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Czechoslovak Mathematical Journal, 42 (117) 1992, Praha 

ON OSCILLATORY PROPERTIES OF SOLUTIONS OF A CERTAIN 

NONLINEAR THIRD ORDER DIFFERENTIAL EQUATION 

M. GREGUS and J. VENCKO, Bratislava 

(Received June 3, 1991) 

1. We are interested in oscillatory solutions of a nonlinear differential equation of 

the third order 

(1) u"' + q(t)u'+p(t)ua = 01 

where p(t), q(t) and q'(t) are continuous functions on the interval (a,oo). —oo < a, 

a > 1 is a ratio of odd integers. 

By a solution of (1) we mean a function u(t) defined on an interval (T, oo), a ^ T, 

with a continuous third derivative, which satisfies equation (1). By an oscillatory 

solution we mean a nontrivial solution u of (1) that has infinitely many null-points 

with a limit point at infinity. Otherwise the solution is called nonoscillatory. 

The object of generalization are results in the papers [4] and [1] concerning oscil­

latory solutions of equation (1) in the case q(t) = 0 on (a,oo). 

In the proofs of this paper some results of the paper [3] are applied. 

2. N. Parhi and S. Parhi [4] proved the following theorem: 

T h e o r e m A. Let p(t) < 0 for t G (a, oo) and let ff° p(r)dr = —oo, t0 > a. Then 

every bounded nontrivial solution u of the differential equation 

( l i ) um + p(t)ua = 0 

defined on (to, oo) is oscillatory on (to, oo). 

In the paper [1] the following theorem is proved: 
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Theorem B. Let the assumptions of Theorem A be fulfilled. Then a necessary 
and sufficient condition for a solution u of (l\) to be oscillatory for t ^ to is that 

«(0«"(0-^'2(0<o 

for t ^ to-

I. W. Heidel [3] proved several interesting results. Some of them are formulated 
in the following two theorems. 

Theorem C Let q(t) <̂  0 and p(t) -̂  0 for t £ (a,oo). If u(t) is a nontrivial 

nonoscillatory solution of (I) on (*o,oo), to > a, then there is a number c ^ to such 

that either u(t)u'(t) > 0 for t ^ c, or u(t)u'(t) ^Qfort^c. 

Theorem D. Let the supposition of Theorem C be fulfilled and let, moreover, 

ff° tq(t)dt > — co, or — £ ^ q(t) ^ 0 for t ^ to, to > 0. If u(t) is a nontrivial 

nonoscillatory solution of (I) on (<o, oo), then u(t)u'(t) > 0 for t £ (*o,oo). 

In some proofs the two following lemmas will be used. They are special cases of 
Lemma 4 of [5]. 

Lemma A. Let u(t) £ C2((/0 ,oo)). Then u(t) > 0, u'(t) < 0, u"(t) ^ 0 cannot 

hold for all t ^ to. 

Lemma B. Let u(t) £ C3((*o,oo)). Then u(t) > 0, u'(t) < 0, u'"(t) ^ 0 cannot 

hold for all t ^ to. 

3. In this section we generalize Theorem A and Theorem B for equation (1) if 
p(t) < 0, q(t) ^ 0 and q'(t) ^ 0 for t £ (a,oo) and prove a corollary of Theorem D 
for the solutions of equation (1). 

Lemma 1. Let p(t) < 0, q(t) ^ 0 for t £ (a,oo) and let u(t) be a solution of 
(1) with the properties u(t0) ^ 0, u'(t0) ^ 0, u"(t0) > 0, t0 > a. Then u(t) > 0, 
u'(t) > 0, u"(t) > 0 for t > t0 and u(t) -> oo, u'(t) - • oo for t -* oo. 

This lemma can be proved in a similar manner as Theorem 1 in [1] and therefore 
the proof is omitted. 

In the paper [2] the following theorem is presented without proof and therefore we 
prove it. 

Theorem 1. Let the coefficients of equation (1) fulfil the suppositions of Lemma 1 
and let, moreover, J1°°p(r)dr = —oo and q'(t) ^ 0 for t ^ to. Then every nontrivial 
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bounded solution u of (I) on (<0,oo), *0 > a, is either oscillatory on (<0,oo), or 

converges monotonically to zero for t —• oo. 

