Czechoslovak Mathematical Journal

Michal Greguš; Jozef Vencko

On oscillatory properties of solutions of a certain nonlinear third order differential equation

Czechoslovak Mathematical Journal, Vol. 42 (1992), No. 4, 675-684

Persistent URL: http://dml.cz/dmlcz/128362

Terms of use:

© Institute of Mathematics AS CR, 1992

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON OSCILLATORY PROPERTIES OF SOLUTIONS OF A CERTAIN NONLINEAR THIRD ORDER DIFFERENTIAL EQUATION

M. Greguš and J. Vencko, Bratislava

(Received June 3, 1991)

1. We are interested in oscillatory solutions of a nonlinear differential equation of the third order

$$
\begin{equation*}
u^{\prime \prime \prime}+q(t) u^{\prime}+p(t) u^{\alpha}=0 \tag{1}
\end{equation*}
$$

where $p(t), q(t)$ and $q^{\prime}(t)$ are continuous functions on the interval $(a, \infty),-\infty<a$, $a>1$ is a ratio of odd integers.

By a solution of (1) we mean a function $u(t)$ defined on an interval $(T, \infty), a \leqslant T$, with a continuous third derivative, which satisfies equation (1). By an oscillatory solution we mean a nontrivial solution u of (1) that has infinitely many null-points with a limit point at infinity. Otherwise the solution is called nonoscillatory.

The object of generalization are results in the papers [4] and [1] concerning oscillatory solutions of equation (1) in the case $q(t) \equiv 0$ on (a, ∞).

In the proofs of this paper some results of the paper [3] are applied.
2. N. Parhi and S. Parhi [4] proved the following theorem:

Theorem A. Let $p(t)<0$ for $t \in(a, \infty)$ and let $\int_{t_{0}}^{\infty} p(\tau) \mathrm{d} \tau=-\infty, t_{0}>a$. Then every bounded nontrivial solution u of the differential equation

$$
\begin{equation*}
u^{\prime \prime \prime}+p(t) u^{\alpha}=0 \tag{1}
\end{equation*}
$$

defined on $\left\langle t_{0}, \infty\right)$ is oscillatory on $\left\langle t_{0}, \infty\right)$.
In the paper [1] the following theorem is proved:

Theorem B. Let the assumptions of Theorem A be fulfilled. Then a necessary and sufficient condition for a solution u of $\left(1_{1}\right)$ to be oscillatory for $t \geqslant t_{0}$ is that

$$
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{\prime 2}(t)<0
$$

for $t \geqslant t_{0}$.
I. W. Heidel [3] proved several interesting results. Some of them are formulated in the following two theorems.

Theorem C. Let $q(t) \leqslant 0$ and $p(t) \leqslant 0$ for $t \in(a, \infty)$. If $u(t)$ is a nontrivial nonoscillatory solution of (1) on $\left\langle t_{0}, \infty\right), t_{0}>a$, then there is a number $c \geqslant t_{0}$ such that either $u(t) u^{\prime}(t)>0$ for $t \geqslant c$, or $u(t) u^{\prime}(t) \leqslant 0$ for $t \geqslant c$.

Theorem D. Let the supposition of Theorem C be fulfilled and let, moreover, $\int_{t_{0}}^{\infty} t q(t) \mathrm{d} t>-\infty$, or $-\frac{2}{t^{2}} \leqslant q(t) \leqslant 0$ for $t \geqslant t_{0}, t_{0}>0$. If $u(t)$ is a nontrivial nonoscillatory solution of (1) on $\left\langle t_{0}, \infty\right)$, then $u(t) u^{\prime}(t)>0$ for $t \in\left\langle t_{0}, \infty\right)$.

In some proofs the two following lemmas will be used. They are special cases of Lemma 4 of [5].

Lemma A. Let $u(t) \in C^{2}\left(\left\langle t_{0}, \infty\right)\right)$. Then $u(t)>0, u^{\prime}(t)<0, u^{\prime \prime}(t) \leqslant 0$ cannot hold for all $t \geqslant t_{0}$.

Lemma B. Let $u(t) \in C^{3}\left(\left\langle t_{0}, \infty\right)\right)$. Then $u(t)>0, u^{\prime}(t)<0, u^{\prime \prime \prime}(t) \geqslant 0$ cannot hold for all $t \geqslant t_{0}$.
3. In this section we generalize Theorem A and Theorem B for equation (1) if $p(t)<0, q(t) \leqslant 0$ and $q^{\prime}(t) \geqslant 0$ for $t \in(a, \infty)$ and prove a corollary of Theorem D for the solutions of equation (1).

