Czechoslovak Mathematical Journal

Alfonz Haviar
V-Lattices of varieties of algebras of different types

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 3, 419-428

Persistent URL: http://dml.cz/dmlcz/128422

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

V-LATTICES OF VARIETIES OF ALGEBRAS OF DIFFERENT TYPES

Alfonz Haviar, Banská Bystrica

(Received September 29, 1989)

1. Introduction

In this paper we introduce the notion of a V-lattice which is more general than that of a lattice. We show that V-lattices can also be characterized (similarly as lattices) as certain relation systems.

The notion of a V-lattice is then applied for investigating systems of varieties of algebras of certain, possibly different, types. We prove that the set of all varieties of algebras of certain types equipped with suitable operations forms a V-lattice.

For example, one can introduce the V-lattice of all varieties of ortholattices, lattices and semilattices, or the V-lattice of all varieties of rings and Abelian groups.

It is well known that beginning with the fundamental Birkhoff's results (of [1], [2]) a rather immense literature on varieties of algebraic structures has grown up. On the other hand, the literature on systems of algebras which can be of different types is scarce.

2. V-lattices and V-posets

Definition 1. A V-lattice is an algebra (L, \wedge, \vee), where L is a nonempty set and \wedge, \vee are binary operations such that (L, \wedge, \vee) satisfies the identities

$$
\begin{array}{ll}
x \wedge x=x, & x \vee x=x, \\
(x \wedge y) \wedge z=(x \wedge z) \wedge y, & z \vee(y \vee x)=y \vee(z \vee x) \\
((x \wedge y) \wedge z) \wedge((x \wedge u) \wedge v) & (v \vee(u \vee x)) \vee(z \vee(y \vee x)) \\
=((x \wedge u) \wedge v) \wedge((x \wedge y) \wedge z), & =(z \vee(y \vee x)) \vee(v \vee(u \vee x)), \\
x \wedge(y \vee x)=x, & (x \wedge y) \vee x=x
\end{array}
$$

Lemma 1. Given a V-lattice (L, \wedge, \vee), the following identities hold:

$$
\begin{equation*}
x \wedge(x \wedge y)=x \wedge y \tag{5}
\end{equation*}
$$

$$
(y \vee x) \vee x=y \vee x
$$

(6) $\quad(x \wedge y) \wedge y=x \wedge y$, $y \vee(y \vee x)=y \vee x$,

$$
((x \wedge y) \wedge z) \wedge y=(x \wedge y) \wedge z, \quad y \vee(z \vee(y \vee x))=z \vee(y \vee x)
$$

$$
\begin{equation*}
(x \wedge y) \wedge(x \wedge z)=(x \wedge y) \wedge z, \quad(z \vee x) \vee(y \vee x)=z \vee(y \vee x) \tag{8}
\end{equation*}
$$

Proof. a) By (1), (3), (1), (2) and (1), respectively, we have

$$
\begin{aligned}
x \wedge(x \wedge y) & =((x \wedge x) \wedge x) \wedge((x \wedge x) \wedge y) \\
& =((x \wedge x) \wedge y) \wedge((x \wedge x) \wedge x) \\
& =(x \wedge y) \wedge x=(x \wedge x) \wedge y=x \wedge y
\end{aligned}
$$

b) By (5), (2) and (1), respectively, we have

$$
(x \wedge y) \wedge y=(x \wedge(x \wedge y)) \wedge y=(x \wedge y) \wedge(x \wedge y)=x \wedge y
$$

c) From (2) and (6) it follows that

$$
((x \wedge y) \wedge z) \wedge y=((x \wedge y) \wedge y) \wedge z=(x \wedge y) \wedge z
$$

d) By (2), (5) and (2), respectively, we get

$$
(x \wedge y) \wedge(x \wedge z)=(x \wedge(x \wedge z)) \wedge y=(x \wedge z) \wedge y=(x \wedge y) \wedge z
$$

Using duality between \wedge and \vee we obtain the identities with \vee.
Let (L, \wedge, \vee) be a V-lattice. Let $\leqslant, \leqq, \overline{<}, \bar{z}$ be binary relations on L defined by
(a)

$$
a \leqslant b \quad \text { iff } \quad b \wedge a=a
$$

(b)

$$
a \leqq b \quad \text { iff } \quad a \wedge b=a
$$

(c)

$$
a<b \quad \text { iff } \quad b \vee a=b
$$

(d)

$$
a \overline{<} b \quad \text { iff } \quad a \vee b=b
$$

for every a, b in L.