P r o o f . Without loss of generality suppose u(t) > 0 and bounded on (<0,oo). 
We prove that this can occur only if it converges monotonically to zero for t —• oo. 

By Lemma 1, u'(t) cannot have on (t0)oo) more than two zeros and then it does not 
change the sign. Then there exists a point T ^ to such that for u'(t), t > T we have 
two possibilities. Let 

(i) u'(t) > 0 for t > T. 

Integrating equation (1), in this case we get the identity 

t 

(2) u"(t) + q(t)u(t) + J[p(T)u(Tr-1 - (l'(r)]«Mdr = k. 
to 

The boundedness of u(t) and the suppositions q'(t) ^ 0 for t^ t0 and ff° p(r )dr = 

—oo imply that there exists a point T\^T such that 

t z " ( 0 > 0 for t>Tx. 

From Lemma 1 we get a contradiction with the supposition that u(t) is bounded. 

Let 

(ii) u'(t) < 0 for t > T. 

Then u(t) is decreasing for t > T. There are two cases for u(t). Either u(t) > K > 

0 and then the identity (2) implies that u"(t) —• oo for t —• oo, which contradicts 
u'(t) < 0 for t > T, or K = 0 and u(t) converges monotonically to zero. D 

Lemma 2. Let the coefficients of equation (1) fulfil the assumptions of Theorem 1. 
Let u be a solution of (I) with the property u(t) > 0 for t ^ t0. Then there exists a 
point tx>t0 such that either u(t) > 0, u'(t) > 0, u"(t) > 0 fort^tu or u'(t) < 0 
for t ^ t\, and 

lim u(t) = 0, lim sup u'(t) = 0. 
<—oo v 7 t—oo r v ' 

P r o o f . Suppose that u(t) > 0 for t^t0. There are three possibilities for u"(t). 
1) u"(t) > 0 for t > t0. 

Then u'(t) is increasing for t > t0 and we have two cases: 
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(i) u'(t) > 0 for t^ t\ ^ t0. In this case u(t) > 0, u'(t) > 0, u"(t) > 0 for t^ tu 

and this is the assertion of Lemma 2. 

(ii) u'(t) < 0 for t > t\ ^ tQ and then there exists lim u'(t) = K ^ 0. If K < 0 
f—>oo 

then u(*) ^ K(t —1\) -f u(*i) which is a contradiction with u(t) > 0 for large t > t\. 

Therefore lim u'(t) = 0 and lim u(t) = k ^ 6. If *r > 0, then the identity (2) 

implies that u"(t) —• oo for t —• oo, but this is a contradiction with u'(t) —• 0 for 

£ —• oo and therefore lim u(t) = 0. 
t->oo 

2) u"(£) < 0 for t < t0. By Lemma A the case u'(t) < 0 cannot occur for 

t ^ t\ ^ t0. If there exists t\ ^ t0 such that u'(t) > 0 for t ^ t\, then from the 

identity (2) we obtain a contradiction. 

3) u"(t) has infinitely many null-points for t ^ t0 at which it changes the sign 

(u"(t) oscillates on (t0,oo)). For ti'(f) we have three possibilities: 

(i) u'(t) > 0 for t ^ t\ ^ t0. Then i/(£) is increasing and from (2) we obtain a 

contradiction with the oscillatoricity of u"(t). 

(ii) u'(t) < 0 for t ^ t\ ^ <o- Then necessarily lim sup ti'(£) = 0 and lim u(t) = 0. 
t—*oo t—*oo 

In the opposite case (2) implies that u"(t) —• oo for t —* oo and then it cannot 

oscillate. 

(iii) u'(t) is oscillatory on (<i,oo), t\ ^ *V This case is in contradiction with the 

assertion of Theorem C. • 

L e m m a 3. Let the supposition of Theorem 1 on the coefficients of equation (1) 

be fulfilled. Then for every solution u of (I) which converges monotonously to zero 

for t —• oo with the property u(t)u'(t) < 0 for t > t0 there exists T ^ t0 such that 

for t ^ T the inequality 

u(<K(()-iu'2(«) + ^(Ou2(0<o 

holds. 