Lemma 1. Let $p(t)<0, q(t) \leqslant 0$ for $t \in(a, \infty)$ and let $u(t)$ be a solution of (1) with the properties $u\left(t_{0}\right) \geqslant 0, u^{\prime}\left(t_{0}\right) \geqslant 0, u^{\prime \prime}\left(t_{0}\right)>0, t_{0}>a$. Then $u(t)>0$, $u^{\prime}(t)>0, u^{\prime \prime}(t)>0$ for $t>t_{0}$ and $u(t) \rightarrow \infty, u^{\prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$.

This lemma can be proved in a similar manner as Theorem 1 in [1] and therefore the proof is omitted.

In the paper [2] the following theorem is presented without proof and therefore we prove it.

Theorem 1. Let the coefficients of equation (1) fulfil the suppositions of Lemma 1 and let, moreover, $\int_{t_{0}}^{\infty} p(\tau) \mathrm{d} \tau=-\infty$ and $q^{\prime}(t) \geqslant 0$ for $t \geqslant t_{0}$. Then every nontrivial
bounded solution u of (1) on $\left\langle t_{0}, \infty\right), t_{0}>a$, is either oscillatory on $\left(t_{0}, \infty\right)$, or converges monotonically to zero for $t \rightarrow \infty$.

Proof. Without loss of generality suppose $u(t)>0$ and bounded on $\left\langle t_{0}, \infty\right)$. We prove that this can occur only if it converges monotonically to zero for $t \rightarrow \infty$. By Lemma 1, $u^{\prime}(t)$ cannot have on $\left\langle t_{0}, \infty\right)$ more than two zeros and then it does not change the sign. Then there exists a point $T \geqslant t_{0}$ such that for $u^{\prime}(t), t>T$ we have two possibilities. Let

$$
\begin{equation*}
u^{\prime}(t)>0 \quad \text { for } \quad t>T \tag{i}
\end{equation*}
$$

Integrating equation (1), in this case we get the identity

$$
\begin{equation*}
u^{\prime \prime}(t)+q(t) u(t)+\int_{t_{0}}^{t}\left[p(\tau) u(\tau)^{\alpha-1}-q^{\prime}(\tau)\right] u(\tau) \mathrm{d} \tau=k \tag{2}
\end{equation*}
$$

The boundedness of $u(t)$ and the suppositions $q^{\prime}(t) \geqslant 0$ for $t \geqslant t_{0}$ and $\int_{t_{0}}^{\infty} p(\tau) \mathrm{d} \tau=$ $-\infty$ imply that there exists a point $T_{1} \geqslant T$ such that

$$
u^{\prime \prime}(t)>0 \quad \text { for } \quad t>T_{1}
$$

From Lemma 1 we get a contradiction with the supposition that $u(t)$ is bounded.
Let

$$
\begin{equation*}
u^{\prime}(t)<0 \quad \text { for } \quad t>T \tag{ii}
\end{equation*}
$$

Then $u(t)$ is decreasing for $t>T$. There are two cases for $u(t)$. Either $u(t)>K>$ 0 and then the identity (2) implies that $u^{\prime \prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$, which contradicts $u^{\prime}(t)<0$ for $t>T$, or $K=0$ and $u(t)$ converges monotonically to zero.

Lemma 2. Let the coefficients of equation (1) fulfil the assumptions of Theorem 1. Let u be a solution of (1) with the property $u(t)>0$ for $t \geqslant t_{0}$. Then there exists a point $t_{1} \geqslant t_{0}$ such that either $u(t)>0, u^{\prime}(t)>0, u^{\prime \prime}(t)>0$ for $t \geqslant t_{1}$, or $u^{\prime}(t)<0$ for $t \geqslant t_{1}$, and

$$
\lim _{t \rightarrow \infty} u(t)=0, \quad \lim _{t \rightarrow \infty} \sup u^{\prime}(t)=0
$$

Proof. Suppose that $u(t)>0$ for $t \geqslant t_{0}$. There are three possibilities for $u^{\prime \prime}(t)$. 1) $u^{\prime \prime}(t)>0$ for $t>t_{0}$.