Lemma 2. The relations defined by (a)-(d) satisfy the following conditions
$a \leqslant b \quad \Longrightarrow \quad a \leqq b$ and $a \overline{<} b$,
$a<b \quad \Longrightarrow \quad a \leqq b$ and $a \bar{₹} b$;
if $a \leqq b$ and $b \leqq c$ then $a \leqq c$,
if $a \overline{<} b$ and $b \overline{<} c$ then $a \overline{<} c$
(a weak transitivity holds);
(g)
both \leqslant and $<$ are partial orders on L;
(h)
$a \leqq b, \quad a \leqslant c, \quad b \leqslant c \quad \Longrightarrow \quad a \leqslant b$,
$a \bar{₹} b, \quad c<a, \quad c<b \quad \Rightarrow \quad a<b$
(i.e. if the elements a, b have the same upper bound
with respect to the partial order \leqslant, then $\boldsymbol{a} \leqq b$
implies $a \leqslant b$ and analogously for $\bar{\Sigma}$ and $\overline{<}$).

Proof. (e). By (a), (6), (1), (3) and (5), the relation $a \leqslant b$ implies $b \wedge a=a$, hence $a \wedge b=(b \wedge a) \wedge b=((b \wedge a) \wedge a) \wedge((b \wedge b) \wedge b)=((b \wedge b) \wedge b) \wedge((b \wedge a) \wedge a)=$ $b \wedge(b \wedge a)=b \wedge a=a$ and thus $a \leqq b$ (by (b)).

By (a), (4) and (d), the relation $a \leqslant b$ yields $b \wedge a=a$, so $a \vee b=(b \wedge a) \vee b=b$, hence $a \bar{₹} b$.

In the other parts of the proof we omit some details.
(f). If $a \leqslant b$ and $b \leqq c$, then $a \wedge c=(b \wedge a) \wedge c=(b \wedge c) \wedge a=b \wedge a=a$, hence $a \leqq c$.
(g). If $a \leqslant b$ and $b \leqslant a$, then $a \leqslant b$ and $b \leqq a$, so $b \wedge a=a, b \wedge a=b$, hence $a=b$.

If $a \leqslant b$ and $b \leqslant c$, then $c \wedge a=c \wedge(b \wedge a)=c \wedge((c \wedge b) \wedge a)=((c \wedge b) \wedge a) \wedge c=$ $(b \wedge a) \wedge c=a \wedge c=a$, since the assumptions $a \leqslant b$ and $b \leqslant c$ combined with (f) and (e) imply $a \leqq c$. Hence $a \leqq c$.
(h). If $a \leqq b, a \leqslant c$ and $b \leqslant c$, then $b \wedge a=(c \wedge b) \wedge a=(c \wedge a) \wedge b=a \wedge b=a$, hence $a \leqslant b$.

Definition 2. A V-partially ordered set, or more briefly a V-poset, is a 5 -tuple $(L, \leqq, \leqq, \overline{\text { ₹ }}$), where L is a nonempty set and $\leqq, \leqq, \overline{\text {, }} \overline{\text { ₹ }}$ are binary relations on L satisfying the conditions (e)-(h).

Definition 3. Let $(L, \leqq, \leqq, \overline{<} \bar{\Sigma})$ be a V-poset and let $a, b \in L$. An element $i \in L$ satisfying the conditions
(i) $i \leqq a$ and $i \leqq b$
and
(ii) if $v \leqq a$ and $v \leqq b$, then $v \leqq i$ for every $v \in L$,
will be called the V-infimum of the ordered pair $[a, b] \in L^{2}$. If an element $s \in L$ satisfies the conditions
(j) $a \bar{₹} s$ and $b<s$
and
(jj) if $a \overline{<} w$ and $b \overline{<} w$, then $s \overline{<} w$ for every $w \in L$,
then it is said to be the V-supremum of the ordered pair $[a, b] \in L^{2}$.
If both i_{1} and i_{2} are the V-infima of an ordered pair $[a, b] \in L^{2}$, then both the inequalities $i_{1} \leqslant i_{2}$ and $i_{2} \leqslant i_{1}$ hold. Hence $i_{1}=i_{2}$.

