 

Љ(Y) 

Q(Y) 

= { / ÍG ^ ( 9 3 c ( y ) ) : /i is a normal Radon measure}, 

= (^(Y ) )» , Jtc(Y) := (^(Y))e> 

= { / € C(Y): / € J?l(ji) for every /i € ^ ( V ) } . 

If Y is locally compact, then the map 

Jt(Y)-^Cc(Y)\ / i ~ ^ 

is a Riesz isomorphism, where ^ denotes the map CC(Y) —• R, / »—• f f dp. 

Now let y be a locally compact Stonian (= extremally disconnected) space. Then 

Coo(y) is a universally complete Riesz space [LZ; 47.4], and for /i, 1/ £ Jf(Y) we have 

that supp /* and supp 1/ are open-closed and 

inf(|/i|, |i/|) = 0 <=> supp /x O supp t/ = 0, 

/1 «c j/ <=> supp // C supp 1/. 

A locally compact Stonian space Y is called hyperstonian iff (J supp /1 is dense 
/46^r(V) 

in y , or equivalently, iff Cc(Yy separates CC(Y). 

If y is a completely regular Hausdorff space, then 0Y stands for the Stone-Cech 
compactification of Y. 
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2. THE RESULTS 

E always denotes an Archimedean Riesz space and e a weak unit of Ee. (Since 
EQ is laterally complete and Archimedean, Ee has weak units. £ G (Ee)+ is a weak 
unit of Ee iff there is an order dense ideal F of E such that £ is defined on F and is 
a weak unit of FT, or equivalently, is a strictly positive element of F*.) 

Re stands for the set of all components of e in E*. 

We begin with the basic definition which will turn out to be appropriate for our 
purposes. 

Definition 2.1. An e-measure representation (shortly: e-mr) of E is a triple 

(K, ti, v) satisfying 

(a) Y is a locally compact hyperstonian space; 
(p) ti: Ee —* Coo(Y) is a Riesz isomorphism with tie = ly; 
(y) v: E —* ~tf(Y) is an injective Riesz homomorphism such that vE is order 

dense in ^{Y)\ 
(8) for all (x,() G E x Ee we have 

x e E[(\ <£-=> ti£ G Sfl(vx) =->*?(*) = f u£d(vx). 

Some words should be said about this definition. Of course, (7) is just the em
bedding of E we are aiming for. (6) expresses the fact that the canonical duality of 
E and Ee is related in a natural way to the canonical duality of M{Y) and Coo(Y). 
The condition "tie = ly" means that our fixed weak unit e corresponds to the natu
ral weak unit ly of Coo(Y). The property "ti is a Riesz isomorphism" can easily be 
derived from (a), (7), (6), but we prefer to include it in the definition. 

If E possesses an e-mr, then by (7) E is necessarily a 7r-space (since ^(Y) is one). 
From now on we assume E to be a w-space. 

If Y and ti satisfy conditions (a) and (/?), we write for each component f of e 
in Ee: 

U{ := suppti£ = {u£ = 1}. 

Before proving our main results about existence and uniqueness of the objects just 
defined we want to state some basic properties. 

Proposition 2.2. lf(Y, ti, t;) is an e-mr of E and if A C Y is open-compact, then 
there exists g £ Re with ug = l^. 

P r o o f . By 2.\((3) there exists g 6 Ee with tî r = lA. Again by 2.1(/?), g is 
a component of e.̂  Since 1,4 G 5£l(vx) for all a: G -67, it follows from 2.1(6) that 
E = E[g). Hence g G Ew, and so g G Re. • 
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Corollary 2.3. If (Y, u, v) is an e-mr of Ey then there exists R C E* such that g 

is a component of e and Ug is compact whenever g £ R and such that Y = (J Ug. 

P r o o f . S e t £ : = {K C Y: K is open-compact}. By 2.2, R := {u~llK: K E £} 
meets the requirements. D 

If (y, u, v) is an e-mr of E and R C E* satisfies all the conditions described in 
the preceding corollary, then we call R associated to (Y, u,v). The e-mr's to which 
a given R is associated are important for the sake of compactness arguments (note 
that the Ug's are open). 

We want to give an example which might help the reader to get a better intuition 
for the investigations made in this paper. 

