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CONVERGENCES £# FOR THE GROUP OF REAL NUMBERS

Joser NoVAK, Praha

(Received February 27, 1990)

For each subgroup H of the group R of real numbers and each subset S of the
quotient group R/H a convergence £ for the group R is constructed. The relation
of the system of convergences £ to the Cech-Stone compactification of discrete
spaces is clarified. Necessary and sufficient conditions are given for (R, Sg’, +) to be
a complete group with respect to the convergence £ . This gives some views on the
structure of the groups R and R/H.

The point of our considerations is the group (R, +) of real numbers. We use the
fact that R is a linearly ordered point set for which a convergence £ is defined by
means of open intervals (a,b) C R such that limz, = z, imy, = y implies that
lim(z,, — y,) = ¢ — y. In this sense R is a convergence commutative group ([1]). It
will be denoted (R, £,+). )

Recall that a convergence M for a set A is a collection of pairs ({z,),x) where
(zn,) is a sequence of points z, € M and z € M. We assume that the convergence
M satisfies the well known Fréchet axioms of convergence inclusive the axiom of
the maximal convergence (M = M*). A comumutative group (M, +) with a con-
vergence M will be denoted (A, M, +). If ((z,),z) € M, ((yn),y) € M implies
that ((zn, — yn), 2 — y) € M we have a convergence commutative group (M, M, +)
(abbr. cc-group). In such a group Cauchy sequences are defined to be sequences
(xn), o € M, such that ({(z, —z;,),0) € M whenever (z; ) C (z,). A cc-group
(M, M, +) is complete if each Cauchy sequence M-converges in M, more precisely,
if (xn), xn € M, is a Cauchy sequence then there is a point * € M such that

({(xn),z) € M.
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Notation. We denote N the set of natural numbers, N ~! the set of numbers
n~!, n € N, Q the group of rational and R the group of real numbers, I{ a subgroup
of the group R and S a subset of the quotient group R/H. A subgroup of R is
either discrete or dense. Points z; and x5 of R are non-equivalent (with respect to
H) if (¢ — x2) ¢ H. In the section I we consider R/ as a set of points sometimes
called indexes. They will be denoted by Greek letters &, 1, C.

Let H be a subgroup of the group R and R/IH the corresponding quotient group.
Elements € € R/H are classes T¢ = a¢ + /1 where a¢ is a representative of the class
Te. We identify elements £ with ordinals £ < wy where wy is the least ordinal of
the power |R/H|. We put ag = 0. Then Ty = H. Notice that R = UTg, £ € R/,
IR/Q| = exp(w), |R/R| = 1.

Definition D1. Let H be asubgroup of the group R. Functions f: R/l — N~!
are called generating functions. Adjoin to S C R/H a class i (or simply Fs) of
generating functions f such that the partial function f/S is a constant function. f/{
1s considered as a constant partial function. If S contains only one index & we write

F¢ instead of Fey.

Lemma 1. Let S| C S2 C R/H. Then Fg, D Fs,.

Proof. If f € Fg, then f/S2 is constant and f/S, as well. Hence f € Fyg,.
a

Definition D2. Let H be a subgroup of the group R. Let (a,b) be an open
interval of real numbers. Denote (a,b)e = (a,b)NTe, £ € R/H. Let z be a point of
R and S a subset of R/H. A set W(z) is called a closure neighborhood or, simiply,
a neighborhood of the point z if there is a generating function f € Fs such that

Wy(z) C W(z) where
Wy(z) = U(z = f(€),= + f(§)), €€ R/H.

Remark. Let (a,b) C R, 2z € (a,b). Choose mg € N such that m3' < min{z—
a,b— z} and put f(§) = m(jl, €€ R/H. Then f € FH. Hence Wi(z) C (a,b).
Consequently, the open interval (a,0) in R is a closure neighborhood of each point
z € (a,b).

The following are the main properties of closure neighborhoods W;(z), f € Fif.
(i) z € Wy(z). (If 2z € T, then z € (2 — (&), 2 + f(ﬁo))fo C Wy(2), by D2).
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(i) If Wy (2), fi € Fs, i = 1, 2, are neighborhoods of a point 2, then Wy (z) N
Wy, (z) is a neighborhood of the point z. (Wy (2) NIWVy,(2) = Wy, (2), where f3(§) =
min{fi(§), f2(£)}, & € R/H).