Then $u^{\prime}(t)$ is increasing for $t>t_{0}$ and we have two cases:
(i) $u^{\prime}(t)>0$ for $t \geqslant t_{1} \geqslant t_{0}$. In this case $u(t)>0, u^{\prime}(t)>0, u^{\prime \prime}(t)>0$ for $t \geqslant t_{1}$, and this is the assertion of Lemma 2.
(ii) $u^{\prime}(t)<0$ for $t \geqslant t_{1} \geqslant t_{0}$ and then there exists $\lim _{t \rightarrow \infty} u^{\prime}(t)=K \leqslant 0$. If $K<0$ then $u(t) \leqslant K\left(t-t_{1}\right)+u\left(t_{1}\right)$ which is a contradiction with $u(t)>0$ for large $t>t_{1}$. Therefore $\lim _{t \rightarrow \infty} u^{\prime}(t)=0$ and $\lim _{t \rightarrow \infty} u(t)=k \geqslant \dot{0}$. If $k>0$, then the identity (2) implies that $u^{\prime \prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$, but this is a contradiction with $u^{\prime}(t) \rightarrow 0$ for $t \rightarrow \infty$ and therefore $\lim _{t \rightarrow \infty} u(t)=0$.
2) $u^{\prime \prime}(t)<0$ for $t<t_{0}$. By Lemma A the case $u^{\prime}(t)<0$ cannot occur for $t \geqslant t_{1} \geqslant t_{0}$. If there exists $t_{1} \geqslant t_{0}$ such that $u^{\prime}(t)>0$ for $t \geqslant t_{1}$, then from the identity (2) we obtain a contradiction.
3) $u^{\prime \prime}(t)$ has infinitely many null-points for $t \geqslant t_{0}$ at which it changes the sign $\left(u^{\prime \prime}(t)\right.$ oscillates on $\left\langle t_{0}, \infty\right)$). For $u^{\prime}(t)$ we have three possibilities:
(i) $u^{\prime}(t)>0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then $u(t)$ is increasing and from (2) we obtain a contradiction with the oscillatoricity of $u^{\prime \prime}(t)$.
(ii) $u^{\prime}(t)<0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then necessarily $\lim _{t \rightarrow \infty} \sup u^{\prime}(t)=0$ and $\lim _{t \rightarrow \infty} u(t)=0$. In the opposite case (2) implies that $u^{\prime \prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$ and then it cannot oscillate.
(iii) $u^{\prime}(t)$ is oscillatory on $\left\langle t_{1}, \infty\right), t_{1} \geqslant t_{0}$. This case is in contradiction with the assertion of Theorem C.

Lemma 3. Let the supposition of Theorem 1 on the coefficients of equation (1) be fulfilled. Then for every solution u of (1) which converges monotonously to zero for $t \rightarrow \infty$ with the property $u(t) u^{\prime}(t)<0$ for $t>t_{0}$ there exists $T \geqslant t_{0}$ such that for $t \geqslant T$ the inequality

$$
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{2}(t)+\frac{1}{2} q(t) u^{2}(t)<0
$$

holds.
Proof. Let $u(t)>0$ and $u^{\prime}(t)<0$ for $t \geqslant t_{0}$. Let $t_{0}<t_{1}<t_{2}<\ldots$ be an arbitrary sequence of points diverging to infinity if $u^{\prime}(t)$ is a monotone function, or such a sequence of points for which $u^{\prime}\left(t_{i}\right) \rightarrow 0$ if $t_{i} \rightarrow \infty$. By Lemma 2 such sequence of $t_{i}, i=1,2, \ldots$ exists.

Multiply equation (1) by the solution u and integrate from t_{i} to t. We obtain the integral identity

$$
\begin{align*}
& u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{\prime 2}(t)+\frac{1}{2} q(t) u^{2}(t)+\int_{t_{i}}^{t}\left[p(\tau) u(\tau)^{\alpha-1}(t)-\frac{1}{2} q^{\prime}(\tau)\right] u^{2}(\tau) \mathrm{d} \tau= \tag{3}\\
= & u\left(t_{i}\right) u^{\prime \prime}\left(t_{i}\right)-\frac{1}{2} u^{\prime 2}\left(t_{i}\right)+\frac{1}{2} q\left(t_{i}\right) u^{2}\left(t_{i}\right), \quad i=1,2, \ldots
\end{align*}
$$

For a solution $u(t)$ for which $u(t)>0, u^{\prime}(t)<0$ for $t \geqslant t_{0}$ the identity (2) and Theorem 1 yield that $u^{\prime \prime}(t)$ must be bounded on $\left\langle t_{0}, \infty\right)$ the integral $\int_{t_{0}}^{\infty}\left[p(\tau) u^{\alpha-1}(\tau)-\right.$ $\left.q^{\prime}(\tau)\right] u(\tau) \mathrm{d} \tau$ exists and $u(t) \rightarrow 0$ for $t \rightarrow \infty$. Then there exists a point $T>t_{0}$ such that for $t>T$ we have

$$
-\int_{t}^{\infty}\left[p(\tau) u^{\alpha-1}(\tau)-\frac{1}{2} q^{\prime}(\tau)\right] u^{2}(\tau) \mathrm{d} \tau \leqslant-\int_{t}^{\infty}\left[p(\tau) u^{\alpha-1}(\tau)-q^{\prime}(\tau)\right] u(\tau) \mathrm{d} \tau
$$

If in the identity (3) $t_{i} \rightarrow \infty$ for $i \rightarrow \infty$ we obtain the relation

$$
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{2}(t)+\frac{1}{2} q(t) u^{2}(t)=\int_{t}^{\infty}\left[p(\tau) u^{\alpha-1}(\tau)-\frac{1}{2} q^{\prime}(\tau)\right] u^{2}(\tau) \mathrm{d} \tau<0
$$

for $t \geqslant T$.

