Czechoslovak Mathematical Journal

Svatoslav Staněk

On a class of functional boundary value problems for second-order functional differential equations with parameter

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 2, 339-348

Persistent URL: http://dml.cz/dmlcz/128403

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON A CLASS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS FOR SECOND-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH PARAMETER

Svatoslav Staněk, Olomouc
(Received December 18, 1991)

In this paper sufficient conditions concerning only operators Q, F are given for the functional differential equation

$$
y^{\prime \prime}(t)-Q\left[y, y^{\prime}\right](t) \cdot y(t)=F\left[y, y^{\prime}, \mu\right](t)
$$

depending on the parameter μ to admit, for a suitable value of μ, a solution y satisfying functional boundary conditions

$$
\alpha_{1}\left(y\left(t_{1}\right)-y(t) \mid J_{1}\right)=0, \quad y\left(t_{2}\right)=0, \quad \alpha_{2}\left(y\left(t_{3}\right)-y(t) \mid J_{2}\right)=0
$$

where $-\infty<t_{1}<t_{2}<t_{3}<\infty, \alpha_{i}$ are continuous functionals and $y(t) \mid J_{i}$ denotes the restriction of y to $J_{i}=\left\langle t_{i}, t_{i+1}\right\rangle(i=1,2)$. Next, sufficient conditions are given under which the above equation has, for a suitable value of the parameter μ, a bounded solution y on the halfline $\left\langle t_{1}, \infty\right)$ and $\alpha_{1}\left(y\left(t_{1}\right)-y(t) \mid J_{1}\right)=0, y\left(t_{2}\right)=0$.

1. Introduction

Let $-\infty<t_{1}<t_{2}<t_{3}<\infty,-\infty<a<b<\infty, J=\left\langle t_{1}, t_{3}\right\rangle, J_{1}=\left\langle t_{1}, t_{2}\right\rangle$, $J_{2}=\left\langle t_{2}, t_{3}\right\rangle, I=\langle a, b\rangle$ and $X\left(X_{1} ; X_{2}\right)$ be the Banach space of the C^{0}-functions on $J\left(J_{1} ; J_{2}\right)$ with the norm $\|y\|=\max \{|y(t)| ; t \in J\}\left(\|y\|_{1}=\max \left\{|y(t)| ; t \in J_{1}\right\}\right.$; $\left.\|y\|_{2}=\max \left\{|y(t)| ; t \in J_{2}\right\}\right)$. Consider the functional differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)-Q\left[y, y^{\prime}\right](t) \cdot y(t)=F\left[y, y^{\prime}, \mu\right](t) \tag{1}
\end{equation*}
$$

depending on a parameter μ. Here $Q: X \times X \rightarrow X, F: X \times X \times I \rightarrow X$ are continuous operators, $Q[y, z](t)>0$ on J for all $[y, z] \in X \times X$.

Let $\alpha_{i}: X_{i} \rightarrow R(i=1,2)$ be continuous increasing (i.e. $\alpha_{i}(x)<\alpha_{i}(y)$ for all $x, y \in X_{i}, x(t)<y(t)$ for $\left.t \in J_{i}-\left\{t_{2 i-1}\right\}, x\left(t_{2 i-1}\right)=y\left(t_{2 i-1}\right)=0\right)$ functionals, $\alpha_{i}(0)=0$. The purpose of this paper is to obtain using the Schauder linearization technique and the Schauder fixed point theorem, sufficient conditions imposed on the operators Q, F under which equation (1) admits, for a suitable value of the parameter μ, a solution y satisfying the functional boundary conditions

$$
\begin{equation*}
\alpha_{1}\left(y\left(t_{1}\right)-y(t) \mid J_{1}\right)=0, \quad y\left(t_{2}\right)=0, \quad \alpha_{2}\left(y\left(t_{3}\right)-y(t) \mid J_{2}\right)=0 \tag{2}
\end{equation*}
$$

where $y(t) \mid J_{i}(i=1,2)$ denotes the restriction of y to the interval J_{i}.
In Section 4, we use BVP (1)-(2) to consider bounded solutions of (1) on the halfline $\left\langle t_{1}, \infty\right)$ satisfying the functional boundary conditions

$$
\alpha_{1}\left(y\left(t_{1}\right)-y(t) \mid J_{1}\right)=0, \quad y\left(t_{2}\right)=0
$$

The paper generalizes the author's results in [1]-[3] and, in a special case, also his results in [4]. In [1] the existence of solutions of (1) satisfying for example the boundary conditions $y\left(t_{1}\right)-y\left(t_{2}\right)=y\left(t_{3}\right)=y\left(t_{4}\right)-y\left(t_{5}\right)=0\left(-\infty<t_{1}<t_{2}<t_{3}<\right.$ $t_{4}<t_{5}<\infty$) was studied.