By $\inf (a, b)$ we will denote the V-infimum of an ordered pair $[a, b]$, if it exists. Instead of the V-infimum we will briefly say the infimum. Analogously, we will write $\sup (a, b)$ for the V-supremum (briefly the supremum) of an ordered pair $[a, b]$.

From the definitions we immediately get
Lemma 3. Let $(L, \leqq, \leqq, \overline{<}, \bar{z})$ be a V-poset and let $a, b \in L$. If $a \leqq b$ then $\inf (a, b)=a$.

Lemma 4. Let (L, \wedge, \vee) be a V-lattice and let $\leqslant, \leqq, \overline{<} \overline{<}$ be binary relations on L defined by the conditions (a)-(d), respectively. Then for every ordered pair $[a, b] \in L^{2}$ both $\inf (a, b)$ and $\sup (a, b)$ exist and

$$
\inf (a, b)=a \wedge b, \quad \sup (a, b)=a \vee b
$$

Proof. From the definitions we have

$$
\begin{array}{lll}
a \wedge(a \wedge b)=a \wedge b & \text { yields } & a \wedge b \leqq a \\
(a \wedge b) \wedge b=a \wedge b & \text { yields } & a \wedge b \leqq b
\end{array}
$$

and from $v \leqslant a$ and $v \leqq b$ it follows that $(a \wedge b) \wedge v=(a \wedge b) \wedge(a \wedge v)=(a \wedge v) \wedge(a \wedge b)=$ $(a \wedge v) \wedge b=v \wedge b=v$, so $v \leqslant a \wedge b$ and hence $a \wedge b=\inf (a, b)$. Analogously we can prove $a \vee b=\sup (a, b)$.

Lemma 5. Let ($L, \leqq, \leqq, \overline{<}, \bar{z})$ be a V-poset in which for every ordered pair $[a, b] \in$ L^{2} there exist both $\inf (a, b)$ and $\sup (a, b)$. Define the operations \wedge and \vee on L by

$$
\begin{equation*}
a \wedge b=\inf (a, b) \quad \text { and } \quad a \vee b=\sup (a, b) \tag{k}
\end{equation*}
$$

Then (L, \wedge, \vee) is a V-lattice.
Proof. a) Clearly, $a \leqq a$ yields $\inf (a, a)=a$, so $a \wedge a=a$.
b) Let $i_{1}=\inf (a, b), i_{2}=\inf (a, c), i_{3}=\inf \left(i_{1}, c\right), i_{4}=\inf \left(i_{2}, b\right)$. Then $i_{3} \leqslant i_{1}$ and $i_{1} \leqslant a$ yield $i_{3} \leqslant a$. Further, $i_{3} \leqslant a$ and $i_{3} \leqq c$ yield $i_{3} \leqslant i_{2}$. From $i_{3} \leqslant i_{1}$ and $i_{1} \leqq b$ it follows that $i_{3} \leqq b$. Combining this with $i_{3} \leqslant i_{2}$ we get $i_{3} \leqslant i_{4}$. Analogously we can prove $i_{4} \leqslant i_{3}$. Hence $i_{3}=i_{4}$.
c) Set $i_{1}=\inf (a, b), i_{2}=\inf (a, d), i_{3}=\inf \left(i_{1}, c\right), i_{4}=\inf \left(i_{2}, e\right), i_{5}=\inf \left(i_{3}, i_{4}\right)$, $i_{6}=\inf \left(i_{4}, i_{3}\right)$. Clearly, $i_{k} \leqslant a$ for $k=1,2, \ldots, 6$. Therefore, if $i_{k} \leqq i_{j}$ for $k, j \in\{1,2, \ldots, 6\}$, then also $i_{k} \leqslant i_{j}$. Thus from $i_{5} \leqq i_{4}$ and $i_{4} \leqq e$ we obtain.
(A) $i_{5} \leqq e$.