(iii) If 2y # 2o there are f; € Fs, i = 1,2, such that Wy (21) N Wy, (22) = @ (see
Remark above).

From (i), (ii), (iii) we deduce that the system of closure neighborhoods ¥, (z),
f e FI of points z € R satisfies the axioms of Hausdorff topological spaces except
the axiom of open neighborhoods which need not be fulfilled. This is shown in the

following

Lemma 2. Let /1 be a dense subgroup of the group R and S C R/H. Let = € R.
Then there is a complete system of open closure neighborhoods at the point z if and
only if there is a finite N C R/H such that S = R/H — K.

Proof. Let W(z), f € F&, be a neighborhood of the point z. Since the
partial function f/(R/H — K') is constant and A" is finite there is a natural number
p such that p=!' < f(€), € € R/H. Hence (z —p~', z+ p~') C Wy(z). It follows
that the system of intervals (z —n~!, 24 n"'), n € N, is a complete system of open
neighborhoods at the point z.

Now, assume that R/H — S is infinite. Choose distinct &, € (R/H — S). Define
F&) = 1,64 &, f(&)=n"!, ne N. Then f € Fs and we have a neighborhood
Wi (z). Let Wy(z) C Wy(z), g9 € Fs. Suppose that (on the contrary) W,(z) is open.
The neighborhood Wy (2) is infinite because I1 is dense. Choose a point t € W,(z),
t # z. Then there is, by the assumption, a neighborhood Wy (t) C Wy(z), h € Fi.
Notice that h(§) < g(&) < f(§), £ € R/H. There are €, > 0 such that

(t —&n,t+ En)En C (t - /'(Sn)yt"" h(En))En C (3 _.(](gn)yz + g(gn))fn
C (== f(&), =+ f(fn))gn C(z=n"1,24n7"), neN.

Hence t € (z = n~',z+ n~') and so t = 2. This is a contradiction. Thus W,(z) is
not open.

We have seen above that the class I generates a complete system of closure
neighborhoods Wy (z) at the point z. By neighborhoods Wy (z), f € I a conver-
gence for the group R is defined in a well known way. O

Definition D3. Let H be a subgroup of the group R, S C R/H. Denote £
a collection of pairs ({x,),2), £, € R, z € R, such that if W,(z), f € Fi isa
neighborhood of the point x then x, € Wy(z), n > ;10. If ((xn),2) € 2{9’ we say
that the sequence (x,) £H-converges to the point x and write £ —limz, = z. The

collection £ is called a convergence for R. (It will be sometimes denoted Ls.)



Fréchet axioms of convergence are clearly satisfied. From (iii) it follows that
Eé.’—lim T, =z, £’Sl—limyn = yimplies z = y. In view of (1) we have £g’—lim =2z
If ((z,),2) € L8, (2;) C (z,), then ({z;,),z) € £X, by D3. Froin D3 it instantly
follows that £ is a maximal convergence, i.e. Clf = ¢~

Denote £ the usual metric convergence for R. We write simply liinz,, = & instead
of £ —limz, = z. Note that £ = Eg/”.

Lemma 3. Let Sy CS2 C R/H. Then Efq’l C Eg{z.

Proof. Let ((zn),2) € Ls,. Let Wy(z), f € Fg, be a neighborhood of
the point z. Define a generating function ¢(§) = f(€), £ = S1, 9(€) < f(&), € €
R/H — S;. The partial function ¢g/S; is constant, by Lemma 1, and so gy € FSI{
Since z, € V,(2), n 2 ng, and Wy(z) C Wy(z) we have x, € Wg(z), n > ng. Hence
({(zn),2) € Ls,.

The assertion £g, C £s, implies Sy C Sz is not correct. Let H be a subgroup of
R, R# H. Choose indexes £, # & and put S| = {£,}, S = {€2}. Then Lg, = Ls,,
but Sy ¢ S». This example shows that the map ¢(S) = £, S C R/H, H # R, is
not one-to-one even when it preserves the order relation C, by Lemma 3. Next we
investigate the structure of the system of classes o~ (£H), S c R/H.