Theorem 2. Let $p(t)<0, q(t) \leqslant 0, q^{\prime}(t) \geqslant 0$ for $t \in(a, \infty)$ and let $\int_{t_{0}}^{\infty} p(\tau) \mathrm{d} \tau=$ $-\infty, t_{0} \geqslant a$. Then a necessary and sufficient condition for the solution u of (1) defined on $\left\langle t_{0}, \infty\right)$ to be oscillatory for $t \geqslant t_{0}$, or to be monotonously converging to zero is

$$
\begin{equation*}
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{\prime 2}(t)+\frac{1}{2} q(t) u^{2}(t)<0 \tag{4}
\end{equation*}
$$

for $t>t_{1}, t_{1} \geqslant t_{0}$.
Proof. Sufficient condition. Let (4) hold for $t>t_{1} \geqslant t_{0}$ and let e.g. $u(t)>0$ for $t \geqslant t_{0}$. It follows from Lemma 2 that there exists $t_{1} \geqslant t_{0}$ such that either $u(t)>0$, $u^{\prime}(t)>0, u^{\prime \prime}(t)>0$ for $t>t_{1}$, or $u(t)>0, u^{\prime}(t)<0$ for $t>t_{1}$. In the latter case the solution u by Lemma 2 monotonously converges to zero (and by Lemma 3 fulfils the condition (4)). In the former case, by Lemma $1 u(t) \rightarrow \infty$ for $t \rightarrow \infty$, and from the integral identity (3) for $t_{i}=T \geqslant t_{1}$ and from the suppositions of Theorem 2 it follows that for large t the inequality

$$
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{\prime 2}(t)+\frac{1}{2} q(t) u^{2}(t)>0
$$

holds and this is a contradiction with (4).
Necessary condition. By Lemma 3 we must prove that an oscillatory solution in $\left\langle t_{0}, \infty\right)$ fulfils the condition (4). Let $u(t)$ be an oscillatory solution of (1) on $\left\langle t_{0}, \infty\right)$ and let $t_{i} i=1,2, \ldots$ be its null-points on $\left\langle t_{0}, \infty\right)$. Then the identity (3) implies that the function $u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{\prime 2}(t)+\frac{1}{2} q(t) u^{2}(t)$ is increasing on $\left\langle t_{1}, \infty\right)$ and $u\left(t_{i}\right) u^{\prime \prime}\left(t_{i}\right)-\frac{1}{2} u^{2}\left(t_{i}\right)+\frac{1}{2} q\left(t_{i}\right) u^{2}\left(t_{i}\right)<0$ for $i=1,2, \ldots$. Consequently, (4) holds for $t \geqslant t_{1}$.

Corollary 1. Let the suppositions of Theorem 2 be fulfilled and let, moreover, the suppositions of Theorem D be fulfilled. Then a necessary and sufficient condition for a solution u of (1) to be oscillatory on $\left\langle t_{0}, \infty\right)$ is that the condition (4) is fulfilled for $t>T \geqslant t_{0}$, where T is sufficiently large.
4. In this section we shall study equation (1) with $p(t)<0, q(t) \geqslant 0, q^{\prime}(t) \geqslant 0$ for $t \in(a, \infty)$.

Theorem 3. Let $p(t)<0, q(t) \geqslant 0, q^{\prime}(t) \geqslant 0$ for $t \in(a, \infty)$, let $q(t)$ be bounded on (a, ∞) and $\int_{t_{0}}^{\infty} p(t) \mathrm{d} t=-\infty, t_{0}>a$. Then every bounded solution of (1) on $\left\langle t_{0}, \infty\right)$ is oscillatory on this interval.

Proof. Let e.g. $u(t)>0$ be bounded on $\left\langle t_{0}, \infty\right), t_{0}>a$. Three cases for its first derivative $u^{\prime}(t)$ are possible.