Similarly, $i_{5} \leqq i_{4}$ (which implies $i_{5} \leqslant i_{4}$) and $i_{4} \leqslant i_{2}$ yield
(B) $i_{5} \leqslant i_{2}$.

From (A) and (B) we have $i_{5} \leqslant i_{4}$. From this fact and from $i_{5} \leqq i_{3}$ we get $\boldsymbol{i}_{5} \leqslant \boldsymbol{i}_{6}$. Analogously it can be verified that $i_{6} \leqslant i_{5}$, hence $i_{5}=i_{6}$.
d) From $a<b \vee a$ we have $a \leqq b \vee a$ and then by Lemma 3, $a \wedge(b \vee a)=a$. The other identities can be proved dually.

For a V-lattice $\mathbf{L}=(L, \wedge, \vee)$ let \mathbf{L}^{*} denote the corresponding V-poset which is determined by the conditions (a)-(d). If $L=(L, \leqq, \leqq, \overline{<}, \bar{\Sigma})$ is a V-poset such that for every ordered pair $[a, b] \in L^{2}$ both $\inf (a, b)$ and $\sup (a, b)$ exist (in L), let L^{+} denote the V-lattice with operations given by (k). From Lemmas 4,5 and their proofs we immediately get.

Theorem 1. Let L_{1} be a V-lattice and L_{2} a V-poset such that for every ordered pair $[a, b] \in L^{2}$ both $\inf (a, b)$ and $\sup (a, b)$ exist. Then

$$
\begin{equation*}
\left(L_{1}^{*}\right)^{+}=L_{1} \quad \text { and } \quad\left(L_{2}^{+}\right)^{*}=L_{2} \tag{m}
\end{equation*}
$$

Thus, we are justified to speak of a V-lattice without specifying whether it is defined by relations or by operations.

Remark. Applying induction to (2) we can verify that the identity

$$
\begin{equation*}
\left(\ldots\left(\left(x \wedge x_{1}\right) \wedge x_{2}\right) \wedge \ldots\right) \wedge x_{k}=\left(\ldots\left(\left(x \wedge x_{i_{1}}\right) \wedge x_{i_{2}}\right) \wedge \ldots\right) \wedge x_{i_{k}} \tag{9}
\end{equation*}
$$

and the dual one hold, for any permutation $\left(i_{1}, \ldots, i_{k}\right)$ of the set $\{1,2, \ldots, k\}$.
Example 1. We define binary relations $\leqslant, \leqq, \overline{<} \overline{\text { ® on }} L=\{0,1,2\}$ as follows:

$$
\begin{array}{lllll}
a \leqq b & \text { iff } & a=b & \text { or } & {[a, b] \in\{[0,1],[0,2]\}} \\
a \leqq b & \text { iff } & a=b & \text { or } & {[a, b] \in\{[0,1],[0,2],[2,1],[1,2]\}} \\
a<b & \text { iff } & a=b & \text { or } & {[a, b] \in\{[0,1],[2,1]\}} \\
a \overline{<} b & \text { iff } & a=b & \text { or } & {[a, b] \in\{[0,1],[2,1],[0,2],[2,0]\}}
\end{array}
$$

Fig. 1

Fig. 2

Then ($L, \leqq, \leqq, \overline{<}, \bar{z}$) is a V-lattice in which \wedge and \vee are defined by Table 1 and Table 2, respectively.

\wedge	0	1	2
0	0	0	0
1	0	1	1
2	0	2	2

Table 1

\vee	0	1	2
0	0	1	2
1	1	1	1
2	0	1	2

Table 2

Example 2. Let $\mathbf{L}_{1}=\left(L_{1}, \wedge, \vee\right)$ and $\mathbf{L}_{2}=\left(L_{2}, \wedge, \vee\right)$ be lattices for which $L_{1} \cap L_{2}=\emptyset$. Let $f: L_{1} \rightarrow L_{2}, g: L_{2} \rightarrow L_{1}$ be any mappings. Define relations \leqslant, $\leqq, \overline{<}, \bar{z}$ on $L=L_{1} \cup L_{2}$ in the following way:

$$
\begin{array}{lll}
a \leqq b & \text { iff } & \left(a, b \in L_{1} \text { and } a \wedge b=a \text { in } \mathbf{L}_{1}\right) \text { or } \\
& \left(a, b \in L_{2} \text { and } a \wedge b=a \text { in } \mathbf{L}_{2}\right), \\
a<b & \text { iff } & a \leqslant b, \\
a \leqq b & \text { iff } & \text { at least one of the following conditions is fulfilled: }
\end{array}
$$

