Czechoslovak Mathematical Journal

Josef Novák
Convergences \mathfrak{L}_{S}^{H} for the group of real numbers

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 1, 15-25

Persistent URL:
http://dml.cz/dmlcz/128385

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CONVERGENCES \mathfrak{L}_{S}^{H} FOR THE GROUP OF REAL NUMBERS

Josef Novák, Praha

(Received February 27, 1990)

For each subgroup H of the group R of real numbers and each subset S of the quotient group R / H a convergence \mathfrak{L}_{S}^{H} for the group R is constructed. The relation of the system of convergences \mathfrak{L}_{S}^{H} to the Ciech-Stone compactification of discrete spaces is clarified. Necessary and sufficient conditions are given for $\left(R, \mathfrak{L}_{S}^{H},+\right)$ to be a complete group with respect to the convergence \mathfrak{L}_{S}^{H}. This gives some views on the structure of the groups R and R / H.

The point of our considerations is the group $(R,+)$ of real numbers. We use the fact that R is a linearly ordered point set for which a convergence \mathfrak{L} is defined by means of open intervals $(a, b) \subset R$ such that $\lim x_{n}=x, \lim y_{n}=y$ implies that $\lim \left(x_{n}-y_{n}\right)=x-y$. In this sense R is a convergence commutative group ([1]). It will be denoted $(R, \mathfrak{L},+)$.

Recall that a convergence \mathfrak{M} for a set M is a collection of pairs $\left(\left\langle x_{n}\right\rangle, x\right)$ where $\left\langle x_{n}\right\rangle$ is a sequence of points $x_{n} \in M$ and $x \in M$. We assume that the convergence \mathfrak{M} satisfies the well known Fréchet axioms of convergence inclusive the axiom of the maximal convergence $\left(\mathfrak{M}=\mathfrak{M}^{*}\right)$. A commutative group $(M,+)$ with a convergence \mathfrak{M} will be denoted $(M, \mathfrak{M},+)$. If $\left(\left\langle x_{n}\right\rangle, x\right) \in \mathfrak{M},\left(\left\langle y_{n}\right\rangle, y\right) \in \mathfrak{M}$ implies that $\left(\left\langle x_{n}-y_{n}\right\rangle, x-y\right) \in \mathfrak{M}$ we have a convergence commutative group $(M, \mathfrak{M},+$) (abbr. cc-group). In such a group Cauchy sequences are defined to be sequences $\left\langle x_{n}\right\rangle, x_{n} \in M$, such that $\left(\left\langle x_{n}-x_{i_{n}}\right\rangle, 0\right) \in \mathfrak{M}$ whenever $\left\langle x_{i_{n}}\right\rangle \subset\left\langle x_{n}\right\rangle$. A cc-group $(M, \mathfrak{M},+)$ is complete if each Cauchy sequence \mathfrak{M}-converges in M, more precisely, if $\left\langle x_{n}\right\rangle, x_{n} \in M$, is a Cauchy sequence then there is a point $x \in M$ such that $\left(\left\langle x_{n}\right\rangle, x\right) \in \mathfrak{M}$.

Notation. We denote N the set of natural numbers, N^{-1} the set of numbers $n^{-1}, n \in N, Q$ the group of rational and R the group of real numbers, H a sulgroup of the group R and S a subset of the quotient group R / H. A subgroup of R is either discrete or dense. Points x_{1} and x_{2} of R are non-equivalent (with respect to $H)$ if $\left(x_{1}-x_{2}\right) \notin H$. In the section I we consider R / H as a set of points sometimes called indexes. They will be denoted by Greek letters ξ, η, ζ.

Let H be a subgroup of the group R and R / I the corresponding quotient group. Elements $\xi \in R / H$ are classes $T_{\xi}=a_{\xi}+H$ where a_{ξ} is a representative of the class T_{ξ}. We identify elements ξ with ordinals $\xi<\omega_{I I}$ where $\omega_{I I}$ is the least ordinal of the power $|R / H|$. We put $a_{0}=0$. Then $T_{0}=H$. Notice that $R=U T_{\xi}, \xi \in R / H$, $|R / Q|=\exp (\omega),|R / R|=1$.

Definition D1. Let H be a subgroup of the group R. Functions $f: R / H \rightarrow N^{-1}$ are called generating functions. Adjoin to $S \subset R / H$ a class F_{S}^{H} (or simply F_{S}) of generating functions f such that the partial function f / S is a constant function. f / \emptyset is considered as a constant partial function. If S contains only one index ξ we write F_{ξ} instead of $F_{\{\xi\}}$.

Lemma 1. Let $S_{1} \subset S_{2} \subset R / H$. Then $F_{S_{1}} \supset F_{S_{2}}$.
Proof. If $f \in F_{S_{2}}$ then f / S_{2} is constant and f / S_{1} as well. Hence $f \in F_{S_{1}}$.

Definition D2. Let H be a subgroup of the group R. Let (a, b) be an open interval of real numbers. Denote $(a, b)_{\xi}=(a, b) \cap T_{\xi}, \xi \in R / H$. Let z be a point of R and S a subset of R / H. A set $W(z)$ is called a closure neighborhood or, simply, a neighborhood of the point z if there is a generating function $f \in F_{S}$ such that $W_{f}(z) \subset W(z)$ where

$$
W_{f}(z)=U(z-f(\xi), z+f(\xi))_{\xi}, \quad \xi \in R / H
$$

Remark. Let $(a, b) \subset R, z \in(a, b)$. Choose $m_{0} \in N$ such that $m_{0}^{-1}<\min \{z-$ $a, b-z\}$ and put $f(\xi)=m_{0}^{-1}, \xi \in R / H$. Then $f \in F_{S}^{H}$. Hence $W_{f}(z) \subset(a, b)$. Consequently, the open interval (a, b) in R is a closure neighborhood of each point $z \in(a, b)$.

