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1 . INTRODUCTION 

In this paper we introduce the notion of a V-lattice which is more general than 

that of a lattice. We show that V-lattices can also be characterized (similarly as 

lattices) as certain relation systems. 

The notion of a V-lattice is then applied for investigating systems of varieties of 

algebras of certain, possibly different, types. We prove that the set of all varieties of 

algebras of certain types equipped with suitable operations forms a V-lattice. 

For example, one can introduce the V-lattice of all varieties of ortholattices, lattices 

and semilattices, or the V-lattice of all varieties of rings and Abelian groups. 

It is well known that beginning with the fundamental BirkhofTs results (of [1], [2]) 

a rather immense literature on varieties of algebraic structures has grown up. On 

the other hand, the literature on systems of algebras which can be of different types 

is scarce. 

2 . V-LATTICES AND V-POSETS 

Definition 1. A 17-lattice is an algebra (L, A, V), where L is a nonempty set and 

A, V are binary operations such that (L, A, V) satisfies the identities 

(1) xAx = x, x\fx = x, 

(2) (xAy)Az = (xAz)Ay, z V (y V x) = y V (z V x), 

(3) ((x Ay)Az)A ((x Au)Av) (v V (u V x)) V( :V( t /V x)) 

= ((x Au)Av) A ((xAy)Az), = (zV(yV x)) V ( t /V(«Vx)) , 
(4) xA(y\/x) = x, (xAy)\/x = x. 
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Lemma 1. Given a V-lattice (L, A, V), the following identities hold: 

(5) x A (x A y) = x A y, (y V x) V x = y V x, 

(6) ( x A y ) A y = x A y , 2/V (y V x) = y V x, 

(7) ((x A y) A z) A y = (x A y) A z, y V (z V (y V x)) = z V (y V x), 

(8) (x A y) A (x A z) = (x A y) A z, (z V x) V (y V x) = z V (y V x). 

P r o o f , a) By (1), (3), (1), (2) and (1), respectively, we have 

x A (x A y) = ((x A x) A x) A ((x A x) A y) 

= ((x A x) A y) A ((x A x) A x) 

= (x A y) A x = (x A x) A y = x A y. 

b) By (5), (2) and (1), respectively, we have 

(x A y ) A y = (x A (x A y)) A y = (x A y) A (x A y) = x A y. 

c) From (2) and (6) it follows that 

((x A y) A z) A y = ((x A y) A y) A z = (x A y) A z. 

d) By (2), (5) and (2), respectively, we get 

(x A y) A (x A z) = (x A (x A z)) A y = (x A z) A y = (x A y) A z. 

Using duality between A and V we obtain the identities with V. • 

Let (L, A, V) be a V-lattice. Let $J, ^ , <, ^ be binary relations on L defined by 

(a) а ^ 6 iff ò Ла = a, 

(b) айb iŕf а Лb = a, 

(c) а < b iff 6 V а = 6, 

(d) a ~ 6 iff а V 6 = 6 

for eveгy a, ò in L. 
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L e m m a 2. The relations defined by (a)-(d) satisfy the following conditions 

(e) a -̂  6 = > a 5̂  6 and a < 6, 

a < 6 = > a ^ 6 and a ^ 6; 

(f) if a ^ 6 and 6 ^ c then a ^ c, 

if a ^ 6 and 6 < c then a<ic 

(a weak transitivity holds); 

(g) both ^ and < are partial orders on L; 

(h) a ^ 6, a ^ c, 6 $C c = > a -<C 6, 

a ^ 6, c < a^ c < b = > a < 6 

(i.e. if the elements a, 6 have the same upper bound 

with respect to the partial order -$, then a ^ 6 

implies a ^ b and analogously for ^ and <). 

P r o o f , (e). By (a), (6), (1), (3) and (5), the relation a ^ 6 implies 6 A a = a, 

hence aA6 = ( 6 A a ) A 6 = ((6Aa)Aa) A((6A6)A6) = ((6 A6) A6) A ((6 Aa) Aa) = 

6A(6Aa) = 6Aa = a and thus a ^ 6 (by (b)). 

