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Czechoslovak Mathematical Journal , 43 (118) 1993, P raha 

CONVERGENCES £^7 FOR THE GROUP OF REAL NUMBERS 

JOSEF NOVAK, Praha 

(Received February 27, 1990) 

For each subgroup H of the group R of real numbers and each subset S of the 

quotient group RjH a convergence £ 5 for the group R is constructed . The relation 

of the system of convergences £ 3 to the Cech-Stone compactification of discrete 

spaces is clarified. Necessary and sufficient conditions are given for ( H , £ ^ , + ) to be 

a complete group with respect to the convergence £{ / . This gives some views on the 

structure of the groups R and Rj7/. 

The point of our considerations is the group ( ix ,+) of real numbers . We use the 

fact that R is a linearly ordered point set for which a convergence £ is defined by 

means of open intervals (a ,b) C R such that limx*n -= x, l imy n = y implies that 

lim(x'n — yn) = x — y. In this sense R is a convergence commutative group ([1]). It 

will he denoted ( / t , £ , + ) . 

Recall that a convergence OT for a set M is a collection of pairs ((xn) , x) where 

(xn) is a sequence of points xn G M and x £ M. We assume that the convergence 

OT satisfies the well known Frechet axioms of convergence inclusive the axiom of 

the maximal convergence (OT = 9)1*). A commutative group (M, + ) with a con­

vergence OT will be denoted (A/,OT,+). If ((xn) ,x) £ OT, ((yn) , t/) £ OT implies 

that ((xn — yn) , x — y) £ OT we have a convergence commutative group (M,OT,+) 

(abbr. cc-group). In such a group Cauchy sequences are defined to be sequences 

(xn), xn £ A/, such that ((xn — X{n) ,0) GOT whenever (xin) C (xn). A cc-group 

(A/,OT,+) is complete if each Cauchy sequence OT-converges in M , more precisely, 

if (xn), xn G A/, is a Cauchy sequence then there is a point x G M such tha t 

({Xn),x)em. 
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N o t a t i o n . We denote N the set of natural numbers, N-1 the set of numbers 

n _ 1 , n G N, Q the group of rational and R the group of real numbers, / / a subgroup 

of the group /? and ,5* a subset of the quotient group R/H. A subgroup o[ R is 

either discrete or dense. Points x\ and x2 of I? are non-equivalent (with respect to 

H) if (x\ — x2) £ H. In the section I we consider R/II as a set of points sometimes 

called indexes. They will be denoted by Creek letters £, //, c\ 

Let H be a subgroup of the group /? and R/II the corresponding quotient group. 

Elements £ G R/H are classes T^ = a^ + // where a^ is a representative of the class 

i~r. We identify elements £ with ordinals £ < cj{[ where u!// is the least ordinal of 

the power \R/H\. We put aQ = 0. Then TQ = / / . Notice that R = U7>, £ G R/H, 

\R/Q\ = exp(u,), | / ? / / ? | = l . 

Def in i t i on D l . Let H be a subgroup of the group I?. Functions / : R/H —* N~l 

are called generating functions. Adjoin to S C R/H a class Ff
s
{ (or simply Fs) of 

generating functions / such that the partial function f/S is a constant function. / / 0 

is considered as a constant partial function. If S contains only one index £ we write 

F^ instead of F{£}. 

L e m m a 1. Let S\ C S2 C R/H. Then FSl D Fs2 • 

P r o o f . If / G F52 then f/S2 is constant and f/S\ as well. Hence / G Fs, . 

• 
Def in i t ion D 2 . Let H be a subgroup of the group /?. Let (a ,b) be an open 

interval of real numbers . Denote (a,b)^ = (a ,b )OT^ , £ G R/H. Let z be a point of 

/? and 5 a subset of R/H. A set !V(z) is called a closure neighborhood or, simply, 

a neighborhood of the point z if there is a generating function / G Fs such that 

Wf(z) C W(z) where 

Wf(z) = U(z - /(O, - + / ( 0 ) r € e /?/H. 

R e m a r k . Let (a ,b) C /?, £ G (a,b) . Choose ???0 G N such that?? .^ 1 < min{z — 

a , b - z} and put / (£ ) = m " 1 , £ G / ? / / / . Then / G Ff. Hence Wf(z) r (a ,b ) . 

