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1. INTRODUCTION 

In this paper, we assume that all spaces are Tychonoff. It is well-known that 
topological groups are Tychonoff (e.g., see [7, p. 29]). In [2], Bel'nov proved that every 
spaces X can be embedded into a homogeneous space Hx such that ind Hx = X> Ind 
Hx = Ind X and dimI/v = dimX in the case when the corresponding dimension 
of X is finite. Also, BePnov asked whether every spaces X can be embedded into 
a topological group G with dim G ^ dimX (see [9]). Shakhmatov proved that 
if n ^ 0 ,1,3,7 , then the n-dimensional sphere Sn can not be embedded into an 
n-dimensional topological group, and he showed that in the case dimX = 0, the 
answer to this question is positive [9]. In [6], Kimura proved that if a topological 
group G contains the bouquet S1 V S1 of two circles, then dimG ^ 2, which implies 
that in the case dimX = 1, the answer is negative. In [5], the author proved that if 
G contains the one point union Sn V I of the n-dimensional sphere Sn and an arc I, 
then dimG ^ n -f 1 (n = 1, 2, . . . ) , which implies that in the case dimX ^ 1, the 
question is negative. 

Also, in [9, p. 182] Shakhmatov asked whether S7 can be embedded into a topolog
ical group G with dimG = 7. Note that Sn(n = 0,1,3) is a topological group, S7 is 
an H-space but not a topological group, and Sn(n -̂  0,1,3, 7) is not an II-space (see 
[1]). To prove his above result, Shakhmatov essentially used the Adams' theorem 
that Sn (n -̂  0,1,3,7) is not an II-space. Naturally, the following problem will be 
raised: What kinds of manifols can be embedded into topological groups preserving 
dimensions? 

In this paper, we prove that if a topological group G contains the one point union 
Dn VI of an n-ball Dn and an arc I, then dimG ^ n-f 1. The case n = 1 is a negative 
answer to a question of Kimura [6, (4.5) Question]. Next, we prove the following 
theorem: Let M be an n-dimensional compact manifold without boundary. Then M 
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can be embedded into an n-dimensional topological group if and only if M is itself a 
topological group. Hence S7 can not be embedded into a topological group G with 
dim G = 7 or ind G = 7 or Ind G = 7. 

The author wishes to thank Professor A. Koyama for calling his attention to the 
above problem concerning embeddings manifolds into topological groups. 

2. EMBEDDINGS INTO TOPOLOGICAL GROUPS AND DIMENSIONS. 

n 
Let R be the real line and Let Dn be the n-ball {(xi, x 2 , . . . , xn) G I?n | $2 A ^ -} • 

i= i 
Let I be the unit interval [0,1] in R. Also, let Sn be the n-dimensional sphere 

n + l 
{(xi ,x 2 , . . . , -Cn+i)€ I2n+1 | £ x? = l } a n d l e t p = (1,0, . . .0) G Sn. By identifying 

t - i 

the point * = (0 ,0 , . . . , 0) G Dn and 0 G I, we obtain the one point union (Dn V I, *) 
o f ( D n , * ) a n d ( I , 0 ) . 

Then we have the following theorem. 

T h e o r e m 2 .1 . Let G be a topological group. If G contains Dn V I (n ^ 1), then 
dimG ^ n-l- 1. 

To prove (2.1), we need the following well-known result (e.g., see [3, (3.2.10) 
Theorem]). 

T h e o r e m 2.2. A normal space X satisfies the inequality dimK <C n (n ^ 0) if 
and only for every closed subset A of X and each mapping f: A —• Sn there is an 
(continuous) extension F: X -+ Sn of f over X. 

P r o o f of (2.1). Suppose, on the contrary, that there is a topological group G 
with contains DnVI and dimG ^ n. Let h : Dn VI —• G be an embedding. Since G is 
homogeneous, we may assume that h(*) = e is the unit element of the group G. We 
may assume that Dn and I are naturally the subsets of Dn V I. Let <p: Dn x I —• G 
be the homotopy defined by 