By (a), (4) and (d), the relation a -̂  6 yields 6 A a = a, so a V 6 = (6 A a) V 6 = 6, 

hence a < 6. 

In the other parts of the proof we omit some details. 

(f). If a ^ 6 and 6 ^ c, then o A c = ( 6 A a ) A c = (6Ac)Aa = 6Aa = a, hence 

a ^ c. 

(g). If a -$ 6 and 6 ^ a, then a -$ 6 and 6 ^ a, so 6 A a = a, 6 A a = 6, hence a = 6. 

If a ^ 6 and 6 -<C c, then c A a = c A (6 A a) = c A ((c A 6) A a) = ((c A 6) A a) A c = 

(6 A a) A c = a A c = a, since the assumptions a ^ 6 and 6 ^ c combined with (f) and 

(e) imply a ^ c. Hence a -̂  c. 

(h). If a ^ 6, a -<$ c and 6 -̂  c, then 6Aa = (cA6)Aa = ( cAa)A6 = a A 6 = a, 

hence a $J 6. D 

Definition 2. A V-partially ordered set, or more briefly a V-poset, is a 5-tuple 
(L, ^ , ^ , <, ^ ) , where L is a nonempty set and ^ , ^ , <, ?[ are binary relations on 
L satisfying the conditions (e)-(h). 

Definition 3. Let (L,-$, ^ , <, <) be a V-poset and let a, 6 E L. An element 

i £ L satisfying the conditions 

(i) i -<J a and i ^ 6 

and 

(ii) if v -̂  a and v ^ 6, then i> -̂  i for every i> E L, 
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will be called the V-infimum of the ordered pair [a, 6] E L 2 . If an element s £ L 

satisfies the conditions 

(j) a ^ s and b < s 

and 

(jj) if a ^ w and b < w} then s < w for every w £ L, 

then it is said to be the V-supremum of the ordered pair [a, 6] £ L2. 

If both ii and i2 are the V-infima of an ordered pair [a, 6] 6 L2, then both the 

inequalities i\ -̂  i2 and i2 ^ ii hold. Hence i\ = 1*2. 

By inf(a,6) we will denote the V-infimum of an ordered pair [a, 6], if it exists. 

Instead of the V-infimum we will briefly say the infimum. Analogously, we will write 

sup(a, 6) for the V-supremum (briefly the supremum) of an ordered pair [a, 6]. 

From the definitions we immediately get 

Lemma 3. Let ( L , ^ , ^ , < , ? [ ) be a V-poset and let a, 6 £ L. If a ^ 6 then 

inf(a,6) = a. 

Lemma 4. Let (L, A,V) be a V-lattice and let ^ , ^ , <, ^ be binary relations 

on L defined by the conditions (a)-(d), respectively. Then for every ordered pair 

[a, 6] £ L2 both inf(a, 6) ajjd sup (a, 6) exist and 

inf(a, 6) = a A 6, sup(a, 6) = a V 6. 

P r o o f . From the definitions we have 

a A (a A 6) = a A 6 yields a A 6 $J a, 

(aA6)A6 = aA6 yields a A 6 ^ 6, 

and from v -̂  a and v ^ 6 it follows that (aAb)Av = (aA6)A(aAv) = (aAv)A(aA6) = 

(a A v) A 6 = v A 6 -= v, so v ^ a A i> and hence a A 6 = inf(a, 6). Analogously we can 

prove a V 6 = sup(a, 6). D 

Lemma 5. Let ( L , i ^ , ^ , < , ^ ) be a V-poset in which for every ordered pair [a, 6] £ 
L2 there exist both inf(a,6) and sup(a,6). Define the operations A and V OJJ L by 

(k) aA6=in f (a ,6 ) and a V 6 = sup(a, 6). 

Then (L, A, V) is a V-lattice. 