P r o o f . Let u(t) > 0 and u'.(t) < 0 for t ^ t0. Let t0 < t\ < t2 < . . . be an 

arbitrary sequence of points diverging to infinity if u'(t) is a monotone function, or 

such a sequence of points for which u'(t{) —• 0 if ti —• oo. By Lemma 2 such sequence 

of tiy i = 1, 2, . . . exists. 

Multiply equation (1) by the solution ti and integrate from ti to t. We obtain the 

integral identity 

(3) u(t)u"(t) - \ u'2(t) + i q(t)u2(t) + £ [p(r)u(rr-\t) - \ q'(r)\ «2(r)dr = 

\u»(U) + { = u(ti)u"(U) - l u'2(ti) + i Í(«0«2(Í<), «' = 1,-, • • • 
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For a solution u(t) for which u(t) > 0, u'(t) < 0 for t ^ t0 the identity (2) and The­
orem 1 yield that u"(t) must be bounded on (t0yoo) the integral f^°[p(r)ua'l(T) -
g ' ( r)]u(r)dr exists and u(t) —• 0 for t —• oo. Then there exists a point T > t0 such 
that for £ > T we have 

- J°° [pir)^-1^) - 1 -z'(r)]t.2(r)dr < - j f °° [ f ^ K " 1 ^ ) - «'(r)]u(r)dr. 

If in the identity (3) ti —• oo for i —• oo we obtain the relation 

u(t)u"(t) - \ u'\t) + 1 g(«)ii2(t) = j ~ [P(T)U-1(T) - \ q'(T)} U\T)AT < 0 

for t^T. D 

T h e o r e m 2. Let p(t) < 0, q(t) <£ 0, q'(t) > 0 for t £ (a, oo) and let / ~ p(r )dr = 
—oo, t0 ^ a. Then a necessary and sufficient condition for the solution u of (1) 
defined on (t0, oo) to be oscillatory for t ^ t0, or to be monotonously converging to 
zero is 

(4) «(«)«"(0-5«'3(0 + 5«f(0«a(0<o 

for t > t\, t\ ^ *V 

P r o o f . Sufficient condition. Let (4) hold for t > t\ ^ t0 and let e.g. u(t) > 0 for 
t ^ t0. It follows from Lemma 2 that there exists t\ ^ <o such that either u(t) > 0, 
u'(*) > 0, u"(t) > 0 for t > t\, or t/(*) > 0, u'(*) < 0 for t > t\. In the latter case 
the solution u by Lemma 2 monotonously converges to zero (and by Lemma 3 fulfils 
the condition (4)). In the former case, by Lemma 1 u(t) —• oo for t —• oo, and from 
the integral identity (3) for ti = T ^ t\ and from the suppositions of Theorem 2 it 
follows that for large t the inequality 

«(0«"(0-5«'3(0 + !«(0«a(0>o 

holds and this is a contradiction with (4). 
Necessary condition. By Lemma 3 we must prove that an oscillatory solution 

in (t0,oo) fulfils the condition (4). Let u(t) be an oscillatory solution of (1) on 
(t0,oo) and let ti i = 1, 2, . . . be its null-points on (t0,oo). Then the identity (3) 
implies that the function u(t)u"(t) — \u'2(t) + \q(t)u2(t) is increasing on (*i,oo) and 
u(U)u"(U) - \u'2(U) + \q(U)u2(U) < 0 for i = 1, 2, .. . . Consequently, (4) holds for 
t^t\. • 
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Corollary 1. Let the suppositions of Theorem 2 be fulfilled and let, moreover, 

the suppositions of Theorem D be fulfilled. Then a necessary and sufficient condition 

for a solution u of (1) to be oscillatory on (<o, oo) is that the condition (4) is fulfilled 

for t > T ^ to, where T is sufficiently large. 

4. In this section we shall study equation (1) with p(t) < 0, q(t) ^ 0, q'(t) ^ 0 for 
t e (a,oo). 

Theorem 3. Let p(t) < 0, q(t) ^ 0, q'(t) ^ 0 for t G (a,oo), let q(t) be bounded 

on (a, oo) and f p(t)dt — —oo, to > a. Then every bounded solution of (I) on 

(to,oo) is oscillatory on this interval. 