In [2] sufficient conditions for the existence (and uniqueness) of solutions of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-q(t) y=f\left(t, y, y^{\prime}, \mu\right) \tag{3}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{equation*}
y\left(t_{1}\right)=y\left(t_{2}\right)=y\left(t_{3}\right)=0 \tag{4}
\end{equation*}
$$

$\left(-\infty<t_{1}<t_{2}<t_{3}<\infty\right)$ was established.
In [4] the author considered the functional differential equation

$$
y^{\prime \prime}(t)-q(t) y(t)=f\left(t, y(t), y\left(h_{0}(t)\right), y^{\prime}(t), y^{\prime}\left(h_{1}(t)\right), \mu\right)
$$

with boundary conditions

$$
\sum_{i=1}^{m} \alpha_{i} y\left(t_{i}\right)=0, \quad y(c)=0, \quad \sum_{j=1}^{n} \beta_{j} y\left(x_{j}\right)=0
$$

($\alpha_{i}>0, \beta_{j}>0$ constants, $a=t_{1}<\ldots<t_{m}<c<x_{n}<\ldots<x_{1}=b$).
In [3]-among other-sufficient conditions for the boundedness of solutions of (3) on a halfline $\left\langle t_{1}, \infty\right)$ satisfying the boundary conditions $y\left(t_{1}\right)=y\left(t_{2}\right)=0\left(t_{2}>t_{1}\right)$ were obtained.

A functional boundary value problem depending on one parameter was studied also in [5]. In this paper the retarded functional differential equation

$$
y^{\prime \prime}-q(t) y=f\left(t, y_{t}, \mu\right)
$$

with boundary conditions (4) was considered.

2. Notation, lemmas

Let $\varphi \in C^{1}(J)$ and let u_{φ}, v_{φ} be the solutions of the differential equation

$$
\begin{equation*}
y^{\prime \prime}=Q\left[\varphi, \varphi^{\prime}\right](t) y \tag{5}
\end{equation*}
$$

$u_{\varphi}\left(t_{2}\right)=0, u_{\varphi}^{\prime}\left(t_{2}\right)=1, v_{\varphi}\left(t_{2}\right)=1, v_{\varphi}^{\prime}\left(t_{2}\right)=0$. For $(t, s) \in J \times J$ define $r(t, s ; \varphi)$ and $r_{1}^{\prime}(t, s ; \varphi)$ by

$$
\begin{aligned}
r(t, s ; \varphi) & =u_{\varphi}(t) v_{\varphi}(s)-u_{\varphi}(s) v_{\varphi}(t)(=-r(s, t ; \varphi)) \\
r_{1}^{\prime}(t, s ; \varphi) & =u_{\varphi}^{\prime}(t) v_{\varphi}(s)-u_{\varphi}(s) v_{\varphi}^{\prime}(t)\left(=\frac{\partial}{\partial t} r(t, s ; \varphi)\right)
\end{aligned}
$$

Then $r(t, s ; \varphi)>0$ for all $t_{1} \leqslant s<t \leqslant t_{3}, r(t, s ; \varphi)<0$ for all $t_{1} \leqslant t<s \leqslant t_{3}$, $r_{1}^{\prime}(t, s ; \varphi)>1$ for all $(t, s) \in J \times J$ and $t \neq s, r_{1}^{\prime}(t, t ; \varphi)=1$ for all $t \in J$ (for the proof, see e.g. [2]).

Lemma 1. Assume $\varphi \in C^{1}(J), h \in C^{0}(J \times I), h(t, \cdot)$ is increasing on I for each fixed $t \in J$ and

$$
\begin{equation*}
h(t, a) h(t, b) \leqslant 0 \text { for all } t \in J \tag{6}
\end{equation*}
$$

Then there is a unique $\mu_{0} \in I$ such that the differential equation

$$
\begin{equation*}
y^{\prime \prime}=Q\left[\varphi, \varphi^{\prime}\right](t) y+h(t, \mu) \tag{7}
\end{equation*}
$$

with $\mu=\mu_{0}$ admits a solution y satisfying (2). Moreover, this solution y is unique.
Proof. The function $y(t ; \mu, c)$ defined on $J \times I \times R$ by

$$
y(t ; \mu, c)=c u_{\varphi}(t)+\int_{t_{2}}^{t} r(t, s ; \varphi) h(s, \mu) \mathrm{d} s
$$

is the general solution of (7) vanishing at the point $t=\boldsymbol{t}_{2}$. Since

$$
\begin{aligned}
& y\left(t_{1} ; \mu, c\right)-y(t ; \mu, c)=c\left(u_{\varphi}\left(t_{1}\right)-u_{\varphi}(t)\right)+ \\
& \quad+\int_{t_{2}}^{t}\left[r\left(t_{1}, s ; \varphi\right)-r(t, s ; \varphi)\right] h(s, \mu) \mathrm{d} s+\int_{t}^{t_{1}} r\left(t_{1}, s ; \varphi\right) h(s, \mu) \mathrm{d} s \\
& y\left(t_{3} ; \mu, c\right)-y(t ; \mu, c)=c\left(u_{\varphi}\left(t_{3}\right)-u_{\varphi}(t)\right)+ \\
& \quad+\int_{t_{2}}^{t}\left[r\left(t_{3}, s ; \varphi\right)-r(t, s ; \varphi)\right] h(s, \mu) \mathrm{d} s+\int_{t}^{t_{3}} r\left(t_{3}, s ; \varphi\right) h(s, \mu) \mathrm{d} s
\end{aligned}
$$