P r o o f , a) Clearly, a ^ a yields inf(a, a) = a, so a A a = a. 
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b) Let t'i = inf(a,6), t*2 = inf(a,c), t'3 = inf(t'i,c), t*4 = inf(t2,6). Then t'3 .$ t'i and 
t'i ^ a yield i3 1$ a. Further, t'3 ^ a and t*3 ^ c yield t'3 .$ t*2. From t'3 ^ t'i and t'i ^ 6 
it follows that t*3 5s 6. Combining this with t*3 t$ t'2 we get t3 .$ t4. Analogously we 
can prove t'4 .^ t'3. Hence t'3 = t'4. 

c) Set t'i = inf(a,6), t*2 = inf(a,rf), t*3 = inf(t'i,c), t4 = inf(t*2,e), i5 = inf( 1*3,1*4), 
t6 = inf(t*4, t*3). Clearly, ik ^ a for k = 1, 2, ..., 6. Therefore, if ik ^ t'j for 
ib, j € {1 ,2 , . . . ,6} , then also ik -̂  t'j. Thus from t'5 ^ t*4 and t'4 ^ e we obtain. 

(A) 15 ^ e. 

Similarly, t'5 ^ t'4 (which implies t'5 .$ t'4) and t'4 1$ t*2 yield 
(B) t5 ^ t2. 

From (A) and (B) we have t'5 ^ t'4. From this fact and from t'5 ^ t'3 we get t'5 ^ tV 

Analogously it can be verified that i$ ^ t'5, hence t'5 = tV 

d) From a < b V a we have a ^ 6 V a and then by Lemma 3, a A (6 V a) = a. The 

other identities can be proved dually. • 

For a VMattice L = (L,A,V) let L* denote the corresponding V-poset which is 
determined by the conditions (a)-(d). If L = (L, 1$, 5s, <, ^) is a V-poset such that 
for every ordered pair [a, 6] 6 L2 both inf(a,6) and sup(a,6) exist (in L), let L + 

denote the VMattice with operations given by (k). From Lemmas 4, 5 and their 
proofs we immediately get. 

Theorem 1. Let L\ be a V-lattice and L2 a V-poset such that for every ordered 

pair [a, 6] £ L2 both inf(a,6) and sup(a,6) exist. Then 

(m) ( L ; ) + = L , and (L+)* = L2. 

Thus, we are justified to speak of a V-lattice without specifying whether it is 

defined by relations or by operations. 

R e m a r k . Applying induction to (2) we can verify that the identity 

(9) ( . . . ((x A x\) A x2) A . . . ) A xk = ( . . . ((x A x,J A xh) A . . . ) A xik 

and the dual one hold, for any permutation (t'i, . . . , ik) of the set {1, 2, . . . , k}. 

E x a m p l e 1 . We define binary relations -$, ^, <, -̂  on L = {0, 1, 2} as follows: 

a $ 6 iff a = 6 or [a,6] £ {[0,1], [0,2]}, 

a ^ 6 iff a = 6 or [a, 6] G {[0,1], [0,2], [2,1], [1,2]}, 

a < 6 iff a = 6 or [a, 6] 6 {[0,1], [2,1]}, 

a = 6 iff a = 6 or [a, 6] G {[0,1], [2,1], [0, 2], [2, 0]} 
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(see Fig. 1 and Fig. 2). 

Fig. 1 Fig. 2 

Then (L, <̂ , ^ , <, <T) is a V-lattice in which A and V are defined by Table 1 and 

Table 2, respectively. 

Л 0 1 2 

0 0 0 0 
1 0 1 1 
2 0 2 2 

V 0 1 2 

0 0 1 2 

1 1 1 1 
2 0 1 2 

Table 1 Table 2 

E x a m p l e 2. Let Li = (Li,A,V) and L2 = (L2,A,V) be lattices for which 

Li fl L2 = 0. Let / : Li —> L2, #: L2 —> Li be any mappings. Define relations ^ , 

^ , <, <! on L = Li U L2 in the following way: 

a $J 6 iff (a, 6 G Li and a A 6 = a in Li) or 

(a, 6 E L2 and a A 6 = a in L 2), 

a < 6 iff a -̂  6, 

a ^ 6 iff at least one of the following conditions is fulfilled: 