1) $u^{\prime}(t)>0$ for $t \geqslant T \geqslant t_{0}$. The identity (2) for $t \geqslant t_{0}$ implies that $u^{\prime \prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$ and therefore $u(t)$ cannot be bounded on $\left\langle t_{0}, \infty\right)$, which is a contradiction.
2) $u^{\prime}(t) \leqslant 0$ for $t \geqslant T \geqslant t_{0}$. In this case equation (1) implies that $u^{\prime \prime \prime}(t)>0$ for $t \geqslant T$ and by Lemma B this is impossible.
3) $u^{\prime}(t)$ has infinitely many null-points at which it changes the sign. If in this case $u(t)>K>0$ for $t \geqslant t_{0}$, then we obtain from (2) that $u^{\prime \prime}(t)>0$ for $t \geqslant T \geqslant t_{0}$ and therefore $u^{\prime}(t)$ must be increasing for $t \geqslant T$, which is a contradiction with the oscillatoricity of $u^{\prime}(t)$. Therefore $\lim _{t \rightarrow \infty} \inf u(t)=0$. If we suppose that $\lim _{t \rightarrow \infty} \inf u(t)=$ 0 , we have the following two possibilities:
(i) $\int_{t_{0}}^{\infty}\left[p(\tau) u^{\alpha-1}(\tau)-q^{\prime}(\tau)\right] u(\tau) \mathrm{d} \tau=\infty$. However, in this case we obtain from (2) that $u^{\prime \prime}(t)>0$ for $t \geqslant T \geqslant t_{0}$ and this contradiction with the oscillatory of $u^{\prime}(t)$.
(ii) $0 \leqslant-\int_{t_{0}}^{\infty}\left[p(\tau) u^{\alpha-1}(\tau)-q^{\prime}(\tau)\right] u(\tau) \mathrm{d} \tau<\infty$.

In this case let $\left\{t_{i}\right\}_{i=1}^{\infty}, t_{i} \rightarrow \infty$ for $i \rightarrow \infty$, be a sequence of points at which $u^{\prime}\left(t_{i}\right)=0$ and $u^{\prime \prime}\left(t_{i}\right)>0$. Clearly $u\left(t_{i}\right) \rightarrow 0$ for $i \rightarrow \infty$. It follows from (2) that $\left\{u^{\prime \prime}\left(t_{i}\right)\right\}$ is bounded on $\left\langle t_{0}, \infty\right)$.

Now if we write the identity (3) in the form

$$
\begin{equation*}
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{2}(t)+\frac{1}{2} q(t) u^{2}(t)+\int_{t_{1}}^{t}\left[p(\tau) u^{\alpha-1}(\tau)-\frac{1}{2} q^{\prime}(\tau)\right] u^{2}(\tau) \mathrm{d} \tau=k \tag{5}
\end{equation*}
$$

where $k=u\left(t_{1}\right) u^{\prime \prime}\left(t_{1}\right)-\frac{1}{2} u^{\prime 2}\left(t_{1}\right)+\frac{1}{2} q\left(t_{1}\right) u^{2}\left(t_{1}\right)>0$, we obtain for $u^{\prime \prime}\left(t_{i}\right), i=2,3$, ... the equality

$$
u^{\prime \prime}\left(t_{i}\right)=\frac{k}{u\left(t_{i}\right)}-\frac{1}{2} q\left(t_{i}\right) u\left(t_{i}\right)-\frac{1}{u\left(t_{i}\right)} \int_{t_{1}}^{t_{i}}\left[p(\tau) u^{\alpha-1}(\tau)-\frac{1}{2} q^{\prime}(\tau)\right] u^{2}(\tau) \mathrm{d} \tau .
$$

It follows from this relation for $t_{i} \rightarrow \infty$ that $u^{\prime \prime}\left(t_{i}\right) \rightarrow \infty$, which is a contradiction with the boudedness of $\left\{u^{\prime \prime}\left(t_{i}\right)\right\}$.

Lemma 4. Let the supposition of Theorem 3 be fulfilled. Then for every solution u of (1) with the property $u(t)>0$ for $t \geqslant t_{0}$, there exists $T \geqslant t_{0}$ such that for all $t \geqslant T$ the inequality

$$
\begin{equation*}
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{2}(t)+q(t) u^{2}(t)>0 \tag{6}
\end{equation*}
$$

holds.
Proof. Let $u(t)>0$ for $t \geqslant t_{0}$. Then there are three possibilities for $u^{\prime}(t)$.
(i) $u^{\prime}(t)>0$ for $t \geqslant t_{0}$. It follows from (5), where $t_{1}=t_{0}$, that there exists $T \geqslant t_{0}$ such that for all $t \geqslant T$ the inequality (6) holds.
(ii) $u^{\prime}(t) \leqslant 0$ for $t \geqslant t_{0}$. From equation (1) we obtain in this case that $u^{\prime \prime \prime}(t)>0$ for $t \geqslant t_{0}$, but by Lemma B this is not possible.
(iii) $u^{\prime}(t)$ has on $\left\langle t_{0}, \infty\right)$ at least two null-points at which it changes the sign.

At one of them we have $u^{\prime \prime}(t) \geqslant 0$. Let $t=T_{1}$. It follows from (5) with $t_{1}=T_{1}$ that $k=u\left(T_{1}\right) u^{\prime \prime}\left(T_{1}\right)+\frac{1}{2} q\left(T_{1}\right) u^{2}\left(T_{1}\right) \geqslant 0$ and that there exists $T \geqslant T_{1}$ such that (6) holds for $t>T$.