The following are the main properties of closure neighborhoods $W_{f}(z), f \in F_{S}^{H}$. (i) $z \in W_{f}(z)$. (If $z \in T_{\xi_{0}}$ then $z \in\left(z-f\left(\xi_{0}\right), z+f\left(\xi_{0}\right)\right)_{\xi_{0}} \subset W_{f}(z)$, by D2).
(ii) If $W_{f_{1}}(z), f_{i} \in F_{S}, i=1,2$, are neighborhoods of a point z, then $W_{f_{1}}(z) \cap$ $W_{f_{2}}(z)$ is a neighborhood of the point $z .\left(W_{f_{1}}(z) \cap W_{f_{2}}(z)=W_{f_{3}}(z)\right.$, where $f_{3}(\xi)=$ $\left.\min \left\{f_{1}(\xi), f_{2}(\xi)\right\}, \xi \in R / H\right)$.
(iii) If $z_{1} \neq z_{2}$ there are $f_{i} \in F_{S}, i=1,2$, such that $W_{f_{1}}\left(z_{1}\right) \cap W_{f_{2}}\left(z_{2}\right)=\emptyset$ (see Remark above).

From (i), (ii), (iii) we deduce that the system of closure neighborhoods $W_{f}(z)$, $f \in F_{S}^{H}$, of points $z \in R$ satisfies the axioms of Hausdorff topological spaces except the axiom of open neighborhoods which need not be fulfilled. This is shown in the following

Lemma 2. Let H be a dense subgroup of the group R and $S \subset R / H$. Let $z \in R$. Then there is a complete system of open closure neighborhoods at the point z if and only if there is a finite $K \subset R / H$ such that $S=R / H-K$.

Proof. Let $W_{f}(z), f \in F_{S}^{H}$, be a neighborhood of the point z. Since the partial function $f /(R / H-K)$ is constant and K is finite there is a natural number p such that $p^{-1}<f(\xi), \xi \in R / H$. Hence $\left(z-p^{-1}, z+p^{-1}\right) \subset W_{f}(z)$. It follows that the system of intervals $\left(z-n^{-1}, z+n^{-1}\right), n \in N$, is a complete system of open neighborhoods at the point z.

Now, assume that $R / H-S$ is infinite. Choose distinct $\xi_{n} \in(R / H-S)$. Define $f(\xi)=1, \xi \neq \xi_{n}, f\left(\xi_{n}\right)=n^{-1}, n \in N$. Then $f \in F_{S}$ and we have a neighborhood $W_{f}(z)$. Let $W_{g}(z) \subset W_{f}(z), g \in F_{S}$. Suppose that (on the contrary) $W_{g}(z)$ is open. The neighborhood $W_{g}(z)$ is infinite because I is dense. Choose a point $t \in W_{g}(z)$, $t \neq z$. Then there is, by the assumption, a neighborhood $W_{h}(t) \subset W_{g}(z), h \in F_{S}^{H}$. Notice that $h(\xi) \leqslant g(\xi) \leqslant f(\xi), \xi \in R / H$. There are $\varepsilon_{n}>0$ such that

$$
\begin{aligned}
\left(t-\varepsilon_{n}, t+\varepsilon_{n}\right)_{\xi_{n}} & \subset\left(t-h\left(\xi_{n}\right), t+h\left(\xi_{n}\right)\right)_{\xi_{n}} \subset\left(z-g\left(\xi_{n}\right), z+g\left(\xi_{n}\right)\right)_{\xi_{n}} \\
& \subset\left(z-f\left(\xi_{n}\right), z+f\left(\xi_{n}\right)\right)_{\xi_{n}} \subset\left(z-n^{-1}, z+n^{-1}\right), \quad n \in N .
\end{aligned}
$$

Hence $t \in\left(z-n^{-1}, z+n^{-1}\right)$ and so $t=z$. This is a contradiction. Thus $W_{g}(z)$ is not open.

We have seen above that the class F_{S}^{H} generates a complete system of closure neighborhoods $W_{f}(z)$ at the point z. By neighborhoods $W_{f}(z), f \in F_{S}^{H}$, a convergence for the group R is defined in a well known way.

Definition D3. Let H be a subgroup of the group $R, S \subset R / H$. Denote \mathfrak{L}_{S}^{H} a collection of pairs $\left(\left\langle x_{n}\right\rangle, x\right), x_{n} \in R, x \in R$, such that if $W_{f}(x), f \in F_{S}^{H}$, is a neighborhood of the point x then $x_{n} \in W_{f}(x), n \geqslant n_{0}$. If $\left(\left\langle x_{n}\right\rangle, x\right) \in \mathfrak{L}_{S}^{H}$ we say that the sequence $\left\langle x_{n}\right\rangle \mathfrak{L}_{S}^{H}$-converges to the point x and write $\mathfrak{L}_{S}^{H}-\lim x_{n}=x$. The collection \mathfrak{L}_{S}^{H} is called a convergence for R. (It will be sometimes denoted \mathfrak{L}_{S}.)

Fréchet axioms of convergence are clearly satisfied. From (iii) it follows that $\mathfrak{L}_{S}^{H}-\lim x_{n}=x, \mathfrak{L}_{S}^{I}-\lim y_{n}=y$ implies $x=y$. In view of (i) we have $\mathfrak{L}_{S}^{H}-\lim x=x$. If $\left(\left\langle x_{n}\right\rangle, x\right) \in \mathfrak{L}_{S}^{H},\left\langle x_{i}\right\rangle \subset\left\langle x_{n}\right\rangle$, then $\left(\left\langle x_{i_{n}}\right\rangle, x\right) \in \mathfrak{L}_{S}^{H}$, by D3. From D3 it instantly follows that \mathfrak{L}_{S}^{H} is a maximal convergence, i.e. $\mathfrak{L}_{S}^{H}=\mathfrak{L}_{S}^{H *}$.

Denote \mathfrak{L} the usual metric convergence for R. We write $\operatorname{simply} \lim x_{n}=x$ instead of $\mathfrak{L}-\lim x_{n}=x$. Note that $\mathfrak{L}=\mathfrak{L}_{R / H}^{H}$.

Lemma 3. Let $S_{1} \subset S_{2} \subset R / H$. Then $\mathfrak{L}_{S_{1}}^{H} \subset \mathfrak{L}_{S_{2}}^{H}$.
Proof. Let $\left(\left\langle x_{n}\right\rangle, z\right) \in \mathfrak{L}_{S_{1}}$. Let $W_{f}(z), f \in F_{S_{2}}^{H}$, be a neighborhood of the point z. Define a generating function $g(\xi)=f(\xi), \xi=S_{1}, g(\xi) \leqslant f(\xi), \xi \in$ $R / H-S_{1}$. The partial function g / S_{1} is constant, by Lemma 1 , and so $g \in F_{S_{1}}^{H}$. Since $x_{n} \in W_{g}(z), n \geqslant n_{0}$, and $W_{g}(z) \subset W_{f}(z)$ we have $x_{n} \in W_{f}(z), n \geqslant n_{0}$. Hence $\left(\left\langle x_{n}\right\rangle, z\right) \in \mathfrak{L}_{S_{2}}$.