Let /{ be a subgroup of the group R, S C R/H. Denote Rs = UT, £ € 5. Notice
that Rs C R, Ry = 0, R{O} =1, RR/R = R. O

Lemma 4. Let I{ be a subgroup of the group R, S C R/H. Then £ —limz, = 2
if and only iflim z,, = z and there is a finite N C R/II such that z,, € Rsyx, n € N.

Proof. Let Eg —limz, = z. Then limz, = z because Eg{ C £, by Lemma
3. Suppose that (on the contrary) there is a subsequence (z;,) C (z,.), =i, # =,
and distinct indexes n,, € (R/H — S) such that z;, € T, . Put f(§) =1, & # n,
and choose f(1,) € N7! such that z;, & (= = f(a), f(n)), n € N. This is possible
because z;, # z. Then f € Fis and we have a neighborhood Wy (z) of = which contains
no point z;. Ilence () does not £4-converge to z. This is in contradiction with
the assumption ({zn),z) € £4.

Now, let limz, = z, z, € Rsyx. We use the property £s = L£% to prove that
Ls —limz, = z. Let () be a subsequence of (z,). Either there is a subsequence
(tn) C (zi,) of non-equivalent points ¢, € R and then £ — limt,, = z or it is not
so, and there is an index & € (S U K') and a subsequence (u,) C (z,), u, € Tg,.
Hence £5 — limu, = z. It follows that ({z,},2) € £s. a

Lemma 5. Let Il be a subgroup of the group R. Let S; C R/I, i =1,2. Let
S1 + 59 be a finite set. Then Eg-" = £§12.

18



Proof. Let ((z,),2) € £5, and Wy(z), f € Fs,, be a neighborhood of the
point z € R. We are to prove that z, € Wy(z), n > no. Notice that S} U Sy =
(Sy = 52) U (S) N Sy). The partial function f/S; N S, is constant, by Lemma 1,
and S} + S is a finite set. Therefore the number d = min{f(§)}, € € S; U Sy,
belongs to the set N='. Put ¢(§) = d, £ € S U Ss, and g(€) < f(£), 9(§) € N7,
£ € (R/H—(S1US2)). Then g € Fs, and so z,, € Wy(z), n > no. Hence z, € Wy (z),
n > ng and therefore £5, C Ls,.

Analogously we prove that £, C £s,. a

Lemma 6. Let Il be a subgroup of the group R. Let S; C R/H, i =1,2. Let
el c gl . Then Sy — Sy is a finite set.

Proof. First prove the following statement: If Sy is an infinite subset of R/ H
then there is a sequence of non-equivalent points z, € T¢,, £, € So, and a point
z € R such that Sgn — limz, = z. Distinguish two cases. 1) H is dense. Let (£,)
be one-to-one sequence of indexes &, € Sp. Choose a point z € R. Since H is dense
there is a sequence (xz,) of non-equivalent points z, € T¢, with limz, = z. Hence
ngn —lima, = z, by Lemma 4. 2) H is discrete. Denote d the least positive nuinber
of I{. Choose numbers b¢ € T¢ such that 0 < b < d, £ € R/H. Since Sy is infinite
there is a one-to-one sequence (&,), &, € So, and a point z € R, 0 < z < d, such that
limbe, = z. Denote bg, = z,. Then (z,,) is a sequence of non-equivalent points z,,
with ‘8{5]0 — limz, = z, by Lemma 4.

Suppose that S; — S is infinite and denote Sy = S; — S3. Then Sy C S} and
({zn),2) € £4 , by Lemma 3 where (z,) is the sequence constructed above. On the
other hand, ({z,),z) ¢ £4 , by Lemma 4. This is a contradiction. a

Proposition 1. Let H be a subgroup of the group R, S; C R/H,i=1,2. Then
£§’l = 2?2 if and only if Sy =+ So is a finite set.

Proof follows instantly from Lemmas 5 and 6.