Theorem 4. Let the suppositions of Theorem 3 be fulfilled. Then a necessary and sufficient condition for the solution u of (1) defined on $\left\langle t_{0}, \infty\right), t_{0}>a$ to be oscillatory on $\left(t_{0}, \infty\right)$ is that

$$
\begin{equation*}
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{2}(t)+\frac{1}{2} q(t) u^{2}(t)<0 \tag{7}
\end{equation*}
$$

for $t \geqslant T \geqslant t_{0}$.
Proof. Sufficient condition. Let u be a solution of (1) satisfying the condition (7) for $t \geqslant T \geqslant t_{0}$, and let e.g. $u(t)>0$ for $t \geqslant T$. By Lemma 4 there exists $T_{1} \geqslant t_{0}$ such that (6) holds for $t \geqslant T_{1}$, and this is a contradiction with (7). This proves that u must be oscillatory.

Necessary condition can be proved in the same manner as in Theorem 2.
Remark 1. Let u be a solution of (1) with the property $u\left(t_{0}\right)=u^{\prime}\left(t_{0}\right)=0$, $u^{\prime \prime}\left(t_{0}\right)>0$ and let the supposition of Theorem 2 or of Theorem 4 be fulfilled. Then $u(t)>0$ for $t>t_{0}$.

This assertion follows from the identity (5), where $k=0$.
5. In this section we shall discuss two cases of suppositions on the coefficients of equation (1), in which we do not prove a necessary and sufficient condition for the oscillatoricity of solutions of equation (1).

Theorem 5. Let $p(t)<0, q(t) \geqslant 0, q^{\prime}(t) \leqslant 0$ for $t \in(a, \infty)$ and let $\lim _{t \rightarrow \infty} q(t)=0$ and $\int_{t_{0}}^{\infty} p(\tau) \mathrm{d} \tau=-\infty, t_{0} \geqslant a$. Then every bounded solution u of (1) defined on $\left\langle t_{0}, \infty\right)$ is either oscillatory on $\left\langle t_{0}, \infty\right)$, or $\lim _{t \rightarrow \infty} \inf |u(t)|=0$.

Proof. Let u be a bounded solution of (1) defined on $\left\langle t_{0}, \infty\right), t_{0} \geqslant a$. If we integrate (1) term by term for $t \geqslant t_{0}$ we have

$$
\begin{equation*}
u^{\prime \prime}(t)+\int_{t_{0}}^{t} q(\tau) u^{\prime}(\tau) \mathrm{d} \tau+\int_{t_{0}}^{t} p(\tau) u^{\alpha}(\tau) \mathrm{d} \tau=u^{\prime \prime}\left(t_{0}\right) \tag{8}
\end{equation*}
$$

Let $|u(t)| \leqslant K, K>0$. The function $q(t)$ is nonincreasing and $q(t) \rightarrow 0$ for $t \rightarrow \infty$. For a given $\varepsilon / 4 K>0$ there exists $T_{0} \geqslant t_{0}$ such that $0 \leqslant q(t) \leqslant \frac{\mathcal{E}}{4 K}$ for $t>T_{0}$. Let T_{1}, T_{2} be such that $T_{2}>T_{1}>T_{0}$. By the second mean value theorem there exists $c, T_{1} \leqslant c \leqslant T_{2}$ such that

$$
\begin{aligned}
\left|\int_{T_{1}}^{T_{2}} q(\tau) u^{\prime}(\tau) \mathrm{d} \tau\right| & =\left|q\left(T_{1}\right) \int_{T_{1}}^{c} u^{\prime}(\tau) \mathrm{d} \tau+q\left(T_{2}\right) \int_{c}^{T_{2}} u^{\prime}(\tau) \mathrm{d} \tau\right| \\
& \leqslant\left|q\left(T_{1}\right)\right|\left|u(c)-u\left(T_{1}\right)\right|+\left|q\left(T_{2}\right)\right|\left|u\left(T_{2}\right)-u(c)\right| \\
& \leqslant \frac{\varepsilon}{4 K} 4 K=\varepsilon .
\end{aligned}
$$

Then by the Cauchy-Bolzano criterion $\int_{t_{0}}^{\alpha} q(\tau) u^{\prime}(\tau) \mathrm{d} \tau$ converges.
Suppose now that $u(t)>0$ for $t>t_{0}$ for $t>t_{0}$ and u is bounded on $\left\langle t_{0}, \infty\right)$. For $u^{\prime}(t)$ there are three posibilities on $\left\langle t_{0}, \infty\right)$.
(i) $u^{\prime}(t)>0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then it follows from (8) that $u^{\prime \prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$, which is a contradiction with the boundedness of $u(t)$.
(ii) $u^{\prime}(t) \leqslant 0$ for $t \geqslant t_{1} \geqslant t_{0}$. In this case equation (1) implies that $u^{\prime \prime \prime}(t)>0$ for $t \geqslant t_{1}$, but by Lemma B this is impossible.
(iii) $u^{\prime}(t)$ changes its sign infinitely many times on $\left\langle t_{0}, \infty\right)$. If in this case $\left.u(t)\right\rangle$ $K_{1}>0$ for $t \geqslant t_{1} \geqslant t_{0}$, then $\int_{t_{0}}^{\infty} p(\tau) u^{\alpha}(\tau) \mathrm{d} \tau=-\infty$ and (8) yields $u^{\prime \prime}(t) \rightarrow$ ∞ for $t \rightarrow \infty$, which is a contradiction with the boundedness of $u(t)$. Therefore $\lim _{t \rightarrow \infty} \inf u(t)=0$.