The assertion $\mathfrak{L}_{S_{1}} \subset \mathfrak{L}_{S_{2}}$ implies $S_{1} \subset S_{2}$ is not correct. Let H be a subgroup of $R, R \neq H$. Choose indexes $\xi_{1} \neq \xi_{2}$ and put $S_{1}=\left\{\xi_{1}\right\}, S_{2}=\left\{\xi_{2}\right\}$. Then $\mathfrak{L}_{S_{1}}=\mathfrak{L}_{S_{2}}$, but $S_{1} \not \subset S_{2}$. This example shows that the map $\varphi(S)=\mathfrak{L}_{S}^{H}, S \subset R / H, H \neq R$, is not one-to-one even when it preserves the order relation \subset, by Lemma 3. Next we investigate the structure of the system of classes $\varphi^{-1}\left(\mathfrak{L}_{S}^{H}\right), S \subset R / H$.

Let H be a subgroup of the group $R, S \subset R / H$. Denote $R_{S}=U T_{\xi}, \xi \in S$. Notice that $R_{S} \subset R, R_{\emptyset}=\emptyset, R_{\{0\}}=H, R_{R / R}=R$.

Lemma 4. Let H be a subgroup of the group $R, S \subset R / H$. Then $\mathfrak{L}_{S}^{H}-\lim z_{n}=z$ if and only if $\lim z_{n}=z$ and there is a finite $K \subset R / I$ such that $z_{n} \in R_{S \cup K}, n \in N$.

Proof. Let $\mathfrak{L}_{S}^{H}-\lim z_{n}=z$. Then $\lim z_{n}=z$ because $\mathfrak{L}_{S}^{H} \subset \mathfrak{L}$, by Lemma 3. Suppose that (on the contrary) there is a subsequence $\left\langle z_{i_{n}}\right\rangle \subset\left\langle z_{n}\right\rangle, z_{i_{n}} \neq z$, and distinct indexes $\eta_{n} \in(R / H-S)$ such that $z_{i_{n}} \in T_{\eta_{n}}$. Put $f(\xi)=1, \xi \neq \eta_{n}$, and choose $f\left(\eta_{n}\right) \in N^{-1}$ such that $z_{i_{n}} \notin\left(z-f\left(\eta_{n}\right), f\left(\eta_{n}\right)\right), n \in N$. This is possible because $z_{i_{n}} \neq z$. Then $f \in F_{S}$ and we have a neighborhood $W_{f}(z)$ of z which contains no point z_{i}. Hence $\left\langle z_{i_{n}}\right\rangle$ does not \mathfrak{L}_{S}^{H}-converge to z. This is in contradiction with the assumption $\left(\left\langle z_{n}\right\rangle, z\right) \in \mathfrak{L}_{S}^{H}$.

Now, let $\lim z_{n}=z, z_{n} \in R_{S \cup K}$. We use the property $\mathfrak{L}_{S}=\mathfrak{L}_{S}^{*}$ to prove that $\mathfrak{L}_{S}-\lim z_{n}=z$. Let $\left\langle z_{i_{n}}\right\rangle$ be a subsequence of $\left\langle z_{n}\right\rangle$. Either there is a subsequence $\left\langle t_{n}\right\rangle \subset\left\langle z_{i_{n}}\right\rangle$ of non-equivalent points $t_{n} \in R_{S}$ and then $\mathfrak{L}_{S}-\lim t_{n}=z$ or it is not so, and there is an index $\xi_{0} \in(S \cup K)$ and a subsequence $\left\langle u_{n}\right\rangle \subset\left\langle\tilde{z}_{n}\right\rangle, u_{n} \in T_{\xi_{0}}$. Hence $\mathfrak{L}_{S}-\lim u_{n}=z$. It follows that $\left(\left\langle z_{n}\right\rangle, z\right) \in \mathfrak{L}_{S}$.

Lemma 5. Let $I I$ be a suhgroup of the group R. Let $S_{i} \subset R / H, i=1,2$. Let $S_{1} \div S_{2}$ be a finite set. Then $\mathfrak{L}_{S_{1}}^{H}=\mathfrak{L}_{S_{2}}^{H}$.

Proof. Let $\left(\left\langle z_{n}\right\rangle, z\right) \in \mathfrak{L}_{S_{1}}$ and $W_{f}(z), f \in F_{S_{2}}$, be a neighborhood of the point $z \in R$. We are to prove that $z_{n} \in W_{f}(z), n \geqslant n_{0}$. Notice that $S_{1} \cup S_{2}=$ $\left(S_{1} \div S_{2}\right) \cup\left(S_{1} \cap S_{2}\right)$. The partial function $f / S_{1} \cap S_{2}$ is constant, by Lemma 1 , and $S_{1} \div S_{2}$ is a finite set. Therefore the number $d=\min \{f(\xi)\}, \xi \in S_{1} \cup S_{2}$, belongs to the set N^{-1}. Put $g(\xi)=d, \xi \in S_{1} \cup S_{2}$, and $g(\xi) \leqslant f(\xi), g(\xi) \in N^{-1}$, $\xi \in\left(R / H-\left(S_{1} \cup S_{2}\right)\right)$. Then $g \in F_{S_{1}}$ and so $z_{n} \in W_{g}(z), n \geqslant n_{0}$. Hence $z_{n} \in W_{f}(z)$, $n \geqslant n_{0}$ and therefore $\mathfrak{L}_{S_{1}} \subset \mathfrak{L}_{S_{2}}$.

Analogously we prove that $\mathfrak{L}_{S_{2}} \subset \mathfrak{L}_{S_{1}}$.
Lemma 6. Let H be a subgroup of the group R. Let $S_{i} \subset R / H, i=1,2$. Let $\mathfrak{L}_{S_{1}}^{H} \subset \mathfrak{L}_{S_{2}}^{H}$. Then $S_{1}^{\prime}-S_{2}$ is a finite set.