P r o o f . Let e.g. u(t) > 0 be bounded on (*o,oo), *o > <*>> Three cases for its 
first derivative u'(t) are possible. 

1) u'(t) >0foTt^T^t0. The identity (2) for t > *0 implies that u"(t) — oo for 
t —• oo and therefore u(t) cannot be bounded on (*o,oo), which is a contradiction. 

2) u'(t) ^ 0 for t ^ T ^ <o- In this case equation (1) implies that u'"(t) > 0 for 
t ^ T and by Lemma B this is impossible. 

3) u'(t) has infinitely many null-points at which it changes the sign. If in this case 
u(t) > K > 0 for t ^ to, then we obtain from (2) that u"(t) > 0 for t ^ T ^ t0 

and therefore u'(t) must be increasing for t ^ T, which is a contradiction with the 
oscillatoricity of u'(t). Therefore lim infu(t) = 0. If we suppose that lim inf u(t) = 

t—*oo t—•oo 

0, we have the following two possibilities: 
(i) ff° [P(T)U0,"1(T) — q'(r)]u(T)dT = oo. However, in this case we obtain from 

(2) that u"(t) > 0 for t ^ T ^ to and this contradiction with the oscillatory of u'(t). 
(») 0 < -/.riPO-K""1^) - l'(r)]u(T)dT < oo. 
In this case let {<t}^i> U —* oo for i —• oo, be a sequence of points at which 

u'(U) = 0 and u"(U) > 0. Clearly u(U) - • 0 for i -> oo. It follows from (2) that 

{u"(U)} is bounded on (£0,oo). 

Now if we write the identity (3) in the form 

(5) u(t)u"(t) - \ u'\t) + I q(t)u\t) + j * [p(r)««-1(r) - ± <,'(r)]U
2(r)dr = k, 

where Jb = u(tx)u"(ti) - \u'2(U) + \q(h)u2(h) > 0, we obtain for u"(U), % = 2, 3, 
. . . the equality 

""«•> = uW) ~ \ -<''>"<*>" W) In [p(r)t i°"1(r> " \ q'{T)]"2<r)dr-
It follows from this relation for <t —• oo that u"(ti) —• oo, which is a contradiction 

with the boudedness of {u"(ti)}. • 

680 



Lemma 4. Let the supposition of Theorem 3 be fulfilled. Then for every solution 

u of (I) with the property u(t) > 0 for t ^ t0, there exists T ^ t0 such that for all 

t ^ T the inequality 

(6) «(<)«"(<) - \ u'*(t) + q(t)u2(t)>0 

holds. 

P r o o f . Let u(t) > 0 for t ^ t0. Then there are three possibilities for u'(t). 

(i) u'(t) > 0 for t ^ to. It follows from (5), where t\ =to, that there exists T ^ to 
such that for all t ^ T the inequality (6) holds. 

(ii) u'(2) ^ 0 for t ^ Jo- From equation (1) we obtain in this case that u'"(t) > 0 
for t ^ to, but by Lemma B this is not possible. 

(iii) u'(t) has on (to,oo) at least two null-points at which it changes the sign. 

At one of them we have u"(t) ^ 0. Let t = T\. It follows from (5) with t\ = T\ 
that k = u(T\)u"(T\)+\q(T\)u2(T\) ^ 0 and that there exists T ^ T\ such that (6) 
holds for t > T. D 

T h e o r e m 4. Let the suppositions of Theorem 3 be fulfilled. Then a necessary 
and sufficient condition for the solution u of (1) defined on (£0,00), to > a to be 
oscillatory on (to, 00) is that 

(7) t i W ^ W - ^ / 2 ( 0 + 5 9(0^(0 <o 

fort^T^ to. 

P r o o f . Sufficient condition. Let u be a solution of (1) satisfying the condition 
(7) for t^ T ^ t0, and let e.g. u(t) > 0 for 2 ̂  T. By Lemma 4 there exists T\ ^ t0 

such that (6) holds for t ^ T\, and this is a contradiction with (7). This proves that 
u must be oscillatory. 