and $u_{\varphi}\left(t_{1}\right)-u_{\varphi}(t)<0$ on $\left(t_{1}, t_{3}\right\rangle, u_{\varphi}\left(t_{3}\right)-u_{\varphi}(t)>0$ on $\left\langle t_{1}, t_{3}\right), r\left(t_{1}, s ; \varphi\right)-r(t, s$; $\varphi)=r_{1}^{\prime}(\xi, s ; \varphi)\left(t_{1}-t\right)<0$ for $(t, s) \in J \times J, t \neq t_{1}$ (where ξ lies between t_{1} and t), $r\left(t_{3}, s ; \varphi\right)-r(t, s ; \varphi)=r_{1}^{\prime}(\eta, s ; \varphi)\left(t_{3}-t\right)>0$ for $(t, s) \in J \times J, t \neq t_{3}$ (where η lies between t_{3} and t), we see that the functions $p_{i}: I \times R \rightarrow R, p_{i}(\mu, c)=\alpha_{i}\left(y\left(t_{2 i-1} ;\right.\right.$ $\left.\mu, c)-y(t ; \mu, c) \mid J_{i}\right)(i=1,2)$ are continuous on $I \times R, p_{i}(\cdot, c)$ are increasing on I for each fixed $c \in R, p_{1}(\mu, \cdot)\left(p_{2}(\mu, \cdot)\right)$ is decreasing (increasing) on R for each fixed $\mu \in I$. Finally, one can check that $\lim _{c \rightarrow-\infty} p_{1}(\mu, c)>0, \lim _{c \rightarrow \infty} p_{1}(\mu, c)<0$, $\lim _{c \rightarrow-\infty} p_{2}(\mu, c)<0, \lim _{c \rightarrow \infty} p_{2}(\mu, c)>0$ for each fixed $\mu \in I$. Hence there are unique functions $c_{i}: I \rightarrow R(i=1,2)$ such that

$$
p_{i}\left(\mu, c_{i}(\mu)\right)=0 \quad \text { for all } \mu \in I \text { and } i=1,2
$$

and $c_{1}(\mu)\left(c_{2}(\mu)\right)$ is increasing (decreasing) on I.
To prove that $c_{i}(i=1,2)$ are continuous functions on I we suppose there are sequences $\left\{\mu_{n}^{\prime}\right\},\left\{\mu_{n}^{\prime \prime}\right\}$ from I such that $\lim _{n \rightarrow \infty} \mu_{n}^{\prime}=\lim _{n \rightarrow \infty} \mu_{n}^{\prime \prime}=\mu_{0}$ and $\lim _{n \rightarrow \infty} c_{i}\left(\mu_{n}^{\prime}\right)=\lambda_{1}$, $\lim _{n \rightarrow \infty} c_{i}\left(\mu_{n}^{\prime \prime}\right)=\lambda_{2}, \lambda_{1}<\lambda_{2}$, for some $i \in\{1,2\}$. Then $0=\lim _{n \rightarrow \infty} p_{i}\left(\mu_{n}^{\prime}, c_{i}\left(\mu_{n}^{\prime}\right)\right)=$ $p_{i}\left(\mu_{0}, \lambda_{1}\right), 0=\lim _{n \rightarrow \infty} p_{i}\left(\mu_{n}^{\prime \prime}, c_{i}\left(\mu_{n}^{\prime \prime}\right)\right)=p_{i}\left(\mu_{0}, \lambda_{2}\right)$, which is a contradiction to $p_{i}\left(\mu_{0}, \lambda_{1}\right) \neq p_{i}\left(\mu_{0}, \lambda_{2}\right)$.

It remains to prove the existence of a unique $\mu_{0} \in I$ such that $c_{1}\left(\mu_{0}\right)=c_{2}\left(\mu_{0}\right)$. Since $h(t, a) \leqslant 0, h(t, b) \geqslant 0$ on $J(c f .(6))$ we have $y\left(t_{1} ; a, 0\right)-y(t ; a, 0) \leqslant 0, y\left(t_{1} ;\right.$ $b, 0)-y(t ; b, 0) \geqslant 0$ for $t \in\left\langle t_{1}, t_{2}\right\rangle, y\left(t_{3} ; a, 0\right)-y(t ; a, 0) \leqslant 0, y\left(t_{3} ; b, 0\right)-y(t ;$ $b, 0) \geqslant 0$ for $t \in\left\langle t_{2}, t_{3}\right\rangle$, and then $p_{i}(a, 0) \leqslant 0, p_{i}(b, 0) \geqslant 0(i=1,2)$. Using the fact that $p_{1}(a, \cdot), p_{1}(b, \cdot)\left(p_{2}(a, \cdot), p_{2}(b, \cdot)\right)$ are decreasing (increasing) on R and $p_{i}\left(a, c_{i}(a)\right)=0, p_{i}\left(b, c_{i}(b)\right)=0(i=1,2)$, we get $c_{1}(a) \leqslant 0, c_{1}(b) \geqslant 0, c_{2}(a) \geqslant 0$, $c_{2}(b) \leqslant 0$, therefore $c_{1}(a)-c_{2}(a) \leqslant 0, c_{1}(b)-c_{2}(b) \geqslant 0$. Since $c_{1}(\mu)-c_{2}(\mu)$ is continuous increasing on I, the equation $c_{1}(\mu)-c_{2}(\mu)=0$ has a unique solution on I.