Proof. First prove the following statement: If S_{0} is an infinite subset of R / H then there is a sequence of non-equivalent points $x_{n} \in T_{\xi_{n}}, \xi_{n} \in S_{0}$, and a point $z \in R$ such that $\mathfrak{L}_{S_{0}}^{H}-\lim x_{n}=z$. Distinguish two cases. 1) H is dense. Let $\left\langle\xi_{n}\right\rangle$ be one-to-one sequence of indexes $\xi_{n} \in S_{0}$. Choose a point $z \in R$. Since H is dense there is a sequence $\left\langle x_{n}\right\rangle$ of non-equivalent points $x_{n} \in T_{\xi_{n}}$ with $\lim x_{n}=z$. Hence $\mathfrak{L}_{S_{0}}^{H}-\lim x_{n}=z$, by Lemma 4. 2) H is discrete. Denote d the least positive number of H. Choose numbers $b_{\xi} \in T_{\xi}$ such that $0 \leqslant b_{\xi}<d, \xi \in R / H$. Since S_{0} is infinite there is a one-to-one sequence $\left\langle\xi_{n}\right\rangle, \xi_{n} \in S_{0}$, and a point $z \in R, 0 \leqslant z \leqslant d$, such that $\lim b_{\xi_{n}}=z$. Denote $b_{\xi_{n}}=x_{n}$. Then $\left\langle x_{n}\right\rangle$ is a sequence of non-equivalent points x_{n} with $\mathfrak{L}_{S_{0}}^{H}-\lim x_{n}=z$, by Lemma 4 .

Suppose that $S_{1}-S_{2}$ is infinite and denote $S_{0}=S_{1}-S_{2}$. Then $S_{0} \subset S_{1}$ and $\left(\left\langle x_{n}\right\rangle, z\right) \in \mathfrak{L}_{S_{1}}^{H}$, by Lemma 3 where $\left\langle x_{n}\right\rangle$ is the sequence constructed above. On the other hand, $\left(\left\langle x_{n}\right\rangle, z\right) \notin \mathfrak{L}_{S_{2}}^{I}$, by Lemma 4 . This is a contradiction.

Proposition 1. Let H be a subgroup of the group $R, S_{i} \subset R / H, i=1,2$. Then $\mathfrak{L}_{S_{1}}^{H}=\mathfrak{L}_{S_{2}}^{H}$ if and only if $S_{1} \div S_{2}$ is a finite set.

Proof follows instantly from Lemmas 5 and 6.
From Proposition 1 it follows that there is a connection between convergences \mathfrak{L}_{S}^{H} and some subsets of the Čech-Stone compactification of a discrete topological space. Consider R / H as a discrete topological space of isolated points ξ and denote $\beta^{*} S=$ $\beta S-R / H$, where β is a topological operator in the Čech-Stone compactification $\beta(R / H)$. It is well known that $\beta^{*} S_{1}=\beta^{*} S_{2}$ if and only if $S_{1} \div S_{2}$ is finite. Hence $\mathfrak{L}_{S_{1}}^{H}=\mathfrak{L}_{S_{2}}^{H}$ if and only if $\beta^{*} S_{1}=\beta^{*} S_{2}$, by Proposition 1.

Let H be a subgroup of the group R. We denote, as above, functions $\varphi(S)=\mathfrak{L}_{S}^{H}$, $S \subset R / H$. We have shown that φ is not one-to-one except in the case when $H=R$. From Proposition 1 it follows that S_{1} and S_{2} are equivalent (i.e. $S_{2} \in \varphi^{-1}\left(\mathfrak{L}_{S_{1}}\right)$) iff $S_{1} \div S_{2}$ is finite. Now, define a quasi-order \prec as follows: $S_{1} \prec S_{2}$ if there is a finite $K \subset R / H$ such that $S_{1} \subset S_{2} \cup K$.

Lemma 7. Let H be a subgroup of the group R. Then $S_{1} \prec S_{2}$ if and only if $\mathfrak{L}_{S_{1}}^{H} \subset \mathfrak{L}_{S_{2}}^{H}$.

Proof. Let $S_{1} \prec S_{2}$. Then $S_{1} \subset S_{2} \cup K$. It follows $\mathfrak{L}_{S_{1}} \subset \mathfrak{L}_{S_{2}}$, by Lemma 3 and Proposition 1. Now, let $\mathfrak{L}_{S_{1}} \subset \mathfrak{L}_{S_{2}}$. According to Lemma 6 the set $S_{1}-S_{2}$ is finite. Since $S_{1} \subset S_{2} \cup\left(S_{1}-S_{2}\right)$ we have $S_{1} \prec S_{2}$.

Proposition 2. Let H be a subgroup of the group R. There is a similar map (with respect to the inclusion \subset), on the system \mathbb{Q}^{H} of convergences $\mathfrak{L}_{S}^{I I}, S \subset R / H$. onto the system of clopen sets $\beta^{*}(S)$ of the space $\beta^{*}(R / H)$.

Proof. Denote $\psi\left(\mathfrak{L}_{S}^{H}\right)=\beta^{*} S, S \subset R / H$. Let S_{1}, S_{2} be subsets of R / H, $\mathfrak{L}_{S_{1}} \subset \mathfrak{L}_{S_{2}}$. Then $S_{1} \prec S_{2}$, by Lemma 7 . Therefore, according to the definition of the quasi-order \prec it follows that $\beta^{*} S_{1} \subset \beta^{*} S_{2}$. It remains to prove the following implication: If A is a clopen subset of $\beta^{*}(R / H)$ then there is $S \subset R / H$ such that $\beta^{*} S=A$. This is true because there is a clopen set B in $\beta(R / H)$ such that $A=$ $B \cap \beta^{*}(R / H)$ and so there is $S \subset R / H$ such that $A=\beta^{*}(S)$.

Remark. Notice that $\aleph_{\alpha_{1}} \leqslant \aleph_{\alpha_{2}}$ implies $\aleph_{\alpha_{1}} \cdot \aleph_{a_{2}}=\aleph_{\alpha_{2}}$. Let $S \subset R / Q$. Denote $F=\{K ; K \subset R / Q, K$ finite $\}, X_{S}=\{S \div K: K \in F\}, Y=\{S ; S \subset R / Q\}$, $Z=Y / F, \aleph_{\alpha_{1}}=\left|X_{S}\right|, \aleph_{\alpha_{2}}=|Z|$. Clearly $\aleph_{\alpha_{1}}=\exp (\omega), \aleph_{\alpha_{2}}=\exp (\exp (\omega))$. Then $\left|\mathbb{L}^{Q}\right|=\left|X_{S}\right||Z|=\exp (\omega)$. $\exp (\exp (\omega))=\exp (\exp (\omega))$. Thus the number of convergences $\mathfrak{L}_{S}^{Q}, S \subset R / Q$, is $\exp (\exp (\omega))$.