Necessary condition can be proved in the same manner as in Theorem 2. D 

R e m a r k 1. Let u be a solution of (1) with the property u(t0) = u'(to) = 0, 
u"(to) > 0 and let the supposition of Theorem 2 or of Theorem 4 be fulfilled. Then 
u(t) >0foTt> t0. 

This assertion follows from the identity (5), where k = 0. 

5. In this section we shall discuss two cases of suppositions on the coefficients of 
equation (1), in which we do not prove a necessary and sufficient condition for the 
oscillatoricity of solutions of equation (1). 
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Theorem 5. Let p(t) < 0, q(t) ^ 0; q'(t) ^ 0 for t e (a, oo) and let lim q(t) = 0 

and Jt°°p(r)dr = — oo, t0 > a. Then every bounded solution u of (I) defined on 

(t0, oo) is either oscillatory on (t0, oo), or lim inf \u(t)\ = 0. 
t—*oo 

P r o o f . Let tz be a bounded solution of (1) defined on (<0,oo), t0 ^ a. If we 

integrate (1) term by term for t ^ t0 we have 

(8) «"( . )+ / q(т)u'(т)dт-r í p(т)uа(т)dт=u"(t0). 
Jťo Jť0 

Let \u(t)\ ^ K, K > 0. The function q(t) is nonincreasing and g(J) -+ 0 for t —• oo. 
For a given £ / 4 # > 0 there exists T0 ^ <0 such that 0 -$ q(t) ^ ^ for t > T0. Let 

T\, T<i be such that T2 > T\ > T0. By the second mean value theorem there exists 
c, Ti ^ c ^ T2 such that 

\j 2 g (rX(r)dr | = \q(Tx) J° u'(r)dr + q(T2) J * u'(T)di 

^ |g(Ti)| \u(c) - tt(Ti)| + |g(T2)| |u(T2) - u(c)\ 

Then by the Cauchy-Bolzano criterion f° <f(r)ti'(r)dT converges. 

Suppose now that u(t) > 0 for t > t0 for t > t0 and u is bounded on (t0, oo). For 

tz'(<) there are three posibilities on (t0,oo). 

(i) u'(t) >0foTt^tx^t0. Then it follows from (8) that u"(t) -+ oo for t •— oo, 
which is a contradiction with the boundedness of u(t). 

(ii) u'(t) ^ 0 for t ^ î ^ t0. In this case equation (1) implies that u"'(£) > 0 for 
t ^ t\, but by Lemma B this is impossible. 

(iii) u'(t) changes its sign infinitely many times on (t0,oo). If in this case u(t) > 

Ki > 0 for t 5> *i ^ <0, then /~p(r)txQf(r)dr = -oo and (8) yields u"(t) — 
oo for £ —• oo, v/hich is a contradiction with the boundedness of u(t). Therefore 
l iminfu(0 = 0. D 

t-*oo 

Theorem 6. Let p(t) < 0, q(t) ^ 0, q'(t) ^ 0 for t G (a, oo) and iefc lim ?(*) = 0 

and — p ( 0 + 2^(^) 72k>Qforte(a, oo). If ix is a solution of (I) defined on (t0, oo), 

£0 ^ a such that it fulfils the condition 

(9) u(0«"(0-^«'2(0 + 5«(0«2(0<o 

for t ^ t\ ^ <o, 'lien u is oscillatory on (to,oo). 
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P r o o f . The supposition —p(t) + \qf(t) ^ k > 0 clearly implies the relation 
/ ~ p ( r ) d r = - o o . 

Suppose now that a solution u(t) of (1) fulfils the condition (9) and that it is 
nonoscillatory. Let e.g. u(t) > 0 for t ^ to. Then for u'(t) there are two possibilities. 

The possibiblity u'(t) ^ 0 for t ^ t\ ^ to is eliminated by Lemma B. 