(i) $a \leqslant b$,
(ii) $a \wedge g(b)=a$ if $a \in L_{1}, b \in L_{2}$,
(iii) $a \wedge f(b)=a$ if $a \in L_{2}, b \in L_{1}$;
$a \bar{₹} b$ iff at least one of the following conditions is fulfilled:
(j) $a<b$,
(jj) $f(a) \vee b=b$ if $a \in L_{1}, b \in L_{2}$,
(jjj) $g(a) \vee b=b$ if $a \in L_{2}, b \in L_{1}$.

Then $(L, \leqslant, \leqq, \overline{<} \bar{\Sigma})$ is a V-lattice and its operations \frown and \smile satisfy

$$
\begin{array}{llllr}
a \frown b=a \wedge b, & a \smile b=a \vee b & \text { if } & a, b \in L_{1} & \text { or } a, b \in L_{2}, \\
a \frown b=a \wedge g(b), & a \smile b=f(a) \vee b & \text { if } & a \in L_{1}, & b \in L_{2}, \\
a \frown b=a \wedge f(b), & a \smile b=g(a) \vee b & \text { if } & a \in L_{2}, & b \in L_{1} .
\end{array}
$$

Lemma 6. Let L be a V-lattice. Then

$$
\begin{equation*}
a \leqslant b \Longleftrightarrow a<\overline{<} b \quad \text { for every } a, b \in L \tag{n}
\end{equation*}
$$

holds if and only if L satisfies the identities

$$
\begin{equation*}
(y \vee x) \wedge x=x, \quad x \vee(x \wedge y)=x \tag{10}
\end{equation*}
$$

Proof. a) Let the condition (n) hold. For all $a, b \in L$ we have $a \leqslant b \vee a$, hence $(b \vee a) \wedge a=a$. The second identity in (10) follows from duality.
b) To prove the converse suppose that the identities (10) hold. If $a \leqslant b$, then $b \wedge a=a$, i.e. $b \vee a=b \vee(b \wedge a)=b$ and this implies $a<b$. The converse implication can be obtained by a similar argument.

3. V-Lattices of varieties

Let $T_{\alpha}=\left(t_{1}, t_{2}, \ldots\right), \alpha \in N \cup\{\infty\}$, be a sequence of natural numbers. Here $T_{\alpha}=\left(t_{1}, \ldots, t_{n}\right)$ if $\alpha=n, T_{\alpha}=\left(t_{1}, \ldots, t_{n}, \ldots\right)$ if $\alpha=\infty$.

Let $J_{\alpha}=\left(f_{1}, f_{2}, \ldots\right)$ be a language of type T_{α} and let V_{α} be a fixed variety of algebras with the language J_{α}. By $I\left(V_{\alpha}, J_{\alpha}\right)$ we denote the set of all identities (written in J_{α}) which are satisfied in the variety V_{α}. Let V_{1}, V_{2}, \ldots be varieties of algebras with languages $J_{1}=\left(f_{1}\right), J_{2}=\left(f_{1}, f_{2}\right), \ldots$, where the variety $V_{i}, i \in$ $\{1,2, \ldots, \alpha\}$, is given by the set of those identities from $I\left(V_{\alpha}, J_{\alpha}\right)$ which are written in the language J_{i}. Thus V_{i} is a variety of algebras with the language J_{i} given by the set of identities $I\left(V_{\alpha}, J_{\alpha}\right) \cap I_{i}$, where I_{i} is the set of all identities written in J_{i}. In the sequel we denote this set by $I\left(V_{i}, J_{i}\right)$.