Let H be a subgroup of the group $R, S \subset R / H$. We have seen that a closure topology for R is defined by means of the class F_{S}^{H} of generating functions. The corresponding closure operator will be denoted w_{S}^{H} (or simply w_{S}). Hence $w_{S} A=$ $\left\{x \in R: A \cap W_{f}(x) \neq \emptyset, f \in F_{S}^{H}\right\}$. Another closure topology for R is defined by means of the convergence \mathcal{L}_{S}^{H}. Denote λ_{S}^{H} (or λ_{S}) the corresponding closure operator: $\lambda_{S}^{H} A=\left\{x \in R ; x=\mathfrak{L}_{S}^{H}-\lim x_{n}, x_{n} \in A, n \in N\right\}$. Hence we have closure spaces $\left(R, w_{S}^{H}\right)$ and $\left(R, \lambda_{S}^{H}\right)$.

Now, we are interested in the question what is the relation between closures λ_{S}^{H} and w_{S}^{H}. It is well known that there are closure spaces (P, u) and adjoint convergence spaces $\left(P, \lambda_{u}\right)$ such that $u \neq \lambda_{u}$. It is not the case if $P=R, u=w_{S}^{H}$. We show that $w_{S}^{H}=\lambda_{S}^{H}$. It is evident that $\lambda_{S} A \subset w_{S} \Lambda, A \subset R$. Suppose that there is $z \in R$ and $A \subset R$ such that $z \in\left(w_{S} A-\lambda_{S} A\right)$. Then $z \notin A$ and there is no sequence of points $x_{n} \in A$ such that $\mathfrak{L}_{S}^{H}-\lim x_{n}=z$. In view of Lemma 4 there is a generating function $f \in F_{S}$ such that $A \cap(z-f(\xi), z+f(\xi))_{\xi}=\emptyset, \xi \in R / H$. Hence $A \cap W_{f}(z)=\emptyset$. This is a contradiction. Consequently, $w_{S}=\lambda_{S}$.

Notice that ω_{1}-iterated closure $\lambda_{S}^{\omega_{1}}=w_{S}^{\omega_{1}}$ are topologies for R.

In this section we investigate some convergence and group properties of the structures $\left(R, \mathfrak{L}_{S}^{I I},+\right)$. For this purpose we consider indexes ξ of the set R / H as elements of the group $(R / H,+)$. If ξ_{1}, ξ_{2} are elements of R / H then $\xi_{1}+\xi_{2}=\xi_{3}$ where ξ_{3} is uniquely determined by the addition $T_{\xi_{1}}+T_{\xi_{2}}=T_{\xi_{3}}$ in the group $(R / H,+)$. The inverse element to the element $\xi \in R / H$ is the element $\eta \in R / H$ such that $T_{\eta}=-T_{\xi}$. It will be denoted $-\xi$.

Now, we are going to examine conditions under which $\left(R, \mathfrak{L}_{S}^{H},+\right)$ is a cc-group. First we give an example to show that $\left(R, \mathfrak{L}_{S}^{H},+\right)$ need not be a $c c$-group even when R_{S} is a subgroup of the group R.

Example. Let $H=Q$ and let R_{S} be the group of algebraic numbers. Put $x_{n}=n^{-1} \sqrt{2}, y_{n}=\pi+n^{-1}$. Then $\lim x_{n}=0, \lim y_{n}=\pi$ and $\mathfrak{L}_{S}^{H}-\lim x_{n}=0$, $\mathfrak{L}_{S}^{H}-\lim y_{n}=\pi$, by Lemma 4. On the other hand, $\left\langle x_{n}+y_{n}\right\rangle$ is a sequence of nonequivalent transcendent numbers which, by the same lemma, does not \mathfrak{L}_{S}^{H}-converge to the point π.

Definition D4. Let $(M, \mathfrak{M},+)$ be a commutative group with a convergence \mathfrak{M} for M. We say that $(M, \mathfrak{M},+$) satisfies condition (-) provided that the following implication holds

$$
\begin{equation*}
\text { If }\left(\left\langle x_{n}\right\rangle, x\right) \in \mathfrak{M} \text { then }\left(\left\langle-x_{n}\right\rangle,-x\right) \in \mathfrak{M} \tag{-}
\end{equation*}
$$

$(M, \mathfrak{M},+)$ satisfies condition $(+)$.provided that
$(+) \quad$ If $\left(\left\langle x_{n}\right\rangle, x\right) \in \mathfrak{M},\left(\left\langle\dot{y_{n}}\right\rangle, y\right) \in \mathfrak{M}$ then $\left(\left\langle x_{n}+y_{n}\right\rangle, x+y\right) \in \mathfrak{M}$.
It is clear that $(M, \mathfrak{M},+)$ is a cc-group if and only if both the conditions (-) and $(+)$ are satisfied.

Definition D5. Let H be a subgroup of the group $R, S \subset R / I$. We denote S^{-} the set of elements $\eta \in R / H$ such that $T_{\eta}=-T_{\xi}, \xi \in S$.

Lemma 8. $|S|=\left|S^{-}\right|,\left|S-S^{-}\right|=\left|S^{-}-S\right|,\left(S_{1} \cup S_{2}\right)^{-}=S_{1}^{-} \cup S_{2}^{-},\left(S_{1} \cap S_{2}\right)^{-}=$ $S_{1}^{-} \cap S_{2}^{-}, x \in R_{S}$ if and only if $-x \in R_{S_{-}}$.

Proof follows instantly from D5 and from the equivalence $\xi \in\left(S-S^{-}\right)$if and only if $-\xi \in\left(S^{-}-S\right)$.

The properties $(-)$ and $(+)$ can be formulated by means of Čech-Stone operator β^{*}. In the proofs we use the equivalence
(i) $\beta^{*} S_{1} \subset \beta^{*} S_{2}$ if and only if $S_{1} \subset S_{2} \cup K$ where K is finite. From (i) it follows
(ii) $\beta^{*} S_{1}=\beta^{*} S_{2}$ if and only if $S_{1} \div S_{2}$ is finite.