Theorem 6. Let $p(t)<0, q(t) \geqslant 0, q^{\prime}(t) \leqslant 0$ for $t \in(a, \infty)$ and let $\lim _{t \rightarrow \infty} q(t)=0$ and $-p(t)+\frac{1}{2} q^{\prime}(t) \geqslant k>0$ for $t \in(a, \infty)$. If u is a solution of (1) defined on $\left\langle t_{0}, \infty\right)$, $t_{0} \geqslant a$ such that it fulfils the condition

$$
\begin{equation*}
u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{\prime 2}(t)+\frac{1}{2} q(t) u^{2}(t)<0 \tag{9}
\end{equation*}
$$

for $t \geqslant t_{1} \geqslant t_{0}$, then u is oscillatory on $\left\langle t_{0}, \infty\right)$.

Proof. The supposition $-p(t)+\frac{1}{2} q^{\prime}(t) \geqslant k>0$ clearly implies the relation $\int_{t_{0}}^{\infty} p(\tau) \mathrm{d} \tau=-\infty$.

Suppose now that a solution $u(t)$ of (1) fulfils the condition (9) and that it is nonoscillatory. Let e.g. $u(t)>0$ for $t \geqslant t_{0}$. Then for $u^{\prime}(t)$ there are two possibilities. The possibiblity $u^{\prime}(t) \leqslant 0$ for $t \geqslant t_{1} \geqslant t_{0}$ is eliminated by Lemma B.
(i) $u^{\prime}(t)>0$ for $t \geqslant t_{1} \geqslant t_{0}$. If $u(t)$ is bounded from above then it is oscillatory, or $\lim _{t \rightarrow \infty} \inf u(t)=0$ by Theorem 5. But $\lim _{t \rightarrow \infty} \inf u(t)=0$ is in contradiction with $u(t)>0, u^{\prime}(t)>0$ for $t \geqslant t_{1}$. If $\lim _{t \rightarrow \infty} u(t)=\infty$, then there exists $T_{1} \geqslant t_{1}$ such that for $t \geqslant T_{1}$ we have $u(t)>1$ and $-\left[p(t) u^{\alpha-1}(t)-\frac{1}{2} q^{\prime}(t)\right] u^{2}(t) \geqslant k u^{2}(t)>k>0$. The integral identity (5) implies that $u(t) u^{\prime \prime}(t)-\frac{1}{2} u^{2}(t)+\frac{1}{2} q(t) u^{2}(t)>0$ for large t and this is a contradiction with (9).
(ii) $u^{\prime}(t)$ changes its sign infinitely many times. Then there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}, t_{k} \rightarrow \infty$ for $k \rightarrow \infty$, such that $u^{\prime}\left(t_{k}\right)=0, u^{\prime \prime}\left(t_{k}\right) \geqslant 0$ for $k=1,2, \ldots$ But at the points t_{k} we obtain a contradiction with (9).

Theorem 7. Let $p(t)<0, q(t) \leqslant 0, q^{\prime}(t) \leqslant 0$ for $t \in(a, \infty)$, let $q(t)$ be bounded from below on (a, ∞) and $\int_{t_{0}}^{\infty} p(\tau) \mathrm{d} \tau=-\infty, t_{0} \geqslant a$. Then every bounded solution u defined on $\left\langle t_{0}, \infty\right)$ is either oscillatory on $\left(t_{0}, \infty\right)$, or it converges monotonously to zero for $t \rightarrow \infty$.

Proof. Let u be a solution of (1) defined and bounded on $\left\langle t_{0}, \infty\right), t_{0} \geqslant a$ and let e.g. $u(t)>0$ for $t>t_{0}$. Then for $u^{\prime}(t)$ we have three possibilities:
(i) $u^{\prime}(t)>0$ for $t \geqslant t_{1} \geqslant t_{0}$. In this case we obtain from (1) that $u^{\prime \prime \prime}(t)>0$ for $t \geqslant t_{1}$. If $u^{\prime \prime}(t)>0$ for $t \geqslant t_{1}$ then Lemma 1 yields $u(t) \rightarrow \infty$ for $t \rightarrow \infty$, which is a contradiction with boudedness of $u(t)$.

