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ON A VARIETY OF INFINITE ALGEBRAS

IVAN ZEMBERY, Bratislava

(Received August 5, 1991)

In this paper we shall deal with the following varieties of algebras. For each natural

number n > 0 a variety V,, with one n-ary operation h and n unary operations f; for

i=1, ..., n, will be considered. The defining systemn of identities is
(1) h(fi(x), ..., falz)) = 2,
(1) filzy,...,zp)=2; for i=1,...,n.

The aimn of this paper is to show that the varieties V,, for n > 1 all algebras are
one-element or infinite, to describe V;,-free algebras and to solve the word problem.

When there i1s no danger of confusion, we will not distinguish between the notation
of an algebra and its basic set.

Propositon 1. For each algebra A € V,, the operation h: A™ — A is a bijection,
and for any set A and any bijection ¢: A™ — A there exists an algebra A € V,, such
that h = ¢ in the unique way.

Proof. Let A € V, be an arbitrary algebra and let a € A be an arbitrary
element. Then a = h(fi(a),..., fu(a)), thus h is surjective. Let a;, ... an,
by, ..., by € A and h(ay,...,an) = h(by,...,b,). Then a; = fih(ay,...,an) =
fih(by,...,b,) = b; for i =1, ..., n. Therefore h is injective.

Let A be an arbitrary set and let ¢: A™ — A be a bijection. For an arbitrary
element a € A define

fila) =ei(p™a)) for i=1,...,n

where e;(zy,...,2,) = z;. Now we show that for arbitrary a, a;, ..., a, € A we
have

QO(fl((l),...,fn((l)) =a
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and
fl-(ga(al,...,an)) =a; for i1=1,...,n.

Let a, a1, ..., a, € A, then p(fi(a),..., fa(a)) = p(erp™(a),...,enp~1(a)) = a
and f,-(go(al,...,an)) = e,-go‘l(go(al, ...,a,,)) =ei(ay,...,ap)=a; fori=1, .., n

Let us suppose that there exist operations g; on A for ¢ = 1, ..., n such that for
arbitrary a, ay, ..., a, € A

¢(91(a), ..., gn(a)) = a
gi(plar,...,an)) =a; for i=1,...,n

holds. Then g;(a) = gi(¢(fi(a),..., fa(a))) = fi(a) fori=1, ... n. O

Corollary. If n # 1 then each algebra A € V, is one-element or infinite.

Proof. It follows immediately for the fact that h: A™ — A is a bijection. O

Proposition 2. Let A € V,, be an arbitrary algebra. For arbitrary elements a;,
.., @n € A there exists a unique element a € A such that f;(a) = a; fori=1,..., n.
Let A be any set and let p;: A — A fori =1, ..., n be arbitrary mapping with
the property that for any elements ay, ..., a, € A there exists a unique element
a € A such that pi(a) = a; fori =1, ..., n. Then there exists a unique algebra
A €V, on the set A such that f; = p; fori=1, ..., n.

Proof. Let A €V, be an arbitrary algebra and let ay, ..., a, € A be arbitrary
elements. Then fi(ay,...,a,) = a; for i = 1, ..., n. Suppose that there exists an
element @ € A with the property fi(a) = a; for i = 1, ..., n. Since f;(h(ay, ..
an)) = q; for i = 1, ..., n and such an element is unique, it follows that a = h(a,

c p).
Let A be an arbitrary set and let ¢;: A — A for i = 1, ..., n be arbitrary

mappings with the properties as in the proposition. For arbitrary elements a;, ..

.y

an € A denote by h(ay, ..., ap) the element for which goi(h(al, coy @n)) = a; for
i=1,..., n. Let a € A, then goilz(cpl(a),...,gon(a)) = ¢i(a) for all i. Since the
element with this property is unique, it follows that h(pi(a),...,¢n(a)) = a. It

follows also that the algebra A € V;, on the set A with the property f; = ¢; fori =1,
.., n exists and is unique. O

Corollary. All operations [; on algebras A € V,, are surjective.

Now we describe the free algebras in the varieties V,,. The case n = 1 is very

simple, because all algebras in V| are unary. The Vi-free algebra on a one-element
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set is an infinite chain, where f is the function of the successor and h is the function
of the predecessor. The V)-free algebra on an arbitrary set X is the disjoint system
of Vj-free algebras on the one-element set. The cardinality of this system is the same
as the cardinality of X.

The following theoremn concerns the V;,-free algebras in the case n > 1.

Theorem 1. Let A be the V,-free algebra on a set X and let B be the V,-
free algebra on a set Y, where X and Y are arbitrary finite sets. If card X =
cardY (modn — 1), then A and B are isomorphic.