Lemma 9. Let I be a subgroup of the group $R, S \subset R / H$. Then $\left(R, \mathfrak{L}_{S}^{H},+\right)$ satisfies $(-)$ if and only if $\beta^{*} S=\beta^{*}\left(S^{-}\right)$.

Proof. Let $\beta^{*} S^{\prime}=\beta^{*}\left(S^{-}\right)$. The set $S \div S^{-}$is finite, by (ii). Let $\mathfrak{L}_{S}^{H}-\lim x_{n}=$ x. In view of Lemma 4, there is a finite $K \subset R / H$ such that $x_{n} \in R_{\text {SUK }}$ and $\lim x_{n}=x$. Hence $\lim \left(-x_{n}\right)=-x$ and $-x_{n} \in R_{S_{-\cup K^{-}}}$, by Lemma 8. Notice that $S^{-} \cup K^{-}=\left(S^{-} \cap S^{\prime}\right) \cup\left(S^{-}-S\right) \cup K^{-} \subset S^{\prime} \cup K_{1}$ where $K_{1}=\left(S^{-}-S\right) \cup K^{--}$. It follows that K_{1} is a finite subset of R / H and $R_{S-\cup K}-\subset R_{S \cup K_{1}}$. Thus $\mathfrak{L}_{S}^{H}-\lim \left(-x_{n}\right)=-x$, by Lemma 4.

Let $\beta^{*} S \neq \beta^{*}\left(S^{-}\right)$. Then $S \div S^{-}$is infinite and both the sets $S-S^{-}$and $S^{\prime-}-S$ are infinite, by Lemma 8. In view of statement (see the proof of Lemma 6) there is a sequence of non-equivalent points $x_{n} \in R_{S-S}$ and a point $z \in R$ such that $\mathfrak{L}_{S-S^{-}}^{H}-\lim x_{n}=z$. Notice that $\left\langle-x_{n}\right\rangle$ is a sequence of non-equivalent points $-x_{n} \in R_{S--S}$. Consequently, $-x_{n} \notin R_{S}$. From Lemma 4 it follows that the sequence $\left\langle-x_{n}\right\rangle$ does not \mathfrak{L}_{S}^{H}-converge to $-z$.

Lemma 10. Let H be a subgroup of the group $R, S \subset R / H .\left(R, \mathfrak{L}_{S}^{H},+\right)$ satisfies $(+)$ if and only if $\beta^{*}\left(\left(S \cup L_{1}\right)+\left(S \cup L_{2}\right)\right) \subset \beta^{*} S$ whenever L_{1}, L_{2} are finite subsets of R / H.

Proof. Let $\beta^{*}\left(\left(S \cup L_{1}\right)+\left(S \cup L_{2}\right)\right) \subset \beta^{*} S$. Let $\mathfrak{L}_{S}^{H}-\lim x_{n}=x, \mathfrak{L}_{S}^{H}-\lim y_{n}=y$. There are finite subsets K_{1}, K_{2} of R / H such that $x_{n} \in R_{S \cup K_{1}}, \lim x_{n}=x$, and $y_{n} \in R_{S \cup K_{2}}, \lim y_{n}=y$. Hence $\lim \left(x_{n}+y_{n}\right)=x+y$. Since $\beta^{*}\left(\left(S \cup K_{1}\right)+\right.$ $\left.\left(S \cup K_{2}\right)\right) \subset \beta^{*} S$ there is, according to (i) above, a finite $K \subset R / H$ such that $\left(\left(S \cup K_{1}\right)+\left(S \cup K_{2}\right)\right) \subset S \cup K$. Consequently, $R_{\left(\left(S \cup K_{1}\right)+\left(S \cup K_{2}\right)\right)} \subset R_{S \cup K}$ and so $\left(x_{n}+y_{n}\right) \in R_{S \cup K}, \lim \left(x_{n}+y_{n}\right)=x+y$. We have $\mathfrak{L}_{S}^{H}-\lim \left(x_{n}+y_{n}\right)=x+y$, by Lemma 4.

Suppose that there are finite subsets K_{1}, K_{2} of R / H such that $\beta^{*}\left(\left(S \cup K_{1}\right)+\right.$ $\left.\left(S \cup K_{2}\right)\right) \not \subset \beta^{*} S$. According to (i) we deduce $\left(\left(S \cup K_{1}\right)+\left(S \cup K_{2}\right)\right) \not \subset S \cup K$ for every finite subset K of R / H. It follows that there is an infinite set of elements $\zeta_{n}^{\prime}=\xi_{n}^{\prime}+\eta_{n}^{\prime}, \xi_{n}^{\prime} \in\left(S \cup K_{1}\right), \eta_{n}^{\prime} \in\left(S \cup K_{2}\right)$ such that if K is finite then there is $n_{K} \in N$ such that $\zeta_{n}^{\prime} \notin\left(S^{\prime} \cup K\right), n \geqslant n_{K}$. Since the sequence $\left\langle\zeta_{n}^{\prime}\right\rangle$ is one-to-one there is a sequence $\left\langle\zeta_{n}\right\rangle \subset\left\langle\zeta_{n}^{\prime}\right\rangle, \zeta_{n}=\xi_{n}+\eta_{n}$ such that either $\left\langle\xi_{n}\right\rangle,\left\langle\eta_{n}\right\rangle$ are one-to-one or one of them, say $\left\langle\xi_{n}\right\rangle$, is one-to-one whereas the other is a constant one, i.e. $\eta_{n}=\eta$, $n \in N$. In the first case there is (in view of the statement in the proof of Lemma 6) a subsequence $\left\langle\xi_{i_{n}}\right\rangle \subset\left\langle\xi_{n}\right\rangle$, points $x \in R$ and $y \in R$, sequences $\left\langle x_{n}\right\rangle, x_{n} \in T_{\xi_{1_{n}}}$, and $\left\langle y_{n}\right\rangle, y_{n} \in T_{\eta_{\imath_{n}}}$, such that $\mathfrak{L}_{S}^{H}-\lim x_{n}=x$ and $\mathfrak{L}_{S}^{H}-\lim y_{n}=y$. In the second case
we choose $y \in T_{\eta}$ and put $y_{n}=y, n \in N$. Then $\mathfrak{L}_{S}^{H}-\lim x_{n}=x$ and $\mathfrak{L}_{S}^{H}-\lim y_{n}=y$. In both cases we have a sequence $\left\langle x_{n}+y_{n}\right\rangle$ of non-equivalent points $\left(x_{n}+y_{n}\right) \in T_{\zeta_{1 n}}$ which does not \mathfrak{L}_{S}^{H}-converge to the point $x+y$ because there is no finite $K \subset R / H$ such that $\zeta_{n} \in(S \cup K), n \geqslant n_{0}$.