Consequently, the open interval (a,b) in /? is a closure neighborhood of each point 

z G (a ,b ) . 

The following are the main properties of closure neighborhoods VVy(z), / G FJ'. 

(i) z e Wj(z). (If - e Te„ then 2 e ( - - / (&) , z + /(&,))fo C W',(r), by D2). 
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(ii) If WfXz), fi G Fs, * = V 2, at"e neighborhoods of a point z, then VV/.(z) O 

IV/2(~) is a neighborhood of the point z. (I'V/. (z)O lV/2(z) = W)3(z) , where / 3 ( f ) = 

n i i n { / i ( 0 1 / 2 ( 0 } , ^ / t / H ) . 

(iii) If z{ ^ z2 there are /,- G Fs, i - 1,2, such that IV / ^ z i ) O VV/2(z2) = fi (see 

Remark above). 

From (i), (ii), (iii) we deduce that the system of closure neighborhoods lV / (z) , 

/ G F5
7, of points z G R satisfies the axioms of Ilausdorff topological spaces except 

the axiom of open neighborhoods which need not be fulfilled. This is shown in the 

following 

L e m m a 2. Let II be a dense subgroup of the group R and S C R/H. Let z G R. 

Then there is a complete system of open closure neighborhoods at the point z if and 

only if there is a finite K C R/H such that S — R/H — K. 

P r o o f . Let Wf(z), f G F§ , be a neighborhood of the point z. Since the 

partial function f/(R/H — K) is constant and A" is finite there is a natural number 

p such that p~l < / ( f ) , f G R/H. Hence (z - p~l,z + p~l) C Wf(z). It follows 

tha t the system of intervals (z — n~x, z + n~{), n G N, is a complete system of open 

neighborhoods at the point : . 

Now, assume that R/H — S is infinite. Choose distinct £Tl G (R/H — S). Define 

/ (£ ) = 1, f ^ fn, / (£n) — n _ 1 > n £ N- Then f E Fs and we have a neighborhood 

Wf(z). Let W9(z) C Wf(z), g G F5. Suppose that (on the contrary) Wg(z) is open. 

The neighborhood I V ^ ) is infinite because II is dense. Choose a point t G Wg(z), 

t 7- z. Then there is, by the assumption, a neighborhood VV/l(l) C Wg(z), It G F5
f. 

Notice that h(£) <C g(£) <C / ( £ ) , £ E R/H. There are en > 0 such that 

(t-enJ + en)u C ( « - / i ( £ n ) , t + M&.) )^ C (z-9(tn),z + g(£n))^ 

C ( : - / « n ) ^ r / « n ) ) u C ^ - n " 1 , ^ ^ 1 ) , n G N. 

Hence /. G ^ - n " 1 , : ^ ? ! ' 1 ) and so l = z. This is a contradiction. Thus Wg(z) is 

not open. 

We have seen above that the class F|7 generates a complete system of closure 

neighborhoods Wf(z) at the point z. By neighborhoods lV / (z) , / G F5
7, a conver­

gence for the group R is defined in a well known way. • 

D e f i n i t i o n D 3 . Let H be a subgroup of the group H, S C R/H. Denote £ 5 

a collection of pairs ((xn) , £•), xn G R, x G R, such thai if Wf(x), f G Fj7, is a 

neighborhood of the point x then xn G VV/(-u), D ^ n0. If ( ( J „ ) , #) G £ 5 we say 

that the sequence (xn) £ 5 -converges to the point x and write £ 5 — lim xn = x. The 

collection £ 5 is called a convergence for R. (It will be sometimes denoted £ 5 . ) 
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Frechet axioms of convergence are clearly satisfied. From (iii) it follows that 

£ 5 — lirri.cn = x, £j — \\myn = y implies x — y. In view of (i) we have £lJ —Xuwx = x. 

if ((xn) ,x) E £ 5 , (xi) C (xn), then ((xin) ,x) G £j, by D3. From D3 it instantly 

follows that £j is a maximal convergence, i.e. £j = £ 5 * . 