(i) u'(t) > 0 for t ^ t\ ^ to. If u(t) is bounded from above then it is oscillatory, 
or lim inf u(t) = 0 by Theorem 5. But lim inf u(t) = 0 is in contradiction with 

t — oo v ' t —oo v ' 

u(t) > 0, u'(t) > 0 for t ^ t\. If lim u(t) = oo, then there exists Fi ^ t\ such that 
t—•oo 

for t^> T\ we have ti(<) > 1 and - p ^ J u 0 " 1 ^ ) - £?'(*)] u2(*) ^ ku2(t) > k > 0. The 

integral identity (5) implies that u(t)u"(t) — \u'2(t) + \q(t)u2(t) > 0 for large t and 
this is a contradiction with (9). 

(ii) u'(t) changes its sign infinitely many times. Then there exists a sequence 

{**}*°=i> ** - • °° f o r k -+ °°> s u c h t h a t "'(**) = 0, w"(<ib) ^ 0 for jfc = 1, 2, .... But 
at the points tk we obtain a contradiction with (9). • 

Theorem 7. Let p(t) < 0, ?(*) ^ 0, q'(t) ^ 0 for t e (a, oo), let q(t) be bounded 

from below on (a,oo) and / ° ° p(r)dr = —oo, <o ^ a. TAefl every bounded solution 

u defined on (to, oo) is either oscillatory on (to, oo), or it converges monotonously to 

zero for t —• oo. 

P r o o f . Let u be a solution of (1) defined and bounded on (to,oo), to ^ a and 

let e.g. M(£) > 0 for t > to. Then for u'(t) we have three possibilities: 

(i) u'(t) > 0 for t ^ t\ ^ to. In this case we obtain from (1) that u'"(t) > 0 for 

t ^ t\. If u"(t) > 0 for t ^ t\ then Lemma 1 yields u(t) —• oo for t —• oo, which is a 

contradiction with boudedness of u(t). 

\f u"(t) < 0 for t ^ t\ ^ to, then after integration of (1) term by term we obtain 

the relation (8) where to = t\. Clearly lim u(t) = k < oo, / t°°pti a(r)dr = —oo 

and if m ^ q(t) ^ 0 then / g(r)it '(r)dr ^ m / ti '(r)dr ^ m[fc — u(<i)], and 

/,*. g(r)u ' (r)dr -> /, 0 > / > - c o . 

We see now from (8) that u"(t) —* oo for t —• oo and this is a contradiction with 
the boudedness of u(t). 

(ii) ti'(£) -<C 0 for t ^ *i ^ <o- Then tx(<) is nonincreasing. Let lim u(t) = k ^ 0. If 
f—->oo 

t > 0 we obtain from (8) that u"(t) —• oo for t —• oo which is again a contradiction. 
(iii) u'(t) changes its sign infinitely many times and there exists a point Ti ^ to 

such that u(Ti) > 0, u'(T\) = 0, u"(T\) ^ 0. By Lemma 1 u(t) - • oo for t -> oo and 
this is a contradiction. • 

Theorem 8. Let -p(t) > k > 0, q(t) ^ 0, q'(t) ^ 0 for t 6 (a, oo) and Jet 

g'(<) —• 0 for t —• oo. Let u(<) be a solution of (1) defined on (*o,oo), *o ^ a, tvAjcA 
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fulfils the condition (9) for t ^ t\ ^ t0. Then u(t) is either oscillatory on (to, oo), or 

it converges monotonously to zero for t —> oo . 

P r o o f . Let u be a soution of (1) defined on (*o,oo) which fulfils (9) for t ^ t\, 

and let u be nonoscillatory. 

Let e.g. u(t) > 0 for t ^ t0. u'(t) has three possibilities: 

(i) u'(t) ^ 0 for t ^ Ti ^ *0- Then the identity (5) with tx = Ti contradicts (9), 

because / . ^ p ^ u " " 1 ^ ) - \q'(r) t i2(r)dr = - o o . 

(ii) u'(t) < 0 for t ^ T\ ^ to- In this case, if u(t) > L > 0 we obtain a contradiction 

as in the case (i) . Therefore u(t) can converge monotonously to zero for t —* oo. 

(iii) u'(t) changes its sign infinitely many times. In this case there exists a point 

T > t0 at which u(T) > 0, u'(T) = 0, u"(T) > 0, and by Lemma 1 we obtain a 

contradiction with the property (iii) of u'(t). D 
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