Lemma 11. Let H be a subgroup of the group R and S a finite subset of R / H. Then $\left(R, \mathfrak{L}_{S}^{H},+\right)$ is a cc-group.

Proof. S and S^{-}are finite sets. Hence $\beta^{*}\left(S^{\prime}\right)=\emptyset, \beta^{*}\left(S^{-}\right)=\emptyset$. The condition $(-)$ is satisfied, by Lemma 9 . Now, let L_{1}, L_{2} be finite. Then $\left(\left(S \cup L_{1}\right)+\left(S \cup L_{2}\right)\right)$ is a finite subset of R / H and so $\beta^{*}\left(\left(S \cup L_{1}\right)+\left(S \cup L_{2}\right)\right)=\emptyset, \beta^{*}(S)=\emptyset$. Hence $(+)$ is satisfied, by Lemma 10 .

Next we use lemmas 9 and 10 to answer the question: Given a subgroup $H \subset R$ does there exist more than two cc-groups $\left(R, \mathfrak{L}_{S}^{H},+\right)$?

Lemma 12. Let S be an infinite and K a finite subset of R / H. Let $\left\langle\xi_{n}\right\rangle$ be a one-to-one sequence of elements $\xi_{n} \in S \cup K$. Then there is n_{0} such that $\xi_{n} \in S$, $n \geqslant n_{0}$.

Proof. Since $\left\langle\xi_{n}\right\rangle$ is one-to-one the finite set K contains at most a finite number of elements ξ_{n}.

Lemma 13. Let H be a subgroup of the group R. Let S be an infinite subset of R / H. Let $\left(R, \mathfrak{L}_{S}^{H},+\right)$ be a cc-group. Let $\left\langle\xi_{n}\right\rangle$ be a one-to-one sequence of elements $\xi_{n} \in S$. Let $\eta \in R / H$. Then there is n_{0} such that $\left(\xi_{n}+\eta\right) \in S, n \geqslant n_{0}$.

Proof. Put $L_{1}=\emptyset, L_{2}=\{\eta\}$. Then $\xi_{n} \in\left(S \cup L_{1}\right), \eta \in\left(S \cup L_{2}\right)$. Since $\left(R, \mathfrak{L}_{S}^{H},+\right)$ is a cc-group the condition $(+)$ is satisfied. We can apply Lemma 10. 'There is a finite $K \subset R / H$ such that $\left(\xi_{n}+\eta\right) \in S \cup K, n \in N$. Therefore $\left(\xi_{n}+\eta\right) \in S$, $n \geqslant n_{0}$, by Lemma 12 .

Lemma 14. Let H be a subgroup of the group R. Let S and $R / H-S$ be infinite sulsets of R / H. Then $\left(R, \mathfrak{L}_{S}^{H},+\right)$ fails to be a cc-group.

Proof. Suppose that, on the contrary, $\left(R, \mathfrak{L}_{S}^{H},+\right)$ is a cc-group. Denote $S^{\prime \prime}=$ $R / I I-S$. Let $\left\langle\xi_{n}\right\rangle, \xi_{n} \in S^{\prime},\left\langle\eta_{n}\right\rangle, \eta_{n} \in S^{\prime}$, be one-to-one sequences. According to Lemma 12 there is n_{1} such that $\left(\xi_{n}+\eta_{1}\right) \in S, n \geqslant n_{1}$. Put $m_{1}=n_{1}$ and $\zeta_{1}=\xi_{m_{1}}+\eta_{1}$. Suppose that we have chosen natural numbers $m_{1}<m_{2}<\ldots<m_{p}$ and non-equivalent elements $\zeta_{i} \in S, i \leqslant p$, where $\zeta_{i}=\xi_{m_{2}}+\eta_{i}, i \leqslant p$. Notice, that $\left\langle\xi_{n}+\eta_{p+1}\right\rangle$ is a one-to-one sequence such that $\left(\xi_{n}+\eta_{p+1}\right) \in S, n \geqslant n_{0}$, by Lemma 13. It follows that there is a natural number $m_{p+1}>m_{p}+n_{0}$ such that
$\left(\xi_{m_{p+1}}+\eta_{p+1}\right) \neq \zeta_{i}, i \leqslant p$. Put $\zeta_{p+1}=\xi_{m_{p+1}}+\eta_{p+1}$. Hence we have an increasing sequence $m_{1}<m_{2}<\ldots<m_{p+1}$ and a one-to-one sequence $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{p+1}$ of elements of S. We have constructed, by means of mathematical induction, a one-toone sequence of elements $\zeta_{i} \in S, \zeta_{i}=\xi_{m,}+\eta_{i}, i \in N$. Elements ξ_{m}, belong to the set. S and elements $-\xi_{m}$, to the set $S^{-}=S \cap S^{-} \cup\left(S^{-}-S\right) .\left(R, \mathfrak{L}_{S}^{H},+\right)$ satisfies (-) and so $S^{-}-S$ is a finite set, by Lemma 9 . Put $L_{1}=\emptyset, L_{2}=S^{-}-S$. Then $\zeta_{i} \in S^{\prime} \cup L_{1}$ and $-\xi_{m_{1}} \in S \cup L_{2}$. According to Lemma 10 there is a finite $K \subset R / H$ such that $\left(\zeta_{i}-\xi_{m_{2}}\right) \in S \cup K$, i.e. $\eta_{i} \in S \cup K$. The sequence $\left\langle\eta_{i}\right\rangle$ is one-to-one. According to Lemma 12 there is i_{0} such that $\eta_{i} \in S, i \geqslant i_{0}$. On the other hand, $\eta_{i} \in S^{\prime \prime}, i \in N$. Thus we got a contradictory result.

There is a close connection between cc-groups ($R, \mathfrak{L}_{S}^{H},+$) and complete groups with respect to the convergence \mathfrak{L}_{S}^{H}. This is shown in the following lemma.