Denote £ the usual metric convergence for ft. We write simply liinx*n = x instead 

of £ - limxn = x. Note that £ = £R/Ir 

L e m m a 3 . Let S\ C 5 2 C R///. Then £{/ C £jr 

P r o o f . Let ((xn),z) G £Sl- Let Wj(z), f G F£, be a neighborhood of 

the point z. Define a generating function g(£) = /(£)> £ — 5 i , g(£) ^ /(£)> £ £ 

H/H — 5 i . The partial function g/5i is constant, by Lemma 1, and so <j G F$f. 

Since xn G Wg(z), n ^ 7i0, and Wg(z) C VV/(z) we have xn G IV /(z) , 7* ̂  720. Hence 

( ( . r n ) , z ) G £ s 2 . 

The assertion £sx C £ s 2 implies Si C 5 2 is not correct. Let H be a subgroup of 

R, R / H. Choose indexes £1 ^ £2 and put 5i = {£1}, 5 2 = { 6 } . Then £ 5 l = £s2, 

but 5i <fL 5 2 . This example shows that the map <p(S) = £j, 5 C / ? / / / , I7 7- It, is 

not one-to-one even when it preserves the order relation C, by Lemma 3. Next we 

investigate the structure of the system of classes (f~l(£j), 5 C It/II. 

Let II be a subgroup of the group It, 5 C It/H. Denote Rs = UT^, £ G 5 . Notice 

that H5 C It, It0 = 0, It{0} = 1I, It/?//? = It. D 

L e m m a 4. Let II be a subgroup of the group It\ 5 C It/H. 7^iie/i £ 5 — l imz n = z 

if and only if\\mzn = z and there is a finite K C It/II such that zn G RsuK, ™ G Ar. 

P r o o f . Let £JJ — l im^ n = z. Then l imz n = z because £ ^ C £ , by Lemma 

3. Suppose that (on the contrary) there is a subsequence (zin) C (~n), Zin ^ z, 

and distinct indexes i)n G (R/H — 5) such that Zin G F;,n. Put / ( £ ) = 1, <J ^ /;n, 

and choose f(i}n) G N_1 such that Zin ^ (z — / ( / /„ ) , f(nn)), n G N. This is possible 

because zZn ^ z. Then / G F.s and we have a neighborhood W/(z) of z which contains 

no point Zi. Hence (zin) does not £^-converge to z. This is in contradiction with 

the assumption ((zn) , z) G £ 5 . 

Now, let l imz n = z, zn G RsuK- We use the property £ 5 = £ J to prove that 

£ 5 — lirnzn = z. Let (z;n) be a subsequence of (zn). Either there is a subsequence 

(tn) C (?in) of non-equivalent points tn G Rs and then £ 5 — l im / n = z or it is not 

so, and there is an index £0 G ( 5 U 1v) and a subsequence (un) C (~*n), un G T^Q. 

Hence £ s - l imu n = z. It follows that ( (z n ) , z) G £5- • 

L e m m a 5. Let II be a subgroup of the group R. Let S\ C R/H, i = 1,2. Let 

Si -7- 5 2 be a /mite set. Then £hJx = £ £ . 

18 



P r o o f . Let ((zn) , z) E £Sl and VV/(z), / E Fs2, he a neighborhood of the 

point z G R. We are to prove that zn G lV /(z) , ^ ^ fto- Notice that 5i U 5 2 = 

(5i -f- 5 2) U (5i fl 5 2 ) . The partial function / / 5 i Pi 5 2 is constant, by Lemma 1, 

and S\ -f- 5 2 is a finite set. Therefore the number d = min{ / (£ )} , £ G 5'i U 5 2 , 

belongs to the set N"V Put g(£) = J, £ E S\ U 5 2 , and g(£) ^ / ( £ ) , </(0 € N"1, 

<e G ( H / H - ( 5 i U 5 2 ) ) . Then g G Fsx and so zn G I V ^ ) , n ^ n 0 . Hence zn G Wj(z), 

n ^ ??o and therefore £Sl C £ s 2 • 

Analogously we prove that £ s 2 C £Sl. • 

L e m m a 6. Let II be a subgroup of the group R. Let Si C R/H, i = 1,2. Let 

£ " C £ s 2 - T/jen 5i - 5 2 is a finite set. 