(i) a <:6, 

(ii) a A g(b) = a if a E Li, 6 E L2, 

(iii) a A/(6) = a if a E L2, 6 E L 1 ; 

a <T 6 iff at least one of the following conditions is fulfilled: 

(j) « < 6 , 

tii) /(a)V6 = 6 i f a E L i , 6 E L2, 

(jjj) y(«) V 6 = 6 if a E L 2 , 6 E L 1 . 
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Then (L , -<J, ̂ , < , <) is a V-lattice and its operations ^ and w satisfy 

a ^ 6 = a A 6, a w 6 = a V 6 if a , 6 E L i o r a , 6 E L 2 , 

a ^ 6 = a A a ( 6 ) , a ^ 6 = / ( a ) V 6 if a E l a , 6 E L2, 

a ^ 6 = a A / ( 6 ) , a^b = g(a)Vb if a e L2) b£L\. 

L e m m a 6. Let L be a V-iattice. Then 

(n) a ^ 6 <=> a < 6 for every a, 6 E L 

holds if and only if L satisfies the identities 

(10) ( y V x ) A x = x, a: V (;r A y) = z . 

P r o o f , a) Let the condition (n) hold. For all a, 6 E L we have a ^ 6 V a, hence 

(6 V a) A a = a. The second identity in (10) follows from duality. 

b) To prove the converse suppose that the identities (10) hold. If a r̂  6, then 

6 A a = a, i.e. 6 V a = 6 V (6 A a) = 6 and this implies a < 6. The converse implication 

can be obtained by a similar argument. • 

3 . V-LATTICES OF VARIETIES 

Let Ta = (t\,t2,...), a E N U {oo}, be a sequence of natural numbers. Here 

Ta = (* i , . . . , * n ) if <* = n, Ta = ( * ! , . . . , * „ , . . . ) if a = oo. 

Let Ja = ( / i , / 2 , . . ) be a language of type Ta and let Va be a fixed variety 

of algebras with the language Ja. By I(Va)Ja) we denote the set of all identities 

(written in Ja) which are satisfied in the variety Va. Let Vi, V2> ••• be varieties 

of algebras with languages Ji = ( / i ) , J2 = (f\,f2), . . . , where the variety Vi, i E 

{1, 2 , . . . , a } , is given by the set of those identities from I(Va, Ja) which are written 

in the language Jt. Thus Vi is a variety of algebras with the language J, given by 

the set of identities I(Va, Ja) O It, where It is the set of all identities written in Jt. 

In the sequel we denote this set by I(K, J,). 

For example, if V5 is the variety of all ortholattices with the language (A, V, 0, 1,') 

of type (2, 2, 0, 0,1) (for our purposes it is suitable to change the order of operation 

symbols in comparison with that in [3]), then Vi is the variety of all semilattices with 

the language (A) of type (2), V2 is the variety of all lattices with the language (A, V) 

of type (2, 2), V3 is the variety of all lattices with the least element, etc. 

Further, we will suppose tha t n < 00 for any natural number n. 
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Let W be a sub variety of the variety K, i G N. By W(j), 1 ^ i < j , we denote the 

class of all algebras (A, / i , / 2 , . •.) G V} such that (A, / i , • . , / t ) G KV. (In practice 

we prefer to write / t for an operation as well as for an operation symbol — this 

convention creates an ambiguity, but it seldom causes a problem.) We will call the 

class W(j) an extension of the variety W in the language Jj. 

Lemma 7. The algebtas of the class W(j) fotm a vatiety. 

P r o o f . Evidently, W(j) is the class of algebras with the language Jj that is 

given by the set of identities I(Vj,J;) U I(VV, Jt), where I(ltV, Jt) is the set of all 

identities (written in Jt), which determine the variety W. D 

If W is a subvariety of the variety Vj, we denote by W[i], 1 ^ i < j , the class of all 

algebras (A , / i , . . . , /,-) such that (A, f\, / 2 , . . . ) G W. The class W[i] will be called a 

restriction of the variety W in the language Jt. 

In general, a class W[i] is not a variety. For example, if W is the variety of all 

Boolean algebras with the language (A, V, 0, 1,'), then W[2] is the class of all Boolean 

lattices with the language (A, V). 