Example 2.4. Let X be a set and 91 a <$-ring of subsets of X. Let E be a band 
of JK(*H) (e.g. E = ^ (91) ) , and set 

\A : E —• R, p .—• p(A) for every A E 91, 

\ x : Eb -> R, p .--> / l x d / r 

Then lx is a (very natural!) weak unit of Ee, and R := { i ^ : .A E 91} is a set 
of components of \x in E* with lx = sup{1^: A E 91}. Moreover, ( i j c .^ ) is an 
he-pair of E. 

In this special case, Constantinescu proved the existence and uniqueness of a i x -
mr of E to which R is associated [C; 2.3.6,2.3.8]. 

Proposition 2.5. If (Y, u, v) is an e-mr of E and if R, S are subsets of Re such 

that Ug is compact for every g E R, then the following are equivalent. 

(a) U V, C (J Uh-
g£R h£S 

(b) For each g E R there exist hi,..., hn E 5 with g ^ sup{h*: 1 ^ k ^ n}. 

This shows that if R, S C E* are both associated to (Y, u, v), then they are closely 
related. 

Corollary 2.6. If (Y, ii,v) is an e-mr of E, if(e, R) is an he-pair of E such that 
R is associated to (Y, u, v), and if S C E1* is associated to (Y, u, v), then (e, S) is an 
he-pair of E too. 

Propos i t ion 2.7. If(Y, u, v) is an r-mr of K, (hen the following are equivalent. 

(a) V is par acorn pact. 
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(b) There exists R C E* associated to (Y, u, v) such that inf(y, h) = 0 whenever 
g,h£R,g±h. 

P r o o f . (a)=>(b): We can write Y as the disjoint union of a family (-44)*eI of 
open-closed, <r-compact subsets of Y. Since Y is Stonian, each AL is the disjoint union 
of a countable family (J4AA)A€LI of open-compact subsets of Y. Put R := {U~1IAIX : 
(t,\)e I x L t} . 

(b)=>(a) is obvious. • 

The following propositions show how the embedding properties of E in M{Y) 
improve under additional completeness requirements on E. 

Proposition 2.8. If(Y, u, v) is an e-mr of E, then we have 

(a) vE is an ideal of\SK(Y) «<=> E is Dedekind complete. 

(b) v is surjective (and hence a Riesz isomorphism) <=> there is an he-pair 

(e, R) of E such that R is associated to (y, ti, v). 

(c) If v is surjectivet then E is hypercomplete and u(E*) = Ci(Y). 

P r o o f , (a). "=>" follows from 2.1(7) and the Dedekind completeness of ^£(Y), 
while "<=" follows from [AB;2.2]. 

(b). "=>" By 2.3 there exists R C E* such that R is associated to (y, u, v). Then 
(tie, {ug: g £ R}) is an he-pair of J#{Y), and since t; is a Riesz isomorphism, it 
follows from 2.1(6) that (e, R) is an he-pair of E. 

"«=" Let u £ *SC(Y)+ and put F := {z £ E: 0 ^ vz ^ / i} . For each g £ R we 
have sup g(z) = sup fug d(vz) -<J fug d/x < 00, and hence there exists x := sup F. 

z£F z€F 
We get vx = fi. 

(c) follows from (b) and [C; 1.6.1], D 

Proposition 2.9. If(Y, ti, t;) is an e-mr of E, then we have 

(a) v(£7[e]) is an order dense Riesz subspace of ^^(Y). 

(b) v(E[e]) is an ideal of^(Y) <=> E[e] is Dedekind complete. 

(c) v(E[e]) = JCh(Y) <=> (e, {e}) is an he-pair of E[e]. 

P r o o f , (a). For each x £ E[e] we have ly = tie £ 5£l(vx) (2.1(6)), and so 
vx £ ^\>(Y), which implies that v(/?[e]) C ~tfb(Y). The remaining statements are 
obvious. 

(b). "=>" follows from 2.1(7), while "<=" follows from 2.1(7), (a) and [AB;2.2]. 
(c). "=>" follows from 2.1(6). 
"<=" Let /* £ JCb(Y)+ and set F := {x £ E[e]+: vx ^ /*}. (a) implies that 

fi = supvF. We have sup e(x) = sup / lyd(vx) = / l y d / i < 00, and hence there 
x€F reF 
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exists z, the supremum of F in E[e]. Thus z = supF (in E)) and we conclude by 

2.1(6) that fi = vz e v(E[e}). • 

The proof that E possesses an e-mr relies essentially on the Ogasawara-Maeda 
Theorem which we need in the following version. 