P r o o f . First prove the following statement: If 5o is an infinite subset of R/H 

then there is a sequence of non-equivalent points xn G T^n, £n G 5o, and a point 

z G R such that £{/ — lim .rn = z. Distinguish two cases. 1) H is dense. Let (£n) 

be one-to-one sequence of indexes £n G 5o- Choose a point z E 1t\ Since H is dense 

there is a sequence (xn) of non-equivalent points xn G Tfn with l i m x n = z. Hence 

£ 5 — limx'n = z, by Lemma 4. 2) H is discrete. Denote d the least positive number 

of / / . Choose numbers b% G T$ such that 0 ^ 6̂  < d, £ E R/H. Since 5o is infinite 

there is a one-to-one sequence (£n) , £n E 5o, and a point z E R, 0 ^ z ^ J, such that 

l i m b ^ = z. Denote b^n = x n . Then (xn) is a sequence of non-equivalent points xn 

with £ 5 — l i inx n = z, by Lemma 4. 

Suppose that 5'i — 5 2 is infinite and denote 5o = 5i — 5 2 . Then 5o C S'i and 

((xn) , z) E £ 5 , by Lemma 3 where (xn) is the sequence constructed above. On the 

other hand, ((xn) , z) £ £11 by Lemma 4. This is a contradiction. • 

P r o p o s i t i o n 1. Let H be a subgroup of the group R, Si C R/H, i — 1,2. Then 

£ 5 = £ 5 if and only if S\ -i- 5 2 is a finite set. 

Proof follows instantly from Lemmas 5 and 6. 

From Proposition 1 it follows that there is a connection between convergences £$ 

and some subsets of the Cech-Stone compactification of a discrete topological space. 

Consider R/H as a discrete topological space of isolated points £ and denote [3*S = 

[IS — R/H, where [3 is a topological operator in the Cech-Stone compactification 

/3(R/H). It is well known that (3*S\ = [3* S2 if and only if 5'i — 5 2 is finite. Hence 

£Sl = £ s 2
 i f a n d o n ] y i f P*SX = 0*S2, by Proposition 1. 

Let H be a subgroup of the group R. We denote, as above, functions <p(S) = £ 5 , 

5 C R/H. We have shown that <p is not one-to-one except in the case when H — R. 

From Proposition 1 it follows that 5i and 5 2 are equivalent (i.e. 5 2 E (p~l(£Sl)) iff 

5'i -T- 5 2 is finite. Now, define a quasi-order -< as follows: 5i -< 5 2 if there is a finite 

K C R/H such that 5i C 5 2 U K. 
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L e m m a 7. Let II be a subgroup of the group R. Then S\ -< So if atu/ onlv if 

P r o o f . Let S\ -< S2. Then S{ C S2 U K. It follows £ 5 l C £ s 2 , by Lemma 3 

and Proposition 1. Now, let £ 5 l C £ s 2 - According to Lemma 6 the set 5i — S2 is 

finite. Since S\ C .S'o U (.S'i — S2) we have S\ -< S2. • 

P r o p o s i t i o n 2. Let H I>e a subgroup of the group R. There is a similar map 

(with respect to the inclusion C), on the system Lri of convergences £rJ, S C R/II, 

onto t4ie system of clopen sets /3*(S) of the space fl*(R/H). 

P r o o f . Denote V>(£5 ) = /?*5, 5 C / ? / / / . Let Su S2 be subsets of R/IL 

£ 5 l C £ s 2 - Then ,S'i -< S2, by Lemma 7. Therefore, according to the definition of 

the quasi-order -< it follows that /3*S\ C P*S2. It remains to prove the following 

implication: If A is a clopen subset of j3*(R/II) then there is S C R/H such that 

j3*S = A. This is true because there is a clopen set B in /3(R/H) such that A = 

Bn/3*(R/II) and so there is 5 C P/H such that A = ^* (5 ) . • 

R e m a r k . Notice that Ka i ^ Ka2 implies N a i • Ka2 = N a 2 . Let 5 C R/Q. 

Denote F = {K ; K C R/Q, K finite}, K5 = {S'-f-K: K G F}, Y = {S ; 5 C R/Q}, 

Z = Y/F, N a i = | N 5 | , Ka2 = \Z\. Clearly N a i = exp(cv), Ka2 = exp (exp (c ) ) . 