From Proposition 1 it follows that there is a connection between convergences £#
and some subsets of the Cech-Stone compactification of a discrete topological space.
Consider R/H as a discrete topological space of isolated points £ and denote 3*S =
BS — R/H, where 3 is a topological operator in the Cech-Stone compactification
B(R/H). 1t is well known that 8*S; = 8*S, if and only if S} = S5 is finite. Hence
Sg{l = 1.‘,5’2 if and only if g*S; = #*S,, by Proposition 1.

Let H be a subgroup of the group R. We denote, as above, functions ¢(S) = £¥,
S C R/H. We have shown that ¢ is not one-to-one except in the case when H = R.
From Proposition 1 it follows that S} and S are equivalent (i.e. S2 € ¢~!(Ls,)) iff
S1 =+ S is finite. Now, define a quasi-order < as follows: S; < S5 if there is a finite
K C R/H such that S} C S UK.
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Lemma 7. Let I be a subgroup of the group R. Then S| < So if and only if
H o
£5 CLg,.

Proof. Let S| < .52 Then S) C S2 UK. 1t follows £5, C £5,, by Lemma 3
and Proposition 1. Now, let £¢, C Lg,. According to Lemma 6 the set S} — Sy 1s
finite. Since S| C S2 U (S| — S2) we have S| < 5. O

Proposition 2. Let H be a subgroup of the group R. There is a similar map
(with respect to the inclusion C), on the system LY of convergences £ S C R/H,
onto the system of clopen sets p*(S) of the space *(R/H).

Proof. Denote /(&) = p*S, S C R/H. Let S, Sz be subsets of R/II,
Ls, C Ls,. Then S| < 52, by Lemma 7. Therefore, according to the definition of
the quasi-order < it follows that g*.S; C £*S2. It remains to prove the following
implication: If A is a clopen subset of 3*(R/H) then there is S C R/H such that
B*S = A. This is true because there is a clopen set B in g(R/H) such that A =
BOp*(R/H) and so there is .S C R/ H such that A = g*(5). a

Remark. Notice that R,, < Rq, implies Ry, - Ry, = Ry,. Let S C R/Q.
Denote FF = {N'; N C R/Q, K finite}, Xs = {S+=N: N € F},Y ={5; 5 C R/Q},
Z = Y[F, Rq, = |Xs|, Re, = |Z]. Clearly Ro, = exp(w), Ro, = exp(exp(w)).
Then |L9| = |Xs| |Z] = exp(w). exp(exp(w)) = exp(exp(w)). Thus the number of
convergences 22, S C R/Q, is exp(exp(w)).

Let H be a subgroup of the group R, S C R/H. We have seen that a closure
topology for R is defined by means of the class FSH of generating functions. The
corresponding closure operator will be denoted w# (or simply ws). Hence wsA =
{r € R: AnNWy(z) # 0,f € FH}. Another closure topology for R is defined by
means of the convergence £, Denote A (or Ag) the corresponding closure operator:
MA={ze Rz =2l —limz,,z, € A,n € N}. Hence we have closure spaces
(R, wH) and (R, ).

Now, we are interested in the question what is the relation between closures A
and wg. It is well known that there are closure spaces (P, u) and adjoint convergence
spaces (P, A,) such that u # A,. It is not the case if P = R, u = wH. We show that
w_’sl = /\g-l. It is evident that A¢ A C wsA, A C R. Suppose that there is 2 € R and
A C R such that z € (wsA — AsA). Then = ¢ A and there is no sequence of points
z, € A such that Eg —limz, = z. In view of Lemina 4 there is a generating function
[ € Fs such that An (2 — f(€),= —}—f(f))6 =0, € R/H. Uence ANTV;(2) = 0.
This is a contradiction. Consequently, ws = Ag.

Notice that wi-iterated closure Q' = w' are topologies for R.
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I1.

In this section we investigate some convergence and group properties of the struc-
tures (I, £ +). For this purpose we consider indexes & of the set R/I1 as elements
of the group (R/H,+). If &, & are elements of R/H then & + &2 = €3 where &3 is
uniquely determined by the addition Ty, + T¢, = Tg, in the group (R/H,+). The
inverse clement to the element € € R/H is the element 7 € R/H such that T;) = —T¢.
It will be denoted —€.