T h e o r e m 2.10. There exist a compact hyperstonian space Z and a Riesz isomor

phism u: Ee —* Coo(Z) with ue = \z> If Z1 is another compact Stonian space such 

that Ee and Coo(Z') are Riesz isomorphic, then Z and Z1 are c&nonically homeo-

morphic. 

P r o o f . All but the fact that Z is hyperstonian follows from [B;Thm.6 and 
Rem.(4), (7)]. Now Eee separates Ee by [LM;2.2], and thus Z is hyperstonian by 
[Fil;Thm.3]. • 

The next proposition, which is easy to prove, serves as well as the following ones 
for the proof of Theorem 2.16. 

Proposition 2.11. TaJte Z, u as in 2.10, take £ 6 (Ee)+, let T be a set of com

ponents of e, and put U := \J supp ur. Then the following hold. 

(a) f is a component of e «<==> u£ is the characteristic function of some open-
compact subset of Z. 

(b) U is open; we have U = Z <=> e = sup T. 

Propos i t ion 2.12. There exists a subset R of R€ of pairwise disjoint elements 

such that e = sup R. 

P r o o f . Take Z, ti as in 2.10 and set $ := {11: ii is a disjoint family of open-
compact subsets of Z such that u~x\u € E* for every U 6 ii}. By Zorn's Lemma, <fc 
has a maximal element 20 (with respect to inclusion). Since u(E*) is an order dense 
ideal of Coo(Z) [LM;3.1] and since Z is Stonian, we conclude that (J W = Z. By 

2.11, R := (« _ 1 l i v : W G 2H} meets the requirements. • 

Propos i t ion 2.13. Take R C Re satisfying e = sup R, take Z, u as in 2.10, and 

put Y := | J supp ug. Then we have 
geR 

(a) Y is a locally compact hyperstonian space with Z = 0Y. 
(b) u: Ee —+ COQ(Y)) £ •-> u£\y is a Riesz isomorphism such that Cb(Y) C 

«(£?[e]'). 
(c) U{ = {u£ = 1} is open-closed in Y for all components £ of e, Ug is open-

compact in Y for all g G R, and Y = \J Ug. 
g£R 
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P r o o f , y i s a dense open subset of Z, by 2.11. Hence (a) is well-known, (b) is 
a consequence of (a), and (c) follows from 2.11. • 

Example 2.14. We have in general Cb(Y) ^ t i ^ e ] * ) : 
Take a locally compact hyperstonian space X and set E := +d£c(X). By [C; 1.6.1], 

Ew = C(X), and hence E* = Coo(X). Put e := 1* and R := {lA: A C 
X, A open-compact}. Then Z = &X, and for every / G Coo(X), uf is the 
continuous extension of / to @X. We have Y = X and therefore u =id. Then 
E[e]w = E* = C(Y), but C(Y) ^ Cb(Y) in general (e.g. N with the discrete 
topology). 

Proposition 2.15. lf(Y,u,v) is an e-mrofE, then u~l(Cc(Y)) C Ew. 

P r o o f . Let £ G u~l(Cc(Y))+. Set / := ti£, U := supp / and a := s u p / ( y ) . 

Then ti"1 It; € E* by 2.2, and from O ^ U au~l lu we conclude that £ e E*. • 

We are now in a position to prove our main result, i.e. the existence of an e-mr 
of E. The following theorem says even more: One can find a representation space 
y which is (via ti) the union of the supports of a given set of components of e, a 
useful property for compactness arguments. Moreover, in general there exist many 
different e-mr's (corresponding to different iJ's) so that in concrete cases the user 
can choose the best one for his purposes. 

Theorem 2.16. Taice R C Re with e = sup R (such a set R always exists, by 

2.12,). Then there exists an e-mr (Y, u, v) of E to which R is associated. 

In particular, if Z is a compact hyperstonian space and u: E6 —• Coo(Z) is a Riesz 

isomorphism with ue = 1^, one can choose 

Y := ( J suppug and u: EQ — Coo(y), £ . - u£|y. 
geR 

It follows that Y can be chosen compact if e belongs to E*. 