Then | L ^ | = |A'5 | \Z\ = exp(u>). exp(exp(u>)) = exp(exp(cv)). Thus the number of 

convergences £ 5 , S C R/Q) is exp(exp(ctj)). 

Let H he a subgroup of the group P, S C Ft/II. We have seen that a closure 

topology for R is defined by means of the class FJ7 of generating functions. The 

corresponding closure operator will be denoted wrJ (or simply tv 5 ) . Hence wsA = 

{x G R: A PI Wj(x) zfi 0 , / e F5
7}. Another closure topology for R is defined by 

means of the convergence £rJ. Denote \rJ (or A5) the corresponding closure operator: 

\JA — {x G R\ x — £rJ — Y\mxn)xn G A,n G N}. Hence we have closure spaces 

(R,wJ) and (R,\rJ). 
Now, we are interested in the question what is the relation between closures A5 

and ivJ. It is well known that there are closure spaces (P, u) and adjoint convergence 

spaces (P, Au) such that u ^ \ u . It is not the case if P = P, u — wj. We show that 

5 = \rJ . It is evident that A 5 A C ivsA, A C R. Suppose that there is z G R and w 
A C R such that z G (wsA — A 5 A ) . Then z (£ A and there is no sequence of points 

xn G A such that £rJ — l imx n = z. In view of Lemma 4 there is a generating function 

f C Fs such that A n (z - / ( £ ) , - + / ( 0 ) e = M € P///. Hence A n IV/(z) = 0. 

This is a contradiction. Consequently, w$ = A5 . 

Notice that cji-iterated closure A^1 = w^1 are topologies for R. 
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II . 

In this section we investigate some convergence and group properties of the struc­

tures (Ic,£{/ , -f) . For this purpose we consider indexes £ of the set It/II as elements 

of the group ( I t / I I , - f ) . If £1, £2 are elements of R/H then £1 -f f9 = £3 where £3 is 

uniquely determined by the addition T^1 + 1\2 = T^3 in the group (R/H,+). The 

inverse element to the element £ £ R/H is the element r; £ R/H such that T7? = — Tf. 

It will be denoted —f. 

Now, we are going to examine conditions under which ( ^ , , £ 5 , + ) is a cc-group. 

First we give an example to show that (R,£fJ, +) need not be a cc-group even when 

Rs is a subgroup of the group R. 

E x a m p l e . Let H = Q and let Rs be the group of algebraic numbers. Put 

xn = 7 i - 1 \ / 2 , yn = ~ + n~l. Then limo;n = 0, limgn = ~ and £ 5 — limx'n = 0, 

£,$ — \\\\\yn ~ ~, by Lemma 4. On the other hand, (xn + yn) is a sequence of non-

equivalent transcendent numbers which, by the same lemma, does not £^-converge 

to the point n. 

Def in i t ion D 4 . Let (M ,$)l,+) be a commutative group with a convergence V)l 

for M. We say that (M,9)l,+) satisfies condition ( —) provided that the following 

implication holds 

( - ) If ((xn) , x) £ Ml then ((-xn) , -x) £ OTl. 

(My~Jl,+) satisfies condition (-f) provided that 

(+) if ((xn),x) ean, ((yn),y)e<m then ((xn + Vn))X + y)em. 

It is clear that (A/,OT,-f) is a cc-group if and only if both the conditions ( —) and 

(+) "are satisfied. 

Def in i t ion D 5 . Let II be a subgroup of the group 1t, S C R/H. We denote S~ 

the set of elements 7; £ R/H such that Tr] = —1\, £ £ S. 

L e m m a 8. \S\ = | S - | , \S-S~\ = |S~ - S | , (Si U.S'2)" = S~ US~, (Si DS2)~ = 

S~ n «SV, .r £ 1t5 if and only if —x £ H5- . 

Proof follows instantly from D5 and from the equivalence £ £ (S — S~) if and only 

i f - £ e ( 5 - - S ) . 
The properties ( —) and (-f) can be formulated by means of Cech-Stone operator 

[3*. In the proofs we use the equivalence 
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(i) ft* S\ C ft*S2 if and only if S\ C S2 U A where A is finite. From (i) it follows 

(ii) ft*S\ — ft* S2 if and only if S\ -r- S2 is finite. 