Now, we are going to examine conditions under which (R, £# +) is a cc-group.
First we give an example to show that (R, £ +) need not be a cc-group even when

Rs is a subgroup of the group R.

Example. Let H = @ and let Rg be the group of algebraic numbers. Put
z, = n~ V72, Yo = n+n~L Then limx, = 0, imy, = n and £? — limz, =0,
£ —limy, = n, by Lemma 4. On the other hand, (2, + y,) is a sequence of non-
cquivalent transcendent numbers which, by the same lemma, does not Sg—converge
to the point .

Definition D4. Let (M, M, +) be a commutative group with a convergence M
for M. We say that (M, 9, +) satisfies condition (=) provided that the following
implication holds

(=) If ((zn),z) € M then ((—z,),—2z) € M.
(M, M, +) satisfies condition (+) provided that
(+) I ((2n) , #) € M, ((vn) ,¥) € M then ((xn +ya) 2 +y) €M

It is clear that (M,M, +) is a cce-group if and only if both the conditions (—) and
(4) ‘are satisfied.

Definition D5. Let H be a subgroup of the group R, S C R/IH. We denote S~
the set of elements ) € R/H such that T, = -T¢, £ € S.

Lemma 8. |S| = |57, [S—=S7| = |S7 =5, (S1US2)™ = S7US7, (S1NS)~ =
Sy NSy, r € Rgifandonly if —z € Rg-.

Proof follows instantly from D5 and from the equivalence & € (S —.57) if and only
if =€ (5™ —-5).

The properties (=) and (4) can be formulated by means of Cech-Stone operator
p*. In the proofs we use the equivalence )
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(1) p*S; C B Sy if and only if S} C Sz UK where K is finite. From (i) it follows
(it) p=S) = p*Sy if and only if S} = S5 is finite.

Lemma 9. Let II be a subgroup of the group R, S C R/H. Then (R, £, +)
satisfies (=) if and only if S = B*(S57).

Proof. Letp3*S=p*(57). Theset S+ 57 is finite, by (ii). Let £4 —liinz, =

z. In view of Lemma 4, there is a finite N C R/H such that z,, € Rsyx and

limz, = ¢. Hence lim(—z,) = —z and —z,, € Rg-yk-, by Lemma 8. Notice that
STUR™ = (STNSYU(S™ =S)URN~ C SURN| where K} = (57 =S)UN ™. It follows
that K7 is a finite subset of //H and Rg-yx- C Rsuk,. Thus £# —lin(-z,,) = -z,

by Lemina 4.

Let 3*S # p*(57). Then S = S~ is infinite and both the sets S — 5~ and
ST — S are infinite, by Lemma 8. In view of statement (see the proof of Lemma
G) there is a sequence of non-equivalent points z, € Rs_g- and a point = € IR
such that Ef.'_s_ — limz, = z. Notice that (—x,) is a sequence of non-equivalent
points —z, € Rg-_g. Consequently, —z, ¢ Rs. From Lemma 4 it follows that the
sequence (—z,) does not £#-converge to —z. O

Lemma 10. Let H be a subgroup of the group R, S C R/H. (R, L%, +) satisfies
(+) if and only if 3*((SU L1) + (SU Ly)) C 3*S whenever Ly, Ly are finite subsets
of R/II.

Proof. LetB3*((SUL1)+(SULy)) C #*S. Let £ —limz, = z, ¥ ~limy, = y.
There are finite subsets Ky, Ny of R/H such that z, € Rsuk,, limz, = z, and
Un € Rsuk,, lmy, = y. Hence lim(z, + y,) = 4+ y. Since f*((SU Ny) +
(S U Ky)) C B*S there is, according to (i) above, a finite K C R/H such that
((SUK))+ (SUK,)) C SUK. Consequently, R((suk,)+(Suks)) C Rsuk and so
(xn 4+ yn) € Rsuk, im(z,, + yn) = 2 +y. We have £’51 —lim(z, + yn) =z + y, by
Lemma 4.