Proof. Let A be the V,,-free algebra on a set X = {z1,...,z}. We show,
that A is the V,-free algebra also on the set Y = {z1,...,zx—1, fi(zk), - - -, fu(zk)}
Let C € V,, be an arbitrary algebra and let ¢: Y — C be an arbitrary mapping.
Suppose that ¢ can be extended to a homomorphism ¥: A — C. Denote z;¢ =
cj for j =1, .., k—1and fi(xx)Y = cx—14i for i = 1, ..., n. Since 29 =
(h(filzk), -, f,,(;tk))]d) = h([fi(ze)]®, - .., [fa(zi)]¥) = h(ck,- -, Ck4n—-1) and A is
Vp-free on the set X', ¢ can be uniquely extended to the homomorphism ¢: A — C.

]

Corollary. All V,-free algebras on finite sets are isomorphic.
In what follows a polynomial symbol will always mean a V;,-polynomial symbol.

Definition. The lenght of a polynomial symbol p is the number of occurences
of variables and will be denoted by I(p).

Definition. A polynomial symbol p is minimal if there exists no polynomial
symbol ¢ with the property ¢ = p and {(¢q) < I(p).

The following lemmas and the theorern concern the word problem in the variety V,.

Lemma 1. Letw,, ..., wy, be a sequence of polynomial symbols with the property
w; = wiyy fori =1, ..., m—1 and wy, i1s minimal. Then there exists a sequence
wy, ..., ux of polynomial symbols such that u; = wi, Uy = wm, uj = ujy; and
l(uj) > l(ujq1) forj=1,.., k-1

Proof. Note that by extending a polynomial symbol using one of the identities
(1) and (11), just one occurence of the polynomial symbol h arises. Let us denote this
occurence by h°. Let us assume that a polynormial symbol « is extended by using the
identity (i). It means that instead of o we will have A°(fi(a),..., fa(a)). Observe
that if h° disappears by shortening this polynomial symbol using one of the identities
(1) and (ii), the result is just the polynomial symbol a. Now let us assume that a
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polynomial symbol §; is extended by using the identity (ii). It means that instead
of B; we will have f;h°(B,,...,B,). Observe that if h® disappears by shortening this
polynomial symbol using the identity (ii), the result is just the polynomial symbol
Bi, and if h® disappears by shortening the polynomial symbol using the identity (i),
then B; = B; for j = 1, ..., n and the result is again just the polynomial symbol ;.
We can see that the last extending of a polynomial symbol is useless, and this can

be shown for all the extensions. a

Denote by s;(«) a polynomial symbol which is obtained from the polynomial
symbol a by one shortening using the identity (i), and denote by s2(«a) a polynomial
symbol which is obtained from the polynomial symbol a by one shortening using the
identity (ii).

Lemma 2. Let a be an arbitrary polynomial symbol. If each of ¢ and v is
denoting for sy or sy, then there exists a polynomial symbol which can be obtained
by shortening both ¢(«) and ¥(«).

Proof. Let g be the shortest subword of o« which 1s changed by applying ¢
to p(B) and let ¥ be the shortest subword of « which is changed by applying v to
(y). If B and v are disjoint subwords, then the assertion of the lemma is trivial.
Assume that v is a subword of 8. If 8 = h(f1(€),..., fa(€)), then ¢(3) = & and v is
a subword of €. In this case Yp(a) = ¢Ap(a) where A denotes applying 1 to each
other argument of h in the word ¥(8). If 3 = fih(&,,...,&,) and v is a subword of
&, then Yp(a) = ey(a) and if B = f;h(&, ..., &) and v 1s not a subword of &;, then
p(a) = e (a). 0

Theorem 2. For each polynomial symbol « there exists a unique minimal poly-

nomial symbol i which can be obtained by shortening o with the property u = a.

Proof. The proof can be carried out by induction on the length k of the
polynomial symbol. For k = 1 the assertion is trivial. Let the assertion be true for
all k < m — 1, we show that the assertion is true for k = m. Let 8 be an arbitrary
polynomial symbol with I[(8) = m. Let 3, and 35 be such polynomial symbols which
can be obtained by shortening 3 using one of the identities (i) and (i1). According to
the induction hypothesis for each of the polynomial symbols 3, and (2 there exists
a unique minimal polynomial symbol gy and pua, respectively, for which p; = 3
and po = (2. According to Lemma 2 there exists a polynomial symbol ¥ which is a
shortening of both , and B2 and for which ¥ = ) and ¥ = B2. According to Lemma
1 there exists a unique minimal polynomial symbol p = p; = po for which u = 3,
and p = (9, consequently for « there exists a unique minumal polynomial symbol

for which pu = «. O
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Corollary. The word problem for the variety V, is solvable.
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