L e m m a 9. Let II be a subgroup of the group R, S C R/II. Then (R,£*J,+) 

satisfies (-) if and only if ft* S = ft*(S~). 

P r o o f . Let ft* S = ft*(S~). The set S + S~ is finite, by (ii). Let £ ^ - l i m . r n = 

x. In view of Lemma 4, there is a finite A' C R/II such that xn G RsuK and 

limx-n = x. Hence lim(—xn) = — x and — xn G Rs-uK-, by Lemma 8. Notice that 

S ' - U / \ - = ( 6 ' - n 5 ) U ( , S ' - - . S ' ) U A - C 5'UA'i where K{ = (S~ -S)U A " . It follows 

that A'i is a finite subset of R/H and Rs-uK- C RsuK^- Thus £j — lim( — xn) — — x, 

by Lemma 4. 

Let ft*S ^ ft*(S~). Then .S' ^ S~ is infinite and both the sets S - S~ and 

.S'~ — S are infinite, by Lemma 8. In view of statement (see the proof of Lemma 

6) there is a sequence of non-equivalent points xn G Rs-s- a n c l a point z G R 

such that £j_s- — limx ,
n = z. Notice that (—xn) is a sequence of non-equivalent 

points — xn G Rs--s- Consequently, — xn ^ 1?s- From Lemma 4 it follows that the 

sequence (—xn) does not £{/-converge to — z. D 

L e m m a 10. Let H be a subgroup of the group R, S C R/H. (It, £ 7 / , -h) satisfies 

(+) if and only if ft* ((S U L\) + (S U L2)) C ft* S whenever L\} L2 are finite subsets 

of R/H. 

P r o o f . Let/3*((SULi)+(,S'UL2)) C ft*S. L e t £ f - l i m x n = x , £ ^ - l i m g n = y. 

There are finite subsets A'i, Iv'2 of R/H such that xn G RsuK^ l i m x n = x, and 

Vn £ # s u K 2 , l imu n - y. Hence lim(arn + yn) = x + y. Since ft* ((S U K\) + 

(S U A'2)) C ft*S there is, according to (i) above, a finite A' C R/H such that 

((S U A'i) -f (,S'U A 2 ) ) C S U A . Consequently, %suK , )+(SuK 2 ) ) C RsuK and so 

(«n + yn) C RsuK, lim(arn -f yn) = x + y. We have £j - Yim(xn + yn) = x + i/, by 

Lemma 4. 

Suppose that there are finite subsets A'i, A'2 of R/H such that ft* ( (S U A'i) -f 

(S U K2)) <JL ft*S. According to (i) we deduce ((S U K\) + (S U K2)) (£_ S U A for 

every finite subset A' of R/H. It follows that there is an infinite set of elements 

( n r= £'n + 7 /n l £n G (S U A i ) , 7/n G (S U A 2) such that if A is finite then there is 

iiK G N such that Cn ^ (.S'U/\), n J> n^- Since the sequence (Cn) is one-to-one there 

is a sequence (Cn) C (Cn)) Cn = in + Vn such that either ( f n ) , (7;n) are one-to-one or 

one of them, say (£n) , is one-to-one whereas the other is a constant one, i.e. i]n = 7/, 

n G N. In the first case there is (in view of the statement in the proof of Lemma 6) 

a subsequence (£in) C (in), points x G R and y G 1t, sequences (xn), xn G F£,n , and 

(yn), yn £ TVi , such that £j — l imx n = x and £j — limgn = y. In the second case 
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we choose y G T1} and put yn = y, n G N. Then £fJ —\imxn = x and £fJ — \'nr\yn = y. 

In both cases we have a sequence (xn + yn) of non-equivalent points (xn-\-yn) G Fr, 

which does not £^-converge to the point x + y because there is no finite K C R/II 

such that Cn G (S U K), n ^ n 0 . • 

L e m m a 1 1 . Let H be a subgroup of the group R and S a Unite subset of /?,/H. 

Then (R, £ 5 , + ) is a cc-group. 