P r o o f . We take Z, u, Y, u as indicated in the assertion of the theorem (see 
2.10). By 2.1.3, conditions (a) and (/?) of 2.1 are satisfied. 

Let x G E. Since any compact subset of Y is covered by finitely many U9 (g G R), 

we see that u"lf G E* for all / G CC(Y). Thus 

* * : C c ( y ) - R , f~(u'lf)(x) 

is well-defined and hence an element of Cc(Y)n. We conclude the existence of a 
unique / i r G J(\Y) such that £x(f) = | / d / i x for all / G CC(Y). We set 

v: E —> Ji(y), x*-+nx. 
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Obviously v is linear. 
To show that v is a Riesz homomorphism, let x,z G E+ with inf(x,2:) = 0. Take 

an open-compact subset A of Y. Since E* is Dedekind complete and inf(px,pz) = 
p(inf(x,z)) = 0 (where p : E —• E** denotes the canonical embedding), and since 
u-llA G E* by 2.2, we can find / i , / 2 G Coo 0 0 satisfying 

inf(/i,/2) = 0, h + h = U, //i<-/i, = 0 = J f2dp2 

[Z;90.6]. Hence / i , / 2 must be characteristic functions of op en-com pact sets. Since 
A is arbitrary, we conclude that supp/ixnsupp/x.- = J), and thus that inf(px, p2) = 0. 

Let x G E with rx = 0. Since suppv(x+) Osuppt;(x~) = 0, it is easily checked 
that x+ = 0 and x" = 0. Hence v is injective. 

To show that 2.1(6) is satisfied, take (x,£) € E x Ee. We may assume that 
x ^ 0 and f ^ 0. Put Jf := {n £ u~l(Cc(Y)): 0 ^ n ^ £}. Then £ = sup JT , 
ti£ = sup u(Jf?), and the claimed implications follow from the equation 

£(x) = (sup Jf)(x) = sup r)(x) = sup / ut)d(vx) = / u£d(vx), 
r)€Jf t)£je J J 

which holds provided that x G £*[£] or u^ G J?l(vx). 

It remains to show that t;E is order dense in M{Y). Applying the property just 
proved, we easily see that (J suppvx is dense in Y. Hence if /i G ^(Y), p > 0 is 

given, there exists x E E+ such that */ := mi(vx,p) > 0. Since 0 < v -̂  vx, the map 

/ « -?: £* — R, f — / ti^di/ 

is well-defined. We have £ G E** and 0 < ^ .$ px (where p : E —• i?** denotes again 
the canonical embedding). By [AB;3.H], there exists a z £ E with 0 < pz .$ £. It 
follows that 0 < vz ^ v ^ p. D 

R e m a r k . It is always possible to find an e-mr (Y,u,v) of E such that Y is 
paracompact, as 2.12, 2.16 and 2.7 show. But if E is hypercomplete, it can happen 
that for no he-pair (e, R) the representation space Y, constructed relative to R, is 
paracompact, as [Fi3;2.7] together with 2.7 and 2.6 shows. 

Wfc want to formulate an easy consequence of what we have proved in order to 
clarify our result; in particular 2.17(c) shows the significance of the hypercomplete 
spaces: They can always be considered as bands of spaces of measures. 

Corollary 2.17. For a Riesz space F we have 

(a) F is a if-space <*=> there exist a 6-ring !{R and a band *St of ^ ( !H) such 

that F is an order dense Riesz subspace of M'. 
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(b) F is a Dedekind complete it-space <=> there exist a 6-ring 9t and a band 
^ of ^(*ft) such that F is an order dense ideal of M'. 

(c) F is hypercomplete <--=> there exist a 6-ring fR and a band M of ^t(*ft) 
such that F = M'. 

P r o o f , (a). "=>" Apply 2.16. "<=" Note that Jt is a ir-space. 

(b). "=>» Use 2.16 and 2.8(a). "«=" follows from [AB;2.2]. 

(c). "=>" Use 2.16 and 2.8(b). "<!=" follows from [Fi3;2.5]. D 

Theorem 2.16 implies the following well-known result [Sc2;9.2]. 