For example, if V_{5} is the variety of all ortholattices with the language ($\left.\wedge, \vee, 0,1, `\right)$ of type $(2,2,0,0,1)$ (for our purposes it is suitable to change the order of operation symbols in comparison with that in [3]), then V_{1} is the variety of all semilattices with the language (\wedge) of type (2), V_{2} is the variety of all lattices with the language (\wedge, \vee) of type $(2,2), V_{3}$ is the variety of all lattices with the least element, etc.

Further, we will suppose that $n<\infty$ for any natural number n.

Let W be a subvariety of the variety $V_{i}, i \in N$. By $W(j), 1 \leqq i<j$, we denote the class of all algebras $\left(A, f_{1}, f_{2}, \ldots\right) \in V_{j}$ such that $\left(A, f_{1}, \ldots, f_{i}\right) \in W$. (In practice we prefer to write f_{i} for an operation as well as for an operation symbol - this convention creates an ambiguity, but it seldom causes a problem.) We will call the class $W(j)$ an extension of the variety W in the language J_{j}.

Lemma 7. The algebras of the class $W(j)$ form a variety.
Proof. Evidently, $W(j)$ is the class of algebras with the language J_{j} that is given by the set of identities $I\left(V_{j}, J_{j}\right) \cup I\left(W, J_{i}\right)$, where $I\left(W, J_{i}\right)$ is the set of all identities (written in J_{i}), which determine the variety W.

If W is a subvariety of the variety $V_{\boldsymbol{j}}$, we denote by $W[i], 1 \leqq i<j$, the class of all algebras $\left(A, f_{1}, \ldots, f_{i}\right)$ such that $\left(A, f_{1}, f_{2}, \ldots\right) \in W$. The class $W[i]$ will be called a restriction of the variety W in the language J_{i}.

In general, a class $W[i]$ is not a variety. For example, if W is the variety of all Boolean algebras with the language $(\wedge, \vee, 0,1, `)$, then $W[2]$ is the class of all Boolean lattices with the language (\wedge, \vee).

Lemma 8. If W_{1} is a subvariety of the variety V_{i} and W_{2} is a subvariety of the variety $V_{j}, 1 \leqq i<j$, then

$$
\begin{equation*}
W_{2}[i] \subseteq W_{1} \quad \text { iff } \quad W_{2} \subseteq W_{1}(j) \tag{11}
\end{equation*}
$$

Proof. Let $W_{2}[i] \subseteq W_{1}$ and let $\left(A, f_{1}, f_{2}, \ldots\right)$ be an algebra in W_{2}. Then $\left(A, f_{1}, \ldots, f_{i}\right) \in W_{2}[i]$, so by the assumption we have $\left(A, f_{1}, \ldots, f_{i}\right) \in W_{1}$, and thus $\left(A, f_{1}, f_{2}, \ldots\right) \in W_{1}(j)$. The converse statement can be established in the same manner.

In the sequel, let L_{i} be the set of all subvarieties of the variety V_{i} and let

$$
L=\bigcup_{i=1}^{\alpha} L_{i}
$$

We are going to show that the set L can be equipped with relations $\leqq, \leqq, \overline{<}, \bar{₹}$ such that $(L, \leqq, \leqq, \bar{\Sigma} \bar{\Sigma})$ is a V-poset. To this end introduce binary relation $\leqq, \leqq, \overline{<} \bar{z}$ as follows.

For every $W_{1} \in L_{i}, W_{2} \in L_{j}, 1 \leqq i \leqq j$ we define

1. $W_{1} \leqslant W_{2} \Longleftrightarrow W_{1}<W_{2} \Longleftrightarrow i=j$ and $W_{1} \subseteq W_{2}$,
2. if $i=j$ then

$$
W_{1} \leqq W_{2} \Longleftrightarrow W_{1} \bar{₹} W_{2} \Longleftrightarrow W_{1} \subseteq W_{2}
$$

3. if $i \neq j$ then

$$
W_{1} \leqq W_{2} \Longleftrightarrow W_{1} \subseteq\left\langle W_{2}[i]\right\rangle
$$