P r o o f . S and 5 " are finite sets. Hence fi*(S) = 0, /?*(5") = 0. The condition 

(—) is satisfied, by Lemma 9. Now, let Li, L2 be finite. Then ( ( S U F i ) + ( 5 U L2)) 

is a finite subset of It/II and so /J* ((,S'U L\) + (S'U L2j) = 0 , P*(S) = 0. Hence (+ ) 

is satisfied, by Lemma 10. • 

Next we use lemmas 9 and 10 to answer the question: Given a subgroup II C R 

does there exist more than two cc-groups ( / ? ,£{ / ,+ )? 

L e m m a 12. Let S be an infinite and K a finite subset of R/H. Let (£Tl) be a 

one-to-one sequence of elements £n G S U K. Then there is no such that £n G S, 

n ^ 7. o-

P r o o f . Since (£n) is one-to-one the finite set Iv contains at most a finite number 

of elements £ n . D 

L e m m a 13 . Let II be a subgroup of the group R. Let S be an infinite suJjset of 

It/II. Let (/{*, £ { / , + ) be a cc-group. Let (£ri) be a one-to-one sequence of elements 

£n G S. Let 7/ G It/II. Then there is no such that (£n + 7;) G S, n ^ 7?rj. 

P r o o f . Put L\ = 0, L2 = {?;}. Then £n G ( S U L i ) , 7/ G ( 5 U L 2 ) . Since 

(It, £ 5 , + ) is a cc-group the condition (+) is satisfied. We can apply Lemma 10. 

There is a finite K C R/II such that (fn + ?/) G .S'U/v , 71 G N. Therefore (£n+7/) G S\ 
n ^ "0 , by Lemma 12. n 

L e m m a 14. Let II be a subgroup of the group R. Let S and RjII — S be infinite 

subsets of It/II. Then (Ft, £ 5 , + ) fails to be a cc-group. 

P r o o f . Suppose that , on the contrary, (/t, £ { / , + ) is a cc-group. Denote S1 = 

R/II — S. Let (£n) , in £ S, (i]n), Vn G S', be one-to-one sequences. According 

to Lemma 12 there is 711 such that (£n + 7/1) G .5', 7? ^ 7ii. Put 7771 = n\ and 

C*i = £m , -f 7/1. Suppose that we have chosen natural numbers 7711 < m2 < . . . < mp 

and non-equivalent elements £,- G .5, i $j />, where Q = £m , + 7/t-, i ^ p. Notice, 

that (£n + 7 / p + i ) is a one-to-one sequence such that (£n + 7/p+i) G 5 , 7? ^ 7?0, by 

Lemma 13. It follows that there is a natural number ?7ip+i > mp + ??0 such that 
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(£ m p + 1 + 7//,+i) / Ci, i ^ P- [ > u t Cp+i = Zmp+l + fy+i- Hence we have an increasing 

sequence ?7*i < m2 < . . . < m.)+i and a one-to-one sequence Ci, C2. • • •. C/>+i °f 

elements of .$'. We have constructed, by means of mathematical induction, a one-to-

one sequence of elements C? G .$', Ci — £m. +!/?, / G N- Flements £m , belong to the set 

,$' and elements - ( m , to the set S~ = SnS~ U(S~ -.$*). (/?., £ 5 , + ) satisfies ( - ) and 

so 5 ~ - .$ is a finite set, by Lemma 9. Put L\ = 0, L2 = .$'" - S. Then Q G .$' U Li 

and —£m, G .$'U £2- According to Lemma 10 there is a finite K C R/H such that 

(Ci — £m.) G .$'U A', i.e. 7/j G .$'U A\ The sequence (i)i) is one-to-one. According to 

Lemma 12 there is /0 such that ?/; G 5 , / ^ /0. On the other hand, 7// G .$'', / G A\ 

Thus we got a contradictory result. 

There is a close connection between cc-groups (1?, £ 5 , + ) and complete groups 

with respect to the convergence £fJ. This is shown in the following lemma. • 

L e m m a 15. (It, £$ , + ) is a cc-group if and only if it is a complete group. 