Corollary 2.18. If E is an AL-space, then there is a compact hyperstonian space 

Y such that E is Riesz isomorphic and isometric to ^(Y). 

P r o o f . By [Fi3;2.12] the map e: £ - • R, x •-• ||x+|| - | |x- | | is a weak unit of 

E*, and (e,{e}) is an he-pair of E. Applying 2.16 (with R := {e}) and 2.8(b) we 

obtain the first part of the assertion, and in addition we have 

||x|| = e(|s|) = / lyd|v*| = ||v*|| for all x € E. 

The next problem to be tackled is that of uniqueness of the measure representation. 
For this purpose we prove 

Proposition 2.19. Suppose that for k = 1,2, (V*, £*,!;*) is an e-mr of E such 

that Rk C E* is associated to (V*, tk*, Vk). If R\ C R2f then there exists a map <p: 

Y\ —• Y2 with the following properties: 

(i) <p is injective, continuous, open, and <pY\ is dense in Y2; 

(ii) y>(supp u\g) = supp u2g for all g € R\; 

(iii) tii^ = u2£ o <p for all £ 6 Ee; 

(iv) <p is v\x-proper and <p(v\x) = v2x for all x G E. 

Moreover, <p is uniquely determined by (iii). 

P r o o f . The map u := u2 o ux
l is a Riesz isomorphism with U1YX = ly2 . Since 

Cb(Yk) is the ideal of Coo(Vlk) generated by l n , we get u(Cb(Y\)) = Cb(Y2). 

For / € Coo(Yk), we denote by /* the continuous extension of / to Zk := fiYk. 
Then 

w:C(Z\)^C(Z2), f*>Mf\Yl)Y 
is a norm preserving Riesz isomorphism. By [Se; 7.8.4} there exists a homeomorphism 
tl>: Zx —> Z2 satisfying wf = f o V*"1 for all / € C(ZX). 
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Take g E R\ and set At := supptijt^. For each /i E M(Z2) we obtain 

J i^ .d /x = J iz\ o - r i d / . = / ^if;d/ i = | ((«o « , ) ( » ) ) > 

= J(u2gydv = j\z
A*dv, 

and hence that V>-4i = .42. Since .fti C R2, it follows that V>Yi C Y2. This enables 
us to define 

y>:Yi->Y2, y*-*tl>y. 

Then <p satisfies (i) and (ii). Since wf = / o ^ " 1 for all / E C(Z\), we have h = ti/ioy? 
for every h E Cb(Yi). Thus for each £ € (E')+ 

ui$ = sup inf (ui£y n l y j = sup tii(inf(£, ne)) 
n€N n€N 

= sup (tiotii(inf(£,ne))) o(p = sup inf (ti2£,nly2) oy> = ^2^ o <p, 
n€N n€N 

which implies (iii). 
Now let x E -£+. For each g E R2 we have 62*70 >̂ =. ui</ £ Jfl(vxx) by 2.1(6), 

i.e. ^>"~l(supp u2g) is t>ix-integrable. But each compact K C Y2 is covered by finitely 
many sets suppu2<7, with g E R2l and hence <p~l K is vix-integrable. Thus (p is 
vix-proper. For each / £ CC(Y2) we have 

fd<p(v\x)= fo<pd(vxx)= u'lfd(vxx) 

= {(ujl o u'l)(f))(x) = (utlf)(z) = Jfd(v2x), 

and hence <p(v\x) = V2X, which proves (iv). 
The uniqueness of <p is easy to see. • 

Corollary 2.20. Suppose that for k = 1, 2, (Y*, £«*, v*) is an e-mr of E such that 
R C E* is associated to (Y*, ii*, v*). Then Yi ancT Y2 are canonically homeomorphic. 

P r o o f . Take <p as in the preceding proposition. Then by 2.19(ii), <pY\ = Y2. 

D 

R e m a r k s , (i) It follows that if R C Re satisfies e = sup Ry then the e-mr of E 
to which R is associated is uniquely determined. 