($\left\langle W_{2}[i]\right\rangle$ denotes the variety generated by the class of algebras of $W_{2}[i]$)

$$
\begin{aligned}
& W_{2} \leqq W_{1} \Longleftrightarrow W_{2} \subseteq W_{1}(j) \\
& W_{1} \bar{₹} W_{2} \Longleftrightarrow W_{1}(j) \subseteq W_{2} \\
& \left.W_{2} \bar{₹} W_{1} \Longleftrightarrow W_{2}[i] \subseteq W_{1} \quad \text { (i.e. iff } W_{2} \leqq W_{1}\right)
\end{aligned}
$$

Theorem 2. Let L be the set and $\leqslant, \leqq, \overline{<} \bar{₹}$ the binary relations defined above. Then $(L, \leqq, \leqq,<, \bar{z})$ is a V-poset and in the corresponding V-lattice (L, \frown, \smile) we have for $W_{1} \in L_{i}, W_{2} \in L_{j}, i \leqq j$:

1. if $i<j$ then

$$
\begin{array}{ll}
W_{1} \frown W_{2}=W_{1} \wedge\left\langle W_{2}[i]\right\rangle & \left(\text { in } \mathbf{L}_{i}\right), \\
W_{2} \frown W_{1}=W_{2} \wedge W_{1}(j) & \left(\text { in } \mathbf{L}_{j}\right), \\
W_{1} \smile W_{2}=W_{1}(j) \vee W_{2} & \left(\text { in } \mathbf{L}_{j}\right), \\
W_{2} \smile W_{1}=\left\langle W_{2}[i]\right\rangle \vee W_{1} & \left(\text { in } \mathbf{L}_{i}\right) ;
\end{array}
$$

2. if $i=j$ then \frown and \smile are the same as in L_{i} (i.e. $W_{1} \frown W_{2}=W_{1} \wedge W_{2}$ etc.).

Proof. It can be easily shown that for $\leqslant, \leqq, \overline{<} \bar{₹}$ the conditions (e) and (h) are fulfilled and $\leqslant,<$ are obviously partial orders. We will prove (f) of Lemma 2. If $W_{1} \leqslant W_{2}$ and $W_{2} \leqq W_{3}, W_{2} \in L_{i}, W_{3} \in L_{j}$ then $W_{1} \subseteq W_{2}$ and

$$
\begin{array}{ll}
W_{2} \subseteq\left\langle W_{3}[i]\right\rangle & \text { if } i<j \\
W_{2} \subseteq W_{3}(i) & \text { if } j<i
\end{array}
$$

This implies $W_{1} \subseteq\left\langle W_{3}[i]\right\rangle, W_{1} \subseteq W_{3}(i)$, respectively, and so $W_{1} \leqq W_{3}$. Similarly, $W_{1} \overline{<} W_{2}, W_{2} \overline{<} W_{3}$ implies $W_{1} \overline{<} W_{3}$.

It remains to prove that all pairs of elements of L have both an infimum and a supremum. We are going to show that

$$
\inf \left(W_{1}, W_{2}\right)=W_{1} \cap\left\langle W_{2}[i]\right\rangle \quad \text { if } W_{1} \in L_{i}, W_{2} \in L_{j}, i<j
$$

It follows from $W_{1} \cap\left\langle W_{2}[i]\right\rangle \subseteq W_{1}$ that $W_{1} \cap\left\langle W_{2}[i]\right\rangle \leqslant W_{1}$, and from $W_{1} \cap\left\langle W_{2}[i]\right\rangle \subseteq$ $\left\langle W_{2}[i]\right\rangle$ we have $W_{1} \cap\left\langle W_{2}[i]\right\rangle \leqq W_{2}$. If $W \leqq W_{1}, W \leqq W_{2}$ then W, W_{1} are of the same type (i.e. $W \in L_{i}$) and $W \subseteq W_{1}, W \subseteq\left\langle W_{2}[i]\right\rangle$. Hence $W \subseteq W_{1} \cap\left\langle W_{2}[i]\right\rangle$, i.e. $W \leqslant W_{1} \cap\left\langle W_{2}[i]\right\rangle$. A similar argument shows that $\inf \left(W_{1}, W_{2}\right)=W_{1} \cap W_{2}(i)$ if $W_{1} \in L_{i}, W_{2} \in L_{j}, i>j$. The existence of a supremum can be proved dually.

Remark. We could suppose that $J_{