Next, we will suppose that there exist positive constants r_{0}, r_{1} such that the operators Q, F satisfy the following assumptions:
$\left(\mathrm{H}_{1}\right)\left|F\left[y, y^{\prime}, \mu\right](t)\right| \leqslant r_{0} \cdot Q\left[y, y^{\prime}\right](t)$ for all $t \in J$ and $\left[y, y^{\prime}, \mu\right] \in D \times I$, where $D=\left\{\left[y, y^{\prime}\right] ; y \in C^{1}(J),\left\|y^{(i)}\right\| \leqslant r_{i}\right.$ for $\left.i=0,1\right\} ;$
$\left(\mathbf{H}_{2}\right) F\left[y, y^{\prime}, \mu_{1}\right](t)<F\left[y, y^{\prime}, \mu_{2}\right](t)$ for all $t \in J$
and $\left[y, y^{\prime}\right] \in D, \mu_{1}, \mu_{2} \in I, \mu_{1}<\mu_{2} ;$
$\left(\mathrm{H}_{3}\right) \quad F\left[y, y^{\prime}, a\right](t) \cdot F\left[y, y^{\prime}, b\right](t) \leqslant 0$ for all $t \in J$ and $\left[y, y^{\prime}\right] \in D$;
$\left(\mathrm{H}_{4}\right) \min \left\{\left(A+r_{0} B\right) \tau, 2 \sqrt{r_{0}} \sqrt{A+r_{0} B}\right\} \leqslant r_{1}$,
where $A=\sup \left\{\left\|F\left[y, y^{\prime}, \mu\right]\right\| ;\left[y, y^{\prime}, \mu\right] \in D \times I\right\}$,
$B=\sup \left\{\left\|Q\left[y, y^{\prime}\right]\right\| ;\left[y, y^{\prime}\right] \in D\right\}, \tau=\max \left\{t_{2}-t_{1}, t_{3}-t_{2}\right\}$.

Lemma 2. Let assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ be fulfilled for positive constants r_{0}, r_{1} and let $\varphi \in C^{1}(J),\left\|\varphi^{(i)}\right\| \leqslant r_{i}(i=0,1)$. Then there exists a unique $\mu_{0} \in I$ such that the equation

$$
\begin{equation*}
y^{\prime \prime}=Q\left[\varphi, \varphi^{\prime}\right](t) y+F\left[\varphi, \varphi^{\prime}, \mu\right](t) \tag{8}
\end{equation*}
$$

with $\mu=\mu_{0}$ admits a (then unique) solution y satisfying (2) and, moreover,

$$
\begin{equation*}
\left\|y^{(i)}\right\| \leqslant r_{i} \quad \text { for } i=0,1 . \tag{9}
\end{equation*}
$$

Proof. Setting $h(t, \mu)=F\left[\varphi, \varphi^{\prime}, \mu\right](t)$ for $(t, \mu) \in J \times I$, the function h fulfils the assumptions of Lemma 1 and hence there is a unique $\mu_{0} \in I$ such that equation (8) with $\mu=\mu_{0}$ admits a (then unique) solution y satisfying (2).

Now we prove $\|y\| \leqslant r_{0}$. Let $|y(\xi)|=\|y\|>r_{0}$ for some $\xi \in J$. If $\xi \in\left(t_{1}, t_{3}\right)$ then the function $y \cdot \operatorname{sign} y(\xi)$ has a local maximum at the point $t=\xi$, which contradicts $y^{\prime \prime}(\xi) \cdot \operatorname{sign} y(\xi)>0$. The last inequality follows from assumption $\left(\mathrm{H}_{1}\right)$. Hence $\xi \in\left\{t_{1}, t_{3}\right\}$. If $\xi=t_{1}\left(\xi=t_{3}\right)$ then due to $y\left(t_{2}\right)=0$ and assumption (H_{1}) we have $\left(y\left(t_{1}\right)-y(t)\right) \operatorname{sign} y\left(t_{1}\right)>0$ for all $t \in\left(t_{1}, t_{2}\right\rangle\left(\left(y\left(t_{3}\right)-y(t)\right) \cdot \operatorname{sign} y\left(t_{3}\right)>0\right.$ for all $t \in\left\langle t_{2}, t_{3}\right)$), which contradicts $\alpha_{1}\left(y\left(t_{1}\right)-y(t) \mid J_{1}\right)=0\left(\alpha_{2}\left(y\left(t_{3}\right)-y(t) \mid J_{2}\right)=0\right)$. Thus $\|y\| \leqslant r_{0}$.

Since $\alpha_{i}\left(y\left(t_{2 i-1}\right)-y(t) \mid J_{i}\right)=0, \alpha_{i}$ are increasing functionals and $\alpha_{i}(0)=0$ ($i=1,2$), there exist $\xi_{1} \in\left(t_{1}, t_{2}\right\rangle, \xi_{2} \in\left\langle t_{2}, t_{3}\right)$ such that $y\left(t_{2 i-1}\right)-y\left(\xi_{i}\right)=0$ and therefore $y^{\prime}\left(\eta_{i}\right)=0$ for some $\eta_{1} \in\left(t_{1}, \xi_{1}\right), \eta_{2} \in\left(\xi_{2}, t_{3}\right)$. For the next part of the proof of the inequality $\left\|y^{\prime}\right\| \leqslant r_{1}$ see e.g. [2] and [4].

3. Existence theorem

Theorem 1. Assume assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are fulfilled for positive constants r_{0} and r_{1}. Then there exists $\mu_{0} \in I$ such that equation (1) with $\mu=\mu_{0}$ admits a solution y satisfying (2) and (9).

Proof. Let Y be the Banach space of the C^{1}-functions on J with the norm $\|y\|_{Y}=\|y\|+\left\|y^{\prime}\right\|$ for $y \in Y$ and $K=\left\{y ; y \in Y,\left\|y^{(i)}\right\| \leqslant r_{i}\right.$ for $\left.i=0,1\right\}$. K is a bounded convex closed subset of Y. Let $\varphi \in K$. By Lemma 2 there is a unique $\mu_{0} \in I$ such that equation (8) with $\mu=\mu_{0}$ admits a (then unique) solution y satisfying (2) and $y \in K$. Setting $T(\varphi)=y$ we obtain an operator $T: K \rightarrow K$. To prove Theorem 1 it is sufficient to show that T has a fixed point.