(ii) If X is a set, £H is a 6-ring of subsets of X and ^C is a band of ^(91) , then by 
Theorem 2.16 and (i) we get the existence and uniqueness of a representation and 
of a bounded representation of (K, 9t, */*#) [C;§2]. Our notation (Yyii, v) for an e-mr 
has been chosen in coincidence with the notations in [C]. 
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Of course the e-mr's belonging to different .ft's are different in general. But we can 
single out a "greatest element" among them. For this purpose we define a preorder 
-̂  on 

* ( £ ) := {(Y, u, v): (Y, u, v) is an e-mr of E) 

by setting (Yi, tii, v\) ^ (Y2, U2, V2) iff there exists a mapping <p: Y\ —• Y2 satisfying 

(i) <p is injective, continuous and open; 

(ii) t i^ = u2Zo<p for all £ G E6\ 

(iii) <p is vix-proper and ^>(i>ix) = v*ix for all x £ E. 

If such <p exists, then by (ii) it is uniquely determined, and <̂ Yi is dense in Y2. 

Proposition 2.21. Let (Ykyukivk) G $(E) (k = \y2) such that (Yi,ui,vi) -̂  

(Y2, U2, V2) -̂  (Yi, tii, vi). Then Yi and Y2 are canonically homeomorpbic. 

P r o o f . If <p: Y\ —• Y2 and i>:Y2—>Y\ are the corresponding mappings, then 

from (ii) one easily deduces that ij>o<p =id, and from this relation that %l> is surjective, 

hence a homeomorphism. D 

Proposition 2.22. Taire (Y0,tio,tlo) G $(E) such that Re is associated to it 
(2.16). Then (Y, ti, v) ^ (Y0, ti0, t>o) for each (Y, u, t;) G *(E). 

P r o o f . Everything follows from 2.3 and 2.19. • 

Hence by Remark (i) above we can talk of "the greatest element of $(E)n. The 

next two propositions give further informations about this element. 

Proposition 2.23. Taie Z, u as in 2.16 and set 

&s := {K C -?: A' is open-compact, x G Zi^u"1!*]}, 

Kx := | J K forallxeE+. 
tfєл. 

Then 

[ J suppu£ = intf p | KXV 
g£R. \*£E+ ' 

P r o o f . UCM Let g £ Re. For all x G E+ we have x G E\g]%.hence supp ug G Ax. 

It follows that supp ti</ C H ^*> a n ^ s i n c e supp u</ is open, this implies the claim. 
*€E+ 

"D" Let A' be an open-compact subset of int ( f] Kx) and put g :=U~1\K> For 
*€£+ 

n 
each x € E+ vte can find A'i , . . . , A'„ G Ji* with A' C |J ^ n hei-ce * G J5[^]. Thus 

i= l 
.£ = 217[<7] which implies g € E* and therefore g £ Re. • 
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Proposition 2.24. For (Y, 6, v) £ $(--?), the following are equivalent. 

(a) Re is associated to (Y, u, v). 

(b) U9 is compact for all g £ Re. 

P r o o f . (a)=->(b) follows from the definition, while (b)=»(a) is a consequence 
of 2.3. D 

Our concluding results concern relations between measure representations of a 
Riesz space and its subspaces. 

If F is an order dense Riesz subspace of E, then the map 

E<-^F<, t~t\sM>F 

is a Riesz isomorphism [LM;2.6]. In the following two propositions, this map is 
denoted by t/>. 

Proposition 2.25. Let F be an order dense ideal of E, let f be a weak unit of 

F', and let (Y, ti, v) be an f-mr of F to which R C Fw is associated. Iftp~xg £ E* 

for every g € R, then there exists a unique map v: E —• M{Y) such that V\F = t; 

and (y, u o tp, €) is a tl>~1f-mr of E; \l>~lR is associated to (Yt uotpyv). 

P r o o f . The existence is proved in complete analogy with Theorem 2.16, while 
the uniqueness is easy to see. • 

Proposition 2.26. Let F be an order dense Riesz subspace ofEf and let (y, ti, v) 

be an e-mrofE. Then (Y,uoip~l,V\F) is an e\E[ty\F-mr of F. If R C £ " , then R 

is associated to (Y, ti, v) iff tpR is associated to (Y, u o i/>~1, V\F)-

Proposition 2.27. Let F be a band of E, and let (Y, u} v) be an e-mr of E. We 

define X := (J suppux and identify ^(X) with {p, £ *S?(Y): supp/i C X}. For 

each f £ Coo(X) put 

Ff:=v'l(^(X)[f]) and (f:Ff-+R, x ~ / fd(vx). 