L e m m a 8. If W\ is a subvatiety of the vatiety Vi and W2 is a subvatiety of the 

vatiety Vj} 1 ^ i < j , then 

(11) KV2[i]CvVl iff W2CW\(j). 

P r o o f . Let W2[i] C W\ and let (A, / i , / 2 , . . . ) be an algebra in IV2. Then 

(Ay f \ , . . . , fi) G WiW, so by the assumption we have (A, f \ , . . . , / t ) G VVi, and thus 

( .4 , / i , / 2 , . . . ) G W\(j). The converse statement can be established in the same 

manner. D 

In the sequel, let Lt be the set of all subvarieties of the variety Vi and let 

Q 

L=\jLt. 
» = 1 

We are going to show that the set L can be equipped with relations .$, ^ , <, < such 

that (L, .$, ^ , <, ?:) is a V-poset. To this end introduce binary relation -^, _?, <, ^ 

as follows. 

For every W\ G Lt, W2 G Lp 1 ^ t ^ j we define 

1. W\ ^ W2 <=> W\ < W2 <=> i = j and Wx C V!s, 
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2 . if i = j then 

W\ <; VV2 <=> VVi = VV2 <-=> VVi C VV2, 

3 . if i ^ j then 

VV! ^ VV2 <̂ => VVi C (VV2[i]) 

((VV2[i]) denotes the variety generated by the class of algebras of VV2[i]) 

W2^W\ <=> W2CWi{j), 

W\ = VV2 <=> W\(j) C VV2, 

VV2 = VV! <=> VV2[i] C VVj (i.e. iff VV2 = VVi). 

T h e o r e m 2. Let L be the set and $C, _̂ , < , -̂  tije binary relations defined above. 

Then ( L , ^ , _ ^ , < , ^ ) is a V-poset and in tije corresponding V-lattice ( L , ^ , ^ ) we 

have for VVi G L,, VV2 G Lj, i ^ j : 

1. if i < j then 

W\ - VV2 = VVj A (VV2[i]) fin L,-), 

VV2 ~ W\ = VV2 A VV!(j) (in Lj), 

W\~W2 = W\(j) V VV2 (in Lj), 
VV2 - VV! = (VV2[i]) V VVi fin L,); 

2. ifi = j then ^ and ^ are the same as in L, (i.e. VVi ^ VV2 = VVi A VV2 etc.J. 

P r o o f . It can be easily shown that for ^ , ^, < , <! the conditions (e) and (h) 

are fulfilled and ^ , < are obviously partial orders. We will prove (f) of Lemma 2. If 

VVi ^ VV2 and VV2 ^ VV3, VV2 G L{, VV3 G Lj then VVi C VV2 and 

VV2C(VV3[i]) i f i < i , 

VV2 C VV3(i) i f j < i . 

This implies VVi C (VV3[i]), W\ C VV3(i), respectively, and so VVi ^ W3. Similarly, 

VVi = VV2, VV2 < VV3 implies W\ = VV3. 

It remains to prove tha t all pairs of elements of L have both an infimum and a 

supremum . We are going to show that 

inf(VVj, VV2) = VVj n (VV2[i]) if VVi G L{1 VV2 G Lj, i < j . 

It follows from VVi O (VV2[i]) C VVi that W\ n (VV2[i]) ^ VVi, and from VVi n (VV2[i]) C 

(VV2[i]) we have VVj n (VV2[i]) = VV2. If VV ^ VVi, VV <: W2 then VV, VVi are of the 

same type (i.e. VV G L{) and W C VVi, VV C (VV2[i]). Hence VV C W\ n (VV2[i]), 

i.e. VV ^ VVi n (VV2[i]). A similar argument shows that inf(VVi, W2) =W\C\ VV2(i) if 

VVi G Li j W2 G L j , i > j . The existence of a supremum can be proved dually. D 
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R e m a r k . We could suppose that JQ = {/^; /? < a] for a fixed ordinal a . 

Then the proof of Theorem 2 also works. 
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