Suppose that there are finite subsets K, K2 of R/H such that 8*((SU Ky) +
(SU K2)) ¢ B*S. According to (i) we deduce ((SUN;)+(SURN,)) ¢ SUK for
every finite subset N of R/H. It follows that there is an infinite set of elements
¢l =&+, & € (SURY), 1, € (SU Ka2) such that if K is finite then there is
ng € N such that ¢, € (SUKN), n > ng. Since the sequence ((},) is one-to-one there
is a sequence () C (CL), ¢n = & + nn such that either (£,), (7,) are one-to-one or
one of them, say (£,), is one-to-one whereas the other is a constant one, i.e. 1, =1,
n € N. In the first case there is (in view of the staternent in the proof of Lemma 6)
a subsequence (&;,) C (£), points z € R and y € R, sequences (z,,), z, € Tg, , and
(Yn), Yn € Ty, , such that £ —limz,, = z and £ —limy, = y. In the second case
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we choose y € T;, and put yp, =y, n € N. Then £ ~limz, = z and £¥ ~limy, = y.
In both cases we have a sequence (z,, + y) of non-equivalent points (x, +y,) € T¢,
which does not £¥-converge to the point 2 + y because there is no finite N C R/l
such that ¢, € (SU K), n = no. O

Lemma 11. Let H be a subgroup of the group R and S a finite subset of R/ H .
Then (R, L4, +) is a cc-group.

Proof. S and S~ are finite sets. Hence 3*(S) =0, 8*(S™) = 0. The condition
(=) is satisfied, by Lemma 9. Now, let Ly, Lo be finite. Then ((SU L)+ (SU L2))
is a finite subset of I’/ H and so B*((SU L)+ (SU La)) =0, B*(5) = 0. Hence (+)
is satisfied, by Lemima 10. a

Next we use lenmas 9 and 10 to answer the question: Given a subgroup H C R

does there exist more than two ce-groups (R, £ +)?

Lemma 12. Let S be an infinite and K a finite subset of R/H. Let (¢,) be a
one-to-one sequence of elements &, € S U K. Then there is ng such that £, € S,

n=nyg.

Proof. Since (£,) is one-to-one the finite set K contains at most a finite number
of elements &, . O

Lemma 13. Let H be a subgroup of the group R. Let S be an infinite subset of
R/H. Let (R, Sg’, +) be a cc-group. Let (&,) be a one-to-one sequence of elements
&, €S. Let y € R/H. Then there is ny such that (&, + 1) € 5, n > ng.

Proof. Put L; =0, Ls = {n}. Then &, € (SULy), n € (SU Lsy). Since
(R, L4 +) is a ce-group the condition (4) is satisfied. We can apply Lemma 10.
There is a finite X' C R/ H such that (¢, +7) € SUN, n € N. Therefore (&, +17) € S,
n > ng, by Lemma 12, a

Lemma 14. Let H be a subgroup of the group R. Let S and R/H — S be infinite
subsets of R/ . Then (R, £ +) fails to be a ce-group.

Proof. Suppose that, on the contrary, (R, Sg, +) is a cc-group. Denote S" =
R/H — 5. Let (&), & €S, (), nu € S', be one-to-one sequences. According

to Lemma 12 there is n; such that (&, + ) € S, n 2 ny. Put m; = n; and
¢t = &n, + 11. Suppose that we have Choﬂen natural numbers m; < my < ... < m,
and non-equivalent elements (; € S, i < p, where §; = &, + 15, 1 < p. Notice,

that (&, + 1p41) is a one-to-one sequence such that (&, + 7p41) € S, n > ng, by

Lemma 13. It follows that there is a natural number mpy; > mp, + no such that
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(Empgr +p41) # Giy 1 < po Put Gy = &nyyy + 0ptr- Hence we have an increasing
sequence my < ma < ... < myy; and a one-to-one sequence (i, Ca, ..., Cpy1 Of
elements of S. We have constructed, by means of mathematical induction, a one-to-
one sequence of elements (; € S, ¢; = &, +1i, 1 € N. Elements §,,, belong to the set
S and elements —&,,, to the set S7 = SNSTU(S™ =5). (R, £, 4) satisfies (=) and
50 ST — S is a finite set, by Lemma 9. Put Ly =0, Ly =5~ — 5. Then §; € SU L,
and =&, € SU La. According to Lemma 10 there is a finite ' C R/H such that
(G —&m,) € SUN, ie.1; € SUK. The sequence (7;) is one-to-one. According to
Lemina 12 there is ig such that 1; € 5, i > ip. On the other hand, 1; € S5, i € N.
Thus we got a contradictory result.