Then 

(a) vF = vE C)~4f(X) is an order dense Riesz subspace of jfi(X). 

(b) Ff is an order dense ideal of F and v(Ff) is an order dense Riesz subspace 

ofJt(X), for every f £ Coo W -

(c) il € (FfY for each f £ CooW-
(d) The map <p: Coo(X) —* FQ, f »-> ̂ / is a Riesz isomorphism. 
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(e) Z\El(\nF € F* and u£\x = <p~l (t\B[t]nF) for all £ G E'; in particular lX = 

^>"1(eUwnP)-
(f) (X, v?"1, V|F) is an e|£[e]njp-mr ofFf and if R C E* is associated to (Y> u, v), 

then {(p(lug\x) '• 9 G R} is associated to (X, <p~l, V\F). 

P r o o f , (a). "C" follows from the definition of X. 
"D" Let pevEn Jl(X). There exists x G E with vx = p. For every z G F x we 

have suppt;.? n X = 0 and hence inf(|z|, |x|) = 0. Thus x G FLL = F. The order 
denseness is obvious. 

(b) follows from (a). 
(c). If xt I 0 in F/, then by (b) vxt [ 0 in ^ ( K ) . This implies our claim. 
(d). The only non-trivial assertion is that <p is surjective. So take £ G (I™)+. Then 

G := F[£]-|- K-1 is an order dense ideal of .E, and each x EG can be decomposed in a 
unique way as x = #i + #2, with xi G F[£] and x*i G Kx. Put ?/: G —* R, x *-+ £(x\). 
Then n e G* C EQ, and for / := u?/|x we obtain £/ = £. 

(e) follows from (d), and (f) follows from (a), (d), (e). D 

APPENDIX: REPRESENTATIONS AS SPACES OF INTEGRABLE FUNCTIONS 

In this appendix we show how two well-known representation theorems can easily 
be derived from our main results. Part (a) of the following theorem goes back to Lux
emburg and Zaanen and was published by Fremlin (see [Frl;Thm.6] or [Fr2;p.l84]). 
Part (b) was essentially proved by Vietsch [Vi;5.9]; see also [Z; 120.11]. 

Theorem A. Let E be a n-space. 

(a) There exists a normal Radon measure p. on some locally compact^ paracom-
pact hyperstonian space Y such that E is Riesz isomorphic to an order dense 
Riesz subspace of 

£|OC(A0 : = { / € L°(p): f\K G Ll(p) for every compact K C Y}. 

Moreover, E is Dedekind complete iff E embeds as an ideal into L]oc(p). 
(b) If E* has a weak unit e (or equivalent^ if E admits a strictly positive order 

continuous linear functional e), then E embeds into Ll(u), with the same 
properties as in (a). 

P r o o f . Let e be a weak unit of Eg. By 2.16, there exists an e-mr (yi,tii,t;i) 
of E. Fix a maximal disjoint system (£.)*€/ of E+ with the property that each vxxt 

has compact support, and set gt :^ U\ lsuppv^. for each i G /• Since (<7i)ie/ is a 
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disjoint family from Re with e = supf^: i £ / } , there exists (again by 2.16) an e-mr 

(Y, 6, v) of E to which {gt: i E / } is associated. By 2.7, Y is paracompact. 

For each £ € E* with inf((, jf«) = 0 we have fu\td(vxxt) = 0, hence £(xt) = 0, 

and hence fu£d(vxt) = 0. This implies that supp vxt C U^t for each i G / . From 

the maximally of (ar4)i€/ we conclude that suppvx4 = U8t for each i € / . We put 

/i := £^ vxL. Then /i belongs to ^ ( Y ) , and in view of supp/i = V w e see that 
i€I 

Ji{y) is the band generated by /*. By the Radon-Nikodym Theorem, JK{Y) is 

Riesz isomorphic to L}oc(^)y which implies (together with 2.8(a)) assertion (a). 

To prove (b), we need only observe that in this case vE C *tfi(Y) (since 

f lyd(vx) = fued(vx) = c(ar) G R for each x € E), and thai ~l*(V') is Riesz 

isomorphic to Ll(n). D 
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