If $u^{\prime \prime}(t)<0$ for $t \geqslant t_{1} \geqslant t_{0}$, then after integration of (1) term by term we obtain the relation (8) where $t_{0}=t_{1}$. Clearly $\lim _{t \rightarrow \infty} u(t)=k<\infty, \int_{t_{1}}^{\infty} p u^{\alpha}(\tau) \mathrm{d} \tau=-\infty$ and if $m \leqslant q(t) \leqslant 0$ then $\int_{t_{1}}^{t} q(\tau) u^{\prime}(\tau) \mathrm{d} \tau \geqslant m \int_{t_{1}}^{t} u^{\prime}(\tau) \mathrm{d} \tau \geqslant m\left[k-u\left(t_{1}\right)\right]$, and $\int_{t_{1}}^{t} q(\tau) u^{\prime}(\tau) \mathrm{d} \tau \rightarrow l, 0>l>-\infty$.

We see now from (8) that $u^{\prime \prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$ and this is a contradiction with the boudedness of $u(t)$.
(ii) $u^{\prime}(t) \leqslant 0$ for $t \geqslant t_{1} \geqslant t_{0}$. Then $u(t)$ is nonincreasing. Let $\lim _{t \rightarrow \infty} u(t)=k \geqslant 0$. If $k>0$ we obtain from (8) that $u^{\prime \prime}(t) \rightarrow \infty$ for $t \rightarrow \infty$ which is again a contradiction.
(iii) $u^{\prime}(t)$ changes its sign infinitely many times and there exists a point $T_{1} \geqslant t_{0}$ such that $u\left(T_{1}\right)>0, u^{\prime}\left(T_{1}\right)=0, u^{\prime \prime}\left(T_{1}\right) \geqslant 0$. By Lemma $1 u(t) \rightarrow \infty$ for $t \rightarrow \infty$ and this is a contradiction.

Theorem 8. Let $-p(t)>k>0, q(t) \leqslant 0, q^{\prime}(t) \leqslant 0$ for $t \in(a, \infty)$ and let $q^{\prime}(t) \rightarrow 0$ for $t \rightarrow \infty$. Let $u(t)$ be a solution of (1) defined on $\left\langle t_{0}, \infty\right), t_{0} \geqslant a$, which
fulfils the condition (9) for $t \geqslant t_{1} \geqslant t_{0}$. Then $u(t)$ is either oscillatory on $\left\langle t_{0}, \infty\right)$, or it converges monotonously to zero for $t \rightarrow \infty$.

Proof. Let u be a soution of (1) defined on $\left\langle t_{0}, \infty\right)$ which fulfils (9) for $t \geqslant t_{1}$, and let u be nonoscillatory.

Let e.g. $u(t)>0$ for $t \geqslant t_{0} . u^{\prime}(t)$ has three possibilities:
(i) $u^{\prime}(t) \geqslant 0$ for $t \geqslant T_{1} \geqslant t_{0}$. Then the identity (5) with $t_{1}=T_{1}$ contradicts (9), because $\int_{T_{1}}^{\infty}\left[p(\tau) u^{\alpha-1}(\tau)-\frac{1}{2} q^{\prime}(\tau)\right] u^{2}(\tau) \mathrm{d} \tau=-\infty$.
(ii) $u^{\prime}(t)<0$ for $t \geqslant T_{1} \geqslant t_{0}$. In this case, if $u(t)>L>0$ we obtain a contradiction as in the case (i). Therefore $u(t)$ can converge monotonously to zero for $t \rightarrow \infty$.
(iii) $u^{\prime}(t)$ changes its sign infinitely many times. In this case there exists a point $T>t_{0}$ at which $u(T)>0, u^{\prime}(T)=0, u^{\prime \prime}(T) \geqslant 0$, and by Lemma 1 we obtain a contradiction with the property (iii) of $u^{\prime}(t)$.

References

[1] M. Greguš: On a nonlinear binomial equation of the third order, to appear.
[2] M. Gregus: On the third order nonlinear differential equation Proc. of Equadiff, vol. 7, Prague, 1989, pp. 80-83.
[3] J. W. Heidel: Qualitative behavior of solutions of a third order nonlinear differential equation, Pac. J. Math. 27 (1968), 507-526.
[4] N. Parhi and S. Parhi: Oscillation and nonoscillation theorems for nonhomogeneous third order differential equations, Bull. of. Inst. of. Math., Academia Sinica 11 (1983), 125-139.
[5] V. Šeda: On a class of linear n-th order differential equations, Czech. Math. J. 39 (114) (1989), 350-369.

Author's address: Dept. of Mathematical Analysis, MFF UK, Mlynská dolina, 84215 Bratislava, Czechoslovakia.