<p(x,t) = h(x)h(t) 

for x G Dn and t G I, where the symbol • denotes the group composition of G. 
Choose a neighborhood U of <p(dDn x {0}) in G and a neighborhood V of <p(*, 0) 
(= h(*)) in G such that U O V = 0, where <9Dn denotes the manifold boundary. 
Then, take a sufficiently small positive number t such that <p(dDn x [0,*]) C U and 
<p({*} x [0,*]) C V. Since <p(Dn x {t}) is an n-ball and <p(*,t) is not contained in 
V?(Dn x {0}), we can choose a small n-ball B in <p(Dn x {t})C\V such that <p(*,t) G B 
and Bn<p(Dn x {0}) = 0. Note that Bn(<p(dDn x [0,t])U<p(Dn x {0})) = 0. Define 
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a map / : <p(Dn x {0.*}) U <p(dDn x [0,/]) -+ 5 n as follows: If x is not contained in 
BJ(x) = p, and f\B: (B,dB) — (B/dB}*

f) = (Sn,p) is the natural quotient map 
which is obtained from B by shriking the boundary dB to a point *'. Note that 
<p(Dn x I) is compact metrizable. Since dimG ^ n, dimy?(Dn x [0,*]) -̂  n. 

By (2.2), we have an extension F: <p(Dn x [0,*]) - • Sn of / . Put H' = F<p: 
Dn x I -> 5 n . Note that #'(<9Dn x [0,*]) = *. Hence we obtain a homotopy # : 
Sn x [0, t] —• 5 n induced by # ' such that # 0 is a constant map and # t is homotopic 
to the identity map of 5 n , where Hs(x) = H(x,s) for 0 -̂  s ^ t and x 6 5 n . Since 
5 n is not contractible, this is a contradiction. D 

R e m a r k 2.3. By (2.1), the one point union Dn VI(n ^ 1) can not be embedded 
into an n-dimensional topological group and dim(Dn V I) = n. Hence the one point 
union Dn V I(n ^ 1) is the simplest example which gives a negative answer to the 
question of Bel'nov. The case n = 1 is a negative answer to the question of Kimura 
[6, (4.5) Question]. Also, in the proof of (2.1) we get a contradiction to assume that 
dim^>(Dn XI) ^ n. Since <p(Dn x I) is compact and metrizable, we can conclude 
that Dn V I can not be embedded into a topological group G such that ind G ^ n or 
Ind G ^ n or dimG ^ n. 

The following lemma is trivial. 

Lemma 2.4. Let G be a topological group. IfP is the path component containing 
the unit element of G, then P is a subgroup ofG. 

The following is the main theorem of this paper. 

T h e o r e m 2.5. Let M be a n-dimensional compact manifold without boundary 
(n ^ 1). Then M can be embedded into an n-dimensional topological group G if 
and only if M is itself a topological group. 

P r o o f . Suppose that M is not a topological group. We may assume that M is 
path connected and M contains the unit element e of G. Suppose, on the contrary, 
that G is an n-dimensional topological group G containing M. Let P is the path 
component of G which contains the unit element e of G. Then P is also a topological 
group (see (2.4)) and P D M. Since M is not a topological group, P — M ^ 0. Take 
a point xo G P — M. Since P is path connected, there is an arc A in P from xo to 
a point 2/0 of AI such that Af\ M = {t/o}. Since M is an n-dimensional manifold 
without boundary, there is a subset K of P which is homeomorphic to Dn V I. Let 
<p: Dn x I —• P be the homotopy as in the proof of (2.1). Then we see that <p(Dn x I) 
is compact and matrizable with dim<^(Dn x I) ^ n -f 1. Hence dimG ^ n + 1. This 
is a contradiction. The converse assertion is obvious. • 
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R e m a r k 2 .6 . It is well known that an n-dimensional sphere Sn is a topological 

group if and only if n = 0 , 1 , 3 . Hence Sn(n ^ 0,1,3) can not be embedded into an 

n-dimensional topological group. The case n = 7 is a negative answer to a question 

of Shakhmatov [9, p. 182] . Also, by the proof of (2.5), we can conclude that if M 

is an n-dimensional compact manifold without boundary which is contained in an 

n-dimensional topological group G, then M is a path component of G. 

In the theory of topological groups (see [7]), the structure of locally compact topo

logical groups has been studied by may mathematicians. Especially, the following is 

well known as a positive answer to Hilbert's fifth problem: A locally compact topolog

ical group which is finite-dimensional and locally (path) connected is a Lie group, in 

particular, a manifold without boundary (see [7, (4.10.1) Theorem]). In the theory of 

locally compact topological groups, the property of being locally compact is essential 

(see [7] and [4]). 

Now, we will give the proof of the following without the assumption of locally 

compactness. 

Coro l lary 2.7. If G is an n-dimensional topological group which contains an 

n-ball and G is locally path connected, then G is a Lie group. 

P r o o f . By (2.1), we know that G does not contain D n V F Since G is homoge

neous and locally path connected, we can see that G is an n-dimensional manifold, 

which implies that G is locally compact. Hence G is a Lie group. • 
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