P r o o f . Let (ft, £{/ , + ) be a cc-group. By Lemma 14 there is a finite A' C R/H 

such that S = Iv or S = It/7/ - A\ If S = /f/// - A then (1 t , £ f , + ) is a complete 

because £{/ = £ . Now, suppose that .$' is a finite set. Let (cn), cn G Li, be a Cauchy 

sequence of points cn in (.ft, £ 5 , + ) . Distinguish two cases 

1) There is a finite subset A'0 such that cn G LIK0. The sequence (cn) is a Cauchy 

sequence with respect to £, because £ ^ C £, by Lemma 3. Hence there is a point 

x G R such that liniCn = x. We have £{j — limc7i = x, according to Lemma 4. 

2) There is a subsequence (bn) C (cn) of non-equivalent points bn G ft. We 

construct, analogously as in [1], a subsequence (6,-n) C (6n) such that (bn — 6;n) does 

not £5-converge to 0. Put i\ = 1. Suppose that we have chosen points 6?1, 6/.,, . . ., 

biky i\ < i'2 < . . . < ikj such that no two numbers tm = 6m — 6 i m , 111 <C k, are 

equivalent. We prove that there is a point 6/fc + 1, ik + i > u-, in the sequence (bn) 

such that no two numbers / m , 1 <C 7/7 <C k -f I are equivalent. Let q > k. Suppose 

(indirect proof) that there is no point 65, J\ < s <C if. -+ q in the sequence (bn) 

such that any two numbers bk + i — bs and tm, 7/7 <C k, are non-equivalent. Denote 

u5 = 6^ + i — 65. Let / : {/\. < s <̂  ik + </} —* {V 2 , . .. , k} be a (one-valued) function 

such that xis and l/(tS) are equivalent numbers. Since q > k there are .sq > t\ 

and ^2 $J /jb + ry, S\ < s2, such that f(si) = f(s2). Consequently, the numbers 

i/,5l, l/(5l) are equivalent and also numbers Us2,tf{s2) are equivalent. It follows that 

(6 / ( 5 l ) - 65 l) G 11, (6/ { 5 2 ) - 652) G H. Hence (65l - 6 5 J G 1/ and so 65 l , 652 are 

equivalent points . This is a contradiction because 6n are non-equivalent points. We 

conclude that there is s0 G {ik + V 4 + 2 , . . . , ik + </} such that points 65(J, 6 lm , m <J k, 

are non-equivalent. Hence, it suffices to put ik + \ = SQ. 

In such a way we have constructed a sequence (bn — b(n) of non-equivalent points. 

Since .$' is finite it follows from Lemma 4 that the sequence (bn — 6t-n) does not £{/ -
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converge to 0. Therefore (cn) is not a Cauchy sequence with respect to £ 5 . The 

case 2) cannot occur. 

Let (1 t ,£^ , + ) be a complete group with respect to the convergence £ 5 . Then it 

is a cc-group, by the definition on p. 25. 

Lemmas 11 and 14 give us a complete information about structures ( H , £ ^ , + ) 

which are cc-groups. If H = R then (1t, £ , + ) is the unique cc-group. If H 7- R then 

there are exactly two different cc-groups, i.e. (R,£Q , + ) and (1 t ! ,£ ,+) . • 

C l o s i n g r e m a r k s . If Q is a subgroup of H and H a subgroup of 1?,, H ^ H, 

then there are two different completions ( I t ! , £^ ,+ ) of Q, namely, (R, £f7>+) and 

( / ? , £ , + ) . It follows that there is more than one completions of Q. There would 

be interesting to know what is the number of completion of the group of rational 

numbers Q. 

1 am indebted to P. Simon and R. Fric for their comments on the convergences £$ . 

Addendum after the proofs. P . Simon and R. Fric proved, independently from 

each other, tha t the number of completions of the group Q is exp(exp(u>)) [2]. 

References 

[1] J. Novak: On completions of convergence commutative groups, General Topology and 
its Relations to Modern Analysis and Algebra III. (Proc. Third Prague Topological 
Synipos., 1971), Academia, Praha, pp. 335-340. 

[2] R. Fric, F. Zanolin: Strict completions of Lg-groups, Czechoslovak Math. J., to appear. 

Author's address: Matematicky listav AV C1R, 2itna 25, 115 67 Praha 1, Czech Republic. 

25 


		webmaster@dml.cz
	2020-07-03T09:09:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




