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C s c c h o s l o v n k M n t h e ш n t i c n l J o u n ш l , 4 3 ( 1 1 8 ) 1 9 0 3 , Prn lш 

CLOSED BOUNDED SETS IN INDUCTIVE LIMITS OF JC-SPACES 

CARLOS BOSCH, San Angel, JAN KucERA, Pullman 

(Received July 15, 1991) 

A web W in a vector space F is a countable family of balanced subsets of F, 

arranged in "layers". The first layer of the web consists of a sequence (Ap : p = 

1,2,...) whose union absorbs each point of F. For each set Ap of the first layer there 

is a sequence (Apq : q = 1,2,...) of sets, called the sequence determined by Ap, such 

that 

Apq + Apq C Ap for each q, 

\\{Apq : q = 1,2,...} absorb each point of Ap. 

Further layers are made up in a corresponding way so that each set of the Ar-th 

layer is indexed by a finite row of k integers and at each step the above mentioned 

two conditions are satisfied. Suppose that one chooses a set Ap from the first layer, 

then a set Apq of the sequence determined by Ap and so on. The resulting sequence 

£ = (Api Apqi Apqr,...) is called a strand. Whenever we are dealing with only one 

strand we can simplify the notation by writing W\ = Ap, Wo = Apq etc.; thus 

:5 = (Wk) is a strand where for each k, Wk is a set in the k-th layer. We will 

work only with locally convex spaces and also assume that each member for a web 

is absolutely convex. 
CO 

Let S = (Wn) be a strand. Consider xn G Wn and the series £ xn. The space F 
n = l 

is webbed if the series Yl xn is convergent for any choice of xn in Wn. The standard 
n = l 

references for webs in locally convex spaces are [1], [2] and [3]. 

It is shown in [5] that E = indlim Kn, where all spaces En are Frechet, is regular iff 

it is locally complete. In [6] T . Gilsdorf substitutes the Frechet spaces En by webbed 

K-spaces and proves that E is regular iff it is locally Baire. In this paper the same 

substitution is used to generalize results by Qui Jing Hui, see [7], on closed bounded 

sets in inductive limits. 
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Theorem 1. Let (E, r ) be a webbed locally convex space. Let B C E be closed. 

If B is a Baire disk then B is bounded. 

P r o o f . Denote by i) the topology in EB induced by the system of neighbor
hoods of zero {( l /? iH)nV : V G r, V closed, and n G N}. 

First. Let's prove that (EB, ?;) is a webbed space. Let W be a web in E consisting 
of the sets Apq .. .r. We will construct a web in EB in the following way: the first 
layer will be {Ap C\ B: p = 1,2,.. .}, the second layer {Apq C\(^B): q = 1,2 ...} and 

oo 

so on. Take a string (Wn) in EB, consider any xn G Wn and the series Y xn- Note 
n = l 

that for each Wn there exist a Wn such that Wn C VVn C E where 

W[ = APDBCAP = W1CE 

W'2 = ApqCiBcApq = W2cE 

and so on. 
CO 

Since E is webbed for any choice of xm in Wm the series Y x»* *s convergent in 
m = l 

tn 

E therefore also for any xm in Wm. That means that the sequences ym = Y x* 
n = l 

converges in E so [Theorem 3.2.4 p.59,8] it converges in (K#,rj). Then F#,?; is 
webbed. 

Now the map id: (EB,I)) —* (EB,PB) is continuous, (Kjg,?/) is webbed, and 

(EB,PB) is a Baire space. Hence it is also open by [Theorem 3.2, p. 59,2]. That 
means id(BC)V) is a neighborhood of 0 in (EB,PB)- SO there exists X > 0 such that 
\B C B H V C V, i.e. B is bounded in E. • 

Lemma. Let (E,T) be a locally convex space. Let B C E be closed. U(E,T) is 

a )C-space then (EB, ty) is a K -space. 

P r o o f . Let xn —> 0 in (EB,*])- Then xn —* 0 in (K, r ) because id: (EB,IJ) —> 
(E, T) is continuous. Hence there is a subsequence (xnk) of (xn) and x G E such that 
oo m 

Y, £nk = x- Let t/m = 51 ^njt- Then (ym) is a sequence of elements in EB, and it 
* = i * = i 

converges in (£7, r ) hence it also converges in (EB,T/EB), SO [Theorem 3.2.4, p. 59,8] 
ym converges to x in (EB,*I)- Since B is closed in (E,T) and (ym) is a bounded 
sequence in (EB,T) we have for some A that x G AH C EB- This means (EB,T)) 

satisfies property K. D 

Let E\ C E2 C •. • be a sequence of locally convex spaces with all identity maps: 
(En,Tn) —•(£„+!, rn+i) continuous and E = indlimKn. 
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T h e o r e m 2. Let each space (En,Tn) be a webbed K,-space. Let a set B be an 

absolutely convex subset of En. If B is bounded and closed in some (Em, r m ) , where 

m > n, then B is bounded and closed in (En,Tn). 

P r o o f . Since B is closed in (Em,Tm) and id: (En,Tn) —> (Em,Tm) is continu

ous, B is also closed in (En,Tn). Now B is bounded and closed in (Em,Tm), where 

(Em,Tm) is webbed and has property K, so following the proof of Lemma, (EB,PB) 

also has property K. By [4] any metrizable K-space is Baire. We conclude that 

(EB,PB) is Baire and B is a Baire disk. By Theorem 1, B is bounded in (En,Tn). 

• 

T h e o r e m 3 . Let each space (En,Tn) be a webbed K-space. Let a set B be 

absolutely convex, bounded, and closed in (E,T) = indlim(Fn , r „ ) . If (E,T) is 

locally Baire and B C En for some n in N then B is bounded and closed in (En,Tn). 

P r o o f . It follows from Theorem 2 and Theorem 3 in [6]. • 
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