Lemma 15. ($\left.R, \mathfrak{L}_{S}^{H},+\right)$ is a cc-group if and only if it is a complete group.
Proof. Let $\left(R, \mathfrak{L}_{S}^{H},+\right)$ be a cc-group. By Lemma 14 there is a finite $K \subset R / H$ such that $S=K$ or $S=R / H-K$. If $S=R / H-K$ then $\left(R, \mathfrak{L}_{S}^{H},+\right)$ is a complete because $\mathfrak{L}_{S}^{H}=\mathfrak{L}$. Now, suppose that S is a finite set. Let $\left\langle c_{n}\right\rangle, c_{n} \in R$, be a Cauchy sequence of points c_{n} in $\left(R, \mathfrak{L}_{S}^{I},+\right)$. Distinguish two cases

1) There is a finite subset K_{0} such that $c_{n} \in R_{K_{0}}$. The sequence $\left\langle c_{n}\right\rangle$ is a Cauchy sequence with respect to \mathfrak{L}, because $\mathfrak{L}_{S}^{H} \subset \mathfrak{L}$, by Lemma 3 . Hence there is a point $x \in R$ such that limin $c_{n}=x$. We have $\mathfrak{L}_{S}^{H}-\lim c_{n}=x$, according to Lemma 4 .
2) There is a subsequence $\left\langle b_{n}\right\rangle \subset\left\langle c_{n}\right\rangle$ of non-equivalent points $b_{n} \in R$. We construct, analogously as in [1], a subsequence $\left\langle b_{i_{n}}\right\rangle \subset\left\langle b_{n}\right\rangle$ such that $\left\langle b_{n}-b_{i_{n}}\right\rangle$ does not \mathfrak{L}_{S}^{H}-converge to 0 . Put $i_{1}=1$. Suppose that we have chosen points $b_{i_{1}}, b_{i_{2}}, \ldots$, $b_{i_{k}}, i_{1}<i_{2}<\ldots<i_{k}$, such that no two numbers $t_{m}=b_{m}-b_{i_{m}}, m \leqslant k$, are equivalent. We prove that there is a point $b_{i_{k+1}}, i_{k+1}>i_{k}$, in the sequence $\left\langle b_{n}\right\rangle$ such that no two numbers $t_{m}, 1 \leqslant m \leqslant k+1$ are equivalent. Let $q>k$. Suppose (indirect proof) that there is no point $b_{s}, i_{k}<s \leqslant i_{k}+q$ in the sequence $\left\langle b_{n}\right\rangle$ such that any two numbers $b_{k+1}-b_{s}$ and $t_{m}, m \leqslant k$, are non-equivalent. Denote $u_{s}=b_{k+1}-b_{s}$. Let $f:\left\{i_{k}<s \leqslant i_{k}+q\right\} \rightarrow\{1,2, \ldots, k\}$ be a (one-valued) function such that u_{s} and $t_{f(s)}$ are equivalent numbers. Since $q>k$ there are $s_{1}>i_{k}$ and $s_{2} \leqslant i_{k}+q, s_{1}<s_{2}$, such that $f\left(s_{1}\right)=f\left(s_{2}\right)$. Consequently, the numbers $u_{s_{1}}, t_{f\left(s_{1}\right)}$ are equivalent and also numbers $u_{s_{2}}, t_{f\left(s_{2}\right)}$ are equivalent. It follows that $\left(b_{f\left(s_{1}\right)}-b_{s_{1}}\right) \in H,\left(b_{f\left(s_{2}\right)}-b_{s_{2}}\right) \in H$. Hence $\left(b_{s_{1}}-b_{s_{2}}\right) \in H$ and so $b_{s_{1}}, b_{s_{2}}$ are equivalent points. This is a contradiction because b_{n} are non-equivalent points. We conclude that there is $s_{0} \in\left\{i_{k}+1, i_{k}+2, \ldots, i_{k}+q\right\}$ such that points $b_{s_{0}}, b_{i_{m}}, m \leqslant k$, are non-equivalent. Hence, it suffices to put $i_{k+1}=s_{0}$.

In such a way we have constructed a sequence $\left\langle b_{n}-b_{i_{n}}\right\rangle$ of non-equivalent points. Since S is finite it follows from Lemma 4 that the sequence $\left\langle b_{n}-b_{i_{n}}\right\rangle$ does not \mathfrak{L}_{S}^{I} -
converge to 0 . Therefore $\left\langle c_{n}\right\rangle$ is not a Cauchy sequence with respect to \mathfrak{L}_{S}^{H}. The case 2) cannot occur.

Let $\left(R, \mathfrak{L}_{S}^{H},+\right)$ be a complete group with respect to the convergence \mathfrak{L}_{S}^{H}. Then it is a cc-group, by the definition on $p .25$.

Lemmas 11 and 14 give us a complete information about structures $\left(R, \mathfrak{L}_{S}^{H},+\right.$) which are cc-groups. If $H=R$ then $(R, \mathfrak{L},+)$ is the unique $c c$-group. If $H \neq R$ then there are exactly two different $c c$-groups, i.e. $\left(R, \mathfrak{L}_{0}^{H},+\right)$ and $(R, \mathfrak{L},+)$.

Closing remarks. If Q is a subgroup of H and H a subgroup of $R, H \neq R$, then there are two different completions $\left(R, \mathfrak{L}_{S}^{H},+\right)$ of Q, namely, $\left(R, \mathfrak{L}_{0}^{H},+\right)$ and $(R, \mathfrak{L},+)$. It follows that there is more than one completions of Q. There would be interesting to know what is the number of completion of the group of rational numbers Q.

I am indebted to P. Simon and R. Frič for their comments on the convergences \mathfrak{L}_{S}^{H}.
Addendum after the proofs. P. Simon and R. Frič proved, independently from each other, that the number of completions of the group Q is $\exp (\exp (\omega))$ [2].

References

[1] J. Novák: On completions of convergence commutative groups, General Topology and its Relations to Modern Analysis and Algebra III. (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, pp. 335-340.
[2] R. Frič, F. Zanolin: Strict completions of L_{0}^{*}-groups, Czechoslovak Math. J., to appear. Author's address: Matematický ústav AV ČR, Žitná 25, 11567 Praha 1, Czech Republic.