There is a close connection between ce-groups (R, £ +) and complete groups

with respect to the convergence £, This is shown in the following letma. a

Lemma 15. (R, £ 4) is a cc-group if and only if it is a complete group.

Proof. Let (R, €4 +)beaccgroup. By Lemma 14 there is a finite X' C R/ I
such that S = K or S = R/H — K. If S= R/H — K then (R, ¥ +)is a complete
because Eg = £. Now, suppose that S is a finite set. Let (cn), cn € R, be a Cauchy
sequence of points ¢, in (R, £ +). Distinguish two cases

1) There is a finite subset N such that ¢, € Rg,. The sequence (¢,) is a Cauchy
sequence with respect to £, because £§I C £, by Lemma 3. Hence there is a point
r € R such that limie,, = ¢. We have Sg — lime, =z, according to Lemma 4.

2) There is a subsequence (b,) C {(¢,) of non-equivalent points b, € R. We
construct, analogously as in [1], a subsequence (b;,) C (b,,) such that (b, — b;, ) does
not. £§!-convorge to 0. Put ¢; = 1. Suppose that we have chosen points b; | by, ...,
bi,, 11 < is < ... < dg, such that no two numbers ¢,, = b,, — b;,, m < k, are
equivalent. e prove that there is a point b, it41 > i, in the sequence (by,)
such that no two numbers ¢,,, 1 < m < k+ 1 are cquivalent. Let ¢ > k. Suppose
(indirect proof) that there is no point by, ix < s < it + q in the sequence (b,)
such that any two numbers by — by and ¢,,, m < k, are non-equivalent. Denote
us = bpy1 —bs. Let f: {ir <s<ip+q} — {1,2,...,k} be a (one-valued) function
such that u; and {;(,) are equivalent numbers. Since ¢ > k there are 51 > iy
and sy < i + ¢, s1 < s9, such that f(s) = f(s2). Consequently, the numbers
Us,, ti(s,) are equivalent and also numbers ug,, (s, are equivalent. [t follows that
(brisi)y — bs,) € H, (byes,y) —bs,) € H. Hence (bs, — b;,) € Il and so by, b, are
equivalent points. This 1s a contradiction because b, are non-equivalent points. We
conclude that there is sg € {ix+ 1, +2,..., ik +¢q} such that points b, b;, , m < &k,
are non-equivalent. Hence, it suflices to put x4y = so.

In such a way we have constructed a sequence (b,, — b;, ) of non-equivalent points.

Since S is finite it follows from Lemma 4 that the sequence (b, — b; ) does not £4-
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converge to 0. Therefore (c,) is not a Cauchy sequence with respect to £. The
case 2) cannot occur.

Let (R, £ +) be a complete group with respect to the convergence £5. Then it
is a cc-group, by the definition on p. 25.

Lemmas 11 and 14 give us a complete information about structures (R, £ +)
which are cc-groups. If H = R then (R, £,+) is the unique cc-group. If H # R then
there are exactly two different cc-groups, i.e. (R, £, +) and (R, £, +). O

Closing remarks. If Q is a subgroup of H and H a subgroup of R, H # R,
then there are two different completions (R, £ +) of Q, namely, (R, £, +) and
(R, £,+). It follows that there is more than one completions of Q. There would
be interesting to know what is the number of completion of the group of rational
numbers Q.

I am indebted to P. Simon and R. Fri¢ for their comments on the convergences £4 .
Addendum after the proofs. P. Simon and R. Frié¢ proved, independently from
each other, that the number of completions of the group Q is exp(exp(w)) [2].
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