First we prove that T is a continuous operator. Let $\left\{y_{n}\right\} \subset K$ be a convergent sequence, $\lim _{n \rightarrow \infty} y_{n}=y$ and let $z_{n}=T\left(y_{n}\right), z=T(y)$. Then there are sequences $\left\{\mu_{n}\right\} \subset I,\left\{c_{n}\right\} \subset R$ and $\mu_{0} \in I, c_{0} \in R$ such that we have (see the proof of Lemma 1)

$$
\begin{aligned}
z_{n}(t) & =c_{n} u_{y_{n}}(t)+\int_{t_{2}}^{t} r\left(t, s ; y_{n}\right) F\left[y_{n}, y_{n}^{\prime}, \mu_{n}\right](s) \mathrm{d} s \text { for all } t \in J \text { and } n \in N, \\
z(t) & =c_{0} u_{y}(t)+\int_{t_{2}}^{t} r(t, s ; y) F\left[y, y^{\prime}, \mu_{0}\right](s) \mathrm{d} s \text { for all } t \in J
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha_{1}\left(z_{n}\left(t_{1}\right)-z_{n}(t) \mid J_{1}\right)-0, \quad z_{n}\left(t_{2}\right)=0, \quad \alpha_{2}\left(z_{n}\left(t_{3}\right)-z_{n}(t) \mid J_{2}\right)=0 \text { for all } n \in N, \\
& \alpha_{1}\left(z\left(t_{1}\right)-z(t) \mid J_{1}\right)=0, \quad z\left(t_{2}\right)=0, \quad \alpha_{2}\left(z\left(t_{3}\right)-z(t) \mid J_{2}\right)=0
\end{aligned}
$$

The sequence $\left\{c_{n}\right\}$ is bounded since $\lim _{n \rightarrow \infty} y_{n}=y$ and $\left\|z_{n}\right\| \leqslant r_{0}$ for all $n \in N$. If $\left\{c_{n}\right\}$ is not convergent there are convergent subsequences $\left\{c_{k_{n}}\right\},\left\{c_{r_{n}}\right\}$ and convergent subsequences $\left\{\mu_{k_{n}}\right\},\left\{\mu_{r_{n}}\right\}$ of $\left\{\mu_{n}\right\}$ such that $\lim _{n \rightarrow \infty} c_{k_{n}}=c^{(1)}, \lim _{n \rightarrow \infty} c_{r_{n}}=c^{(2)}$, $\lim _{n \rightarrow \infty} \mu_{k_{n}}=\mu^{(1)}, \lim _{n \rightarrow \infty} \mu_{r_{n}}=\mu^{(2)}, c^{(1)}<c^{(2)}$ and $\mu^{(1)}, \mu^{(2)}$ are either equal or not. Then

$$
\begin{aligned}
& \left(k_{1}(t):=\right) \lim _{n \rightarrow \infty} z_{k_{n}}(t)=c^{(1)} u_{y}(t)+\int_{t_{2}}^{t} r(t, s ; y), F\left[y, y^{\prime}, \mu^{(1)}\right](s) \mathrm{d} s \\
& \left(k_{2}(t):=\right) \lim _{n \rightarrow \infty} z_{r_{n}}(t)=c^{(2)} u_{y}(t)+\int_{t_{2}}^{t} r(t, s ; y) F\left[y, y^{\prime}, \mu^{(2)}\right](s) \mathrm{d} s
\end{aligned}
$$

uniformly on J and

$$
\begin{array}{ll}
\alpha_{1}\left(k_{i}\left(t_{1}\right)-k_{i}(t) \mid J_{1}\right)=0, & k_{i}\left(t_{2}\right)=0 \tag{10}\\
\alpha_{2}\left(k_{i}\left(t_{3}\right)-k_{i}(t) \mid J_{2}\right)=0 & \text { for } i=1,2
\end{array}
$$

The equalities $(i=1,2)$

$$
\begin{aligned}
k_{i}\left(t_{1}\right)-k_{i}(t)= & c^{(i)}\left(u_{y}\left(t_{1}\right)-u_{y}(t)\right)+\int_{t_{2}}^{t}\left(r\left(t_{1}, s ; y\right)-r(t, s ; y)\right) \\
& \times F\left[y, y^{\prime}, \mu^{(i)}\right](s) \mathrm{d} s+\int_{t}^{t_{1}} r\left(t_{1}, s ; y\right) F\left[y, y^{\prime}, \mu^{(i)}\right](s) \mathrm{d} s \\
k_{i}\left(t_{3}\right)-k_{i}(t)= & c^{(i)}\left(u_{y}\left(t_{3}\right)-u_{y}(t)\right)+\int_{t_{2}}^{t}\left(r\left(t_{3}, s ; y\right)-r(t, s ; y)\right) \\
& \times F\left[y, y^{\prime}, \mu^{(i)}\right](s) \mathrm{d} s+\int_{t}^{t_{3}} r\left(t_{3}, s ; y\right) F\left[y, y^{\prime}, \mu^{(i)}\right](s) \mathrm{d} s
\end{aligned}
$$

imply (see the proof of Lemma 1)

