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CHARACTERIZATIONS OF HAMILTONIAN ALGEBRAS 
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(Received January 21, 1991) 

A group is Hamilionian if every its subgroup is normal. This concept was gen

eralized for algebras in [4]: an algebra A is Hamiltonian if every its subalgebra is a 

class (block) of some congruence on A. A variety V is Hamiltonian if each A G V 

has this property. 

Hamiltonian algebras were characterized in [5]: 

L e m m a 1 (see Lemma 3 in [5]). An algebra A is Hamiltonian if and only if for 
every unary algebraic function <p over A and each x, y of A there exists a ternary 
polynomial p such that 

(*) <p(x) = p(y.v>(y),*)-

The same characterization is also used for Hamiltonian varieties in [4] (only the 
unary algebraic function is substituted by an (n-f l)-ary polynomial in (*)). However, 
all examples of Hamiltonian algebras occuring in [4] are members of varieties of loops 
or modules, i.e. of congruence-permutable varieties with one nullary operation. The 
aim of this short note is to show that for such varieties the characterization from 
Lemma 1 can be simplified using only a binary polynomial in (*). 

An algebra A is called "with 0" if 0 is a nullary operation of A. A variety Y is 
"with 0" if 0 is a nullary operation in the type of Y. 

T h e o r e m 1. Let A be an algebra with 0. A is Hamiltonian if and only if for every 

unary algebraic function <p over A and each x of A there exist binary polynomials p, 

v such that 

(**) <p(x) = p(-c,v?(0)), <p(0) = r(x,<p(x)). 
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P r o o f . Let A be Hamiltonian. Putting y = 0 in (*) we obtain <p(x) = 

p(x,<p(0)) for some binary polynomial p. Putting x = 0 (and replacing y by x) 

in (*), we obtain the second equation in (**). Conversely, let A satisfy (**). Then 

<p(x) =p(x,p(0)) -p(x,r(y,<p(y))), 

whence (*) is evident. • 

A variety is n-permutable if 

0 o 4> o 0 o • • • = 4> o 0 o <I> o • • 

for each A G V and every 0 , <£ G Con A, where there are n factors on both sides of 

the equality. Denote by 0 ^ (a, 6) the least congruence on A containing (a,b). 

Now we proceed to show that for n-permutable varieties the first equation of (**) 

is satisfied. 

Lemma 2. Let 'V be an n-permutable variety with 0, A G V and 0 G B C A. 

The following conditions are equivalent: 

(i) B is a block of some 0 G Con A; 
(ii) B is a block ofS = \/{eA(0, x); x G B); 

(iii) for every algebraic function <p, 

<p(0) G B implies <p(B) C B. 

P r o o f , (i) O (ii) is evident and (i) => (iii) is a direct consequence of Theorem 

5 in [6]. Let us prove (iii) =? (ii): Let 6 G B, a G A and (a,6) G 0 = \J{OA(0,x); 

x G B}. Then 6 G B implies (6,0) G Q. Transitivity of© gives (a,0) G 0 . Since 

V is n-permutable, congruences on A concide with cojnpaiible quasiorders on A (i.e. 

reflexive and transitive relations satisfiyng the Substitution Condition with respect 

to all operations of A), see e.g. [2] or [3]. Thus 

e = Q = \J{Q(o,x)-xeB}, 
Q 

where V is the join in the lattice of all quasiorders on A and Q(0, x) is the quasiorder 
Q 

on A generated by the pair (0,-c), see [1], [2] for details. By [1], there exist unary 

algebraic functions (po,...,<pn and elements x 0 , . . . , xn G B such that 

0 = v?o(0), <Po(x0) = <P\(0), . . . , <pi(x{) = <pi+i(0), . . . , <pn(xn) = a. 

Since 0 G B, we have <£>o(0) G B. By (iii) also <po(x0) G B, i.e. <^i(0) G B. Similarly, 
this yields <p\(x\) G B, etc. After n steps we obtain a G B. By Theorem 5 in [6], (ii) 
is evident. • 
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T h e o r e m 2 . Let y be an n-permutable variety with 0. An algebra a £ y is 

Hamiltonian if and only if for every unary algebraic function <p there exists a binary 

polynomial p such that 

(***) <p(x) =p(x,<p(0)). 

P r o o f . Let y be an n-permutable veriety with 0. Let A G y satisfy (***) and 

let B be a subalgebra of A. Let 6 G B and let <p be a unary algebraic function over 

A. If <p(0) G B, then (***) also implies <p(B) C B. By Lemma 2, B is a block of 

some Q G Con A The converse implication is a consequence of Theorem 1. • 

R e m a r k . Results of Theorem 1 and Theorem 2 can be easily formulated for 

varieties with 0 in the same way as in [4] using (n -|- l)-ary polynomials instead of 

the unary algebraic function in the conditions (**), (***). 

E x a m p l e . Any variety y of loops has 0 and is permutable, hence n-permut

able (for each n ^ 2) . If A G y is an abelian group (additive notation), then every 

unary algebraic function <p(x) can be written in the form <p(x) = n • x + z} where 

n G N, z G A. Choose p(x, y) = n • x + y. Then 

p(x, <p(0)) -= n • x + <p(0) = nx + n-0 + z = nx + z = <p(x), 

i.e. (***) of Theorem 2 is satisfied. 
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