$$
\begin{aligned}
& k_{1}\left(t_{1}\right)-k_{1}(t)>k_{2}\left(t_{1}\right)-k_{2}(t) \text { for } t \in\left(t_{1}, t_{2}\right\rangle \text { and } \mu^{(1)} \geqslant \mu^{(2)} \\
& k_{2}\left(t_{3}\right)-k_{2}(t)>k_{1}\left(t_{3}\right)-k_{1}(t) \text { for } t \in\left\langle t_{2}, t_{3}\right) \text { and } \mu^{(1)} \leqslant \mu^{(2)}
\end{aligned}
$$

which contradicts (10). Hence $\left\{c_{n}\right\}$ is convergent, and let $\lim _{n \rightarrow \infty} c_{n}=c^{*}$. If $\left\{\mu_{n}\right\}$ is not convergent there are convergent subsequences $\left\{\mu_{j_{n}}\right\},\left\{\mu_{i_{n}}\right\}, \lim _{n \rightarrow \infty} \mu_{j_{n}}=\lambda^{(1)}$, $\lim _{n \rightarrow \infty} \mu_{i_{n}}=\lambda^{(2)}, \lambda^{(1)}<\lambda^{(2)}$. Then

$$
\begin{aligned}
& \left(p_{1}(t):=\right) \lim _{n \rightarrow \infty} z_{j_{n}}(t)=c^{*} u_{y}(t)+\int_{t_{2}}^{t} r(t, s ; y) F\left[y, y^{\prime}, \lambda^{(1)}\right](s) \mathrm{d} s, \\
& \left(p_{2}(t):=\right) \lim _{n \rightarrow \infty} z_{i_{n}}(t)=c^{*} u_{y}(t)+\int_{t_{2}}^{t} r(t, s ; y) F\left[y, y^{\prime}, \lambda^{(2)}\right](s) \mathrm{d} s
\end{aligned}
$$

uniformly on J and

$$
\begin{align*}
& \alpha_{1}\left(p_{i}\left(t_{1}\right)-p_{i}(t) \mid J_{1}\right)=0, \quad p_{i}\left(t_{2}\right)=0 \tag{11}\\
& \alpha_{2}\left(p_{i}\left(t_{3}\right)-p_{i}(t) \mid J_{2}\right)=0 \quad \text { for } i=1,2
\end{align*}
$$

As above we may verify

$$
\begin{aligned}
& p_{2}\left(t_{1}\right)-p_{2}(t)>p_{1}\left(t_{1}\right)-p_{1}(t) \text { for all } t \in\left(t_{1}, t_{2}\right\rangle, \\
& p_{2}\left(t_{3}\right)-p_{2}(t)>p_{1}\left(t_{3}\right)-p_{1}(t) \text { for all } t \in\left\langle t_{2}, t_{3}\right),
\end{aligned}
$$

which contradicts (11). Hence $\left\{\mu_{n}\right\}$ is convergent, and let $\lim _{n \rightarrow \infty} \mu_{n}=\mu^{*}$. Then

$$
\left(z^{*}(t):=\right) \lim _{n \rightarrow \infty} z_{n}(t)=c^{*} u_{y}(t)+\int_{t_{2}}^{t} r(t, s ; y) F\left[y, y^{\prime}, \mu^{*}\right](s) \mathrm{d} s
$$

uniformly on J, and consequently, z^{*} is a solution of the differential equation

$$
w^{\prime \prime}=Q\left[y, y^{\prime}\right](t) w+F\left[y, y^{\prime}, \mu^{*}\right](t)
$$

and

$$
\alpha_{1}\left(z^{*}\left(t_{1}\right)-z^{*}(t) \mid J_{1}\right)=0, \quad z^{*}\left(t_{2}\right)=0, \quad \alpha_{2}\left(z^{*}\left(t_{3}\right)-z^{*}(t) \mid J_{2}\right)=0 .
$$

By Lemma 2 it is necessary that $z=z^{*}$ and $\mu_{0}=\mu^{*}$. Since $\lim _{n \rightarrow \infty} z_{n}^{(i)}(t)=z^{(i)}(t)$ uniformly on J for $i=0,1$, we have $z=\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} T\left(y_{n}\right)=T(y)$ and therefore T is a continuous operator. Let $\varphi \in K$ and $T(\varphi)=y$. Then the equality

$$
y^{\prime \prime}(t)=Q\left[\varphi, \varphi^{\prime}\right](t) y(t)+F\left[\varphi, \varphi^{\prime}, \mu_{0}\right](t)
$$

holds on J for some $\mu_{0} \in I$, thus $\left\|y^{\prime \prime}\right\| \leqslant A+r_{0} B\left(:=r_{2}\right)$ and $K \subset L=\{y$; $y \in C^{2}(J),\left\|y^{(i)}\right\| \leqslant r_{i}$ for $\left.i=0,1,2\right\}$. Since L is a compact subset of Y, K is a relative compact subset of Y.

By the Schauder fixed point theorem there is a fixed point of T. This completes the proof.

Remark 1. If $\alpha_{1}(z)=\alpha_{2}(z)=z\left(t_{2}\right)$, then Theorem 1 in [2] and Theorem 1 in [4] (where $m=n=1$) follow from Theorem 1 .

Let $t_{1}<x_{1}<t_{2}<x_{2}<t_{3}$. If $\alpha_{1}(z)=z\left(x_{1}\right), \alpha_{2}(z)=z\left(x_{2}\right)$, then Theorem 1 in [1] follows from Theorem 1 .

Example 1. Consider the functional differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)=y(t) \exp \left\{\left|y\left(y^{\prime}(t)\right)\right|\right\}+\frac{1}{2} \cos \left(t+y^{\prime}(y(t))\right)+\mu \tag{12}
\end{equation*}
$$

on the interval $J=\left\langle 0, t_{3}\right\rangle$, where $t_{3} \geqslant 2 \sqrt{1+\mathrm{e}}$. Let $t_{2} \in\left(0, t_{3}\right)$. Assumptions $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ are fulfilled with $r_{0}=1, r_{1}=2 \sqrt{1+\mathrm{e}}$ and $I=\left\langle-\frac{1}{2}, \frac{1}{2}\right\rangle$. Let $\alpha_{1}(z)=$ $\int_{0}^{t_{2}} z^{3}(s) \mathrm{d} s$ for $z \in C^{0}\left(\left\langle 0, t_{2}\right\rangle\right)$ and $\alpha_{2}(z)=\max \left\{z(t) ; t \in\left\langle t_{2}, \frac{1}{2}\left(t_{2}+t_{3}\right)\right\rangle\right\}$ for $z \in$ $C^{0}\left(\left\langle t_{2}, t_{3}\right\rangle\right)$. Then by Theorem 1 there is $\mu_{0} \in\left\langle-\frac{1}{2}, \frac{1}{2}\right\rangle$ such that equation (12) with $\mu=\mu_{0}$ admits a solution y satisfying

$$
\int_{0}^{t_{2}}\left(y\left(t_{1}\right)-y(s)\right)^{3} \mathrm{~d} s=0, y\left(t_{2}\right)=0, \max \left\{y\left(t_{3}\right)-y(t) ; t \in\left\langle t_{2}, \frac{1}{2}\left(t_{2}+t_{3}\right)\right\rangle\right\}=0
$$

and

$$
\|y\| \leqslant 1, \quad\left\|y^{\prime}\right\| \leqslant 2 \sqrt{1+\mathrm{e}} .
$$

4. Bounded solutions on a halfline

In this section BVP (1)-(2) is applied to the investigation of bounded solutions of a functional differential equation of type (1) with functional boundary conditions

$$
\begin{equation*}
\alpha_{1}\left(y\left(t_{1}\right)-y(t) \mid J_{1}\right)=0, y\left(t_{2}\right)=0 \tag{13}
\end{equation*}
$$

Let Y be the space of bounded C^{0}-functions on the halfline $\left\langle t_{1}, \infty\right)$ with the topology of uniform convergence on compact subintervals of $\left\langle t_{1}, \infty\right)$. Consider the functional differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)-U\left[y, y^{\prime}\right](t) y(t)=V\left[y, y^{\prime}, \mu\right](t) \tag{14}
\end{equation*}
$$

where $U: Y \times Y \longrightarrow Y, V: Y \times Y \times I \longrightarrow Y$ are continuous operators, $U[y, z](t)>0$ for all $t \geqslant t_{1}$ and $[y, z] \in Y \times Y$. Further we shall assume that there exists an increasing sequence $\left\{x_{n}\right\} \subset R, x_{1}>t_{2}, \lim _{n \rightarrow \infty} x_{n}=\infty$ such that the functions $U[y, z](t), V[y, z, \mu](t)$ are defined on $\left\langle t_{1}, x_{n}\right\rangle$ only by the restrictions of y, z to the interval $\left\langle t_{1}, x_{n}\right\rangle(n=1,2, \ldots)$, that is

$$
U: Y_{n} \times Y_{n} \longrightarrow Y_{n}, \quad V: Y_{n} \times Y_{n} \times I \longrightarrow Y_{n} \quad(n=1,2, \ldots),
$$

where Y_{n} is the Banach space of the C^{0}-functions on $\left\langle t_{1}, x_{n}\right\rangle$ with the sup norm. The differential equation $y^{\prime \prime}-q\left(t, y, y^{\prime}\right) y=f\left(t, y, y^{\prime}, \mu\right)$, where $q \in C^{0}\left(\left\langle t_{1}, \infty\right) \times R^{2}\right)$, $f \in C^{0}\left(\left\langle t_{1}, \infty\right) \times R^{2} \times I\right)$, is a special case of (14).

Suppose there are positive constants r_{0}, r_{1} such that the operators U, V satisfy the following assumptions:
$\left(C_{1}\right)\left|V\left[y, y^{\prime}, \mu\right](t)\right| \leqslant r_{0} U\left[y, y^{\prime}\right](t)$ for all $t \geqslant t_{1}$ and $\left[y, y^{\prime}, \mu\right] \in H \times I$, where $H=\left\{\left[y, y^{\prime}\right] ; y \in C^{1}\left(\left\langle t_{1}, \infty\right)\right),\left|y^{(i)}(t)\right| \leqslant r_{i}\right.$ for $\left.t \geqslant t_{1}, i=0,1\right\}$;
$\left(\mathrm{C}_{2}\right) V\left[y, y^{\prime}, \mu_{1}\right](t)<V\left[y, y^{\prime}, \mu_{2}\right](t)$ for all $t \geqslant t_{1},\left[y, y^{\prime}\right] \in H$ and $\mu_{1}, \mu_{2} \in I$, $\mu_{1}<\mu_{2} ;$
(C3) $V\left[y, y^{\prime}, a\right](t) V\left[y, y^{\prime}, b\right](t) \leqslant 0$ for all $t \geqslant t_{1}$ and $\left[y, y^{\prime}\right] \in H$;
$\left(\mathrm{C}_{4}\right) 2 \sqrt{r_{0}} \sqrt{A+r_{0} B} \leqslant r_{1}$, where $A=\sup \left\{\sup _{t \geqslant t_{1}}\left|V\left[y, y^{\prime}, \mu\right](t)\right| ;\left[y, y^{\prime}, \mu\right] \in\right.$ $H \times I\}, B=\sup \left\{\sup _{t \geqslant t_{1}}\left|U\left[y, y^{\prime}\right](t)\right| ;\left[y, y^{\prime}\right] \in H\right\}$.

Lemma 3. Assume assumptions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{4}\right)$ are fulfilled with positive constants r_{0}, r_{1}. Then for any $x_{n}(n=1,2, \ldots)$ there exists a $\mu_{n} \in I$ such that equation (14) with $\mu=\mu_{n}$ admits a solution y_{n} defined on the interval $\left\langle t_{1}, x_{n}\right\rangle$ and satisfying the boundary conditions

$$
\begin{equation*}
\alpha_{1}\left(y_{n}\left(t_{1}\right)-y_{n}(t) \mid J_{1}\right)=0, \quad y_{n}\left(t_{2}\right)=0, \quad y_{n}\left(x_{n}\right)=0 \quad(n=1,2, \ldots) \tag{15}
\end{equation*}
$$

and, moreover,

$$
\begin{align*}
& \left|y_{n}(t)\right| \leqslant r_{0}, \quad\left|y_{n}^{\prime}(t)\right| \leqslant r_{1}, \\
& \left|y_{n}^{\prime \prime}(t)\right| \leqslant A+r_{0} B \quad \text { for } t \in\left\langle t_{1}, x_{n}\right\rangle, \quad(n=1,2, \ldots) . \tag{16}
\end{align*}
$$

Proof. The proof follows immediately from Theorem 1 if we set $t_{3}=x_{n}$ and $\alpha_{2}(z)=z\left(t_{2}\right)$. The last inequality in (16) is evident.

Theorem 2. Assume assumptions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{4}\right)$ are fulfilled with positive constants r_{0}, r_{1}. Then there exists a $\mu_{0} \in I$ such that equation (14) with $\mu=\mu_{0}$ admits a solution y satisfying (13) and

$$
\begin{equation*}
|y(t)| \leqslant r_{0}, \quad\left|y^{\prime}(t)\right| \leqslant r_{1} \quad \text { for } \quad t \geqslant t_{1} . \tag{17}
\end{equation*}
$$

Proof. According to Lemma 3 there exists a sequence $\left\{y_{n}\right\}$ of solutions of equation (14) with $\mu=\mu_{n}(\in I)$ on the intervals $\left\langle t_{1}, x_{n}\right\rangle$ satisfying (15) and (16). Using the Ascoli-Arzela theorem, a diagonal process of Cantor and the fact that $\left\{\mu_{n}\right\}$ is a bounded sequence, we may assume without loss of generality that $\left\{y_{n}(t)\right\}$ and $\left\{y_{n}^{\prime}(t)\right\}$ are locally uniformly convergent on $\left\langle t_{1}, \infty\right)$ and $\left\{\mu_{n}\right\}$ is convergent. Setting $\lim _{n \rightarrow \infty} y_{n}(t)=y(t)$ for $t \in\left\langle t_{1}, \infty\right)$ and $\lim _{n \rightarrow \infty} \mu_{n}=\mu_{0}$, then y is a solution of equation (14) with $\mu=\mu_{0}$ satisfying (13) and (17).

Example 2. Consider the functional differential equation

$$
\begin{equation*}
y^{\prime \prime}(t)=6 \pi y(t) \exp \left\{\left|y\left(t+(\sin t)^{2}\right)\right|\right\}+\ln \left(\mathrm{e}+\left|y^{\prime}(\sqrt{t})\right|\right) \arctan t+\left(1+y^{2}(t)\right) \mu . \tag{18}
\end{equation*}
$$

The assumptions of Theorem 2 are satisfied with $t_{1} \geqslant 1, r_{0}=1, r_{1}=\mathrm{e}^{3}$ and $I=\langle-2 \pi, 0\rangle$. Therefore there exists a $\mu_{0} \in\langle-2 \pi, 0\rangle$ such that equation (18) with $\mu=\mu_{0}$ has a solution y defined on $\left\langle t_{1}, \infty\right)$, and (13) and $|y(t)| \leqslant 1,\left|y^{\prime}(t)\right| \leqslant \mathrm{e}^{3}$ for $t \geqslant t_{1}$ hold.

References

[1] S. Staněk: On a class of five-point boundary value problems in second-order functional differential equations with parameter, Acta Math. Hungar, to appear.
[2] S. Staneek: Three-point boundary value problem for nonlinear second-order differential equations with parameter, Ciech. Math. J. 42 (117) (1992), 241-256.
[3] S. Stanèk: On the boundedness of solutions of nonlinear second-order differential equations with parameter, Arch. Math. (Brno) 27 (1991), 229-241.
[4] S. Staneèk: Multi-point boundary value problem for a class of functional differential equations with parameter, Math. Slovaca 42 (1992), no. 1, 85-96.
[5] S. Stanék: Three-point boundary value problem of retarded functional differential equation of the second order with parameter, Acta UPO, Fac. rer. Nat. 97 Math. XXIX. (1990), 107-121.

Author's address: Department of Math. Analysis, Palacký University, tř. Svobody 26, 77146 Olomouc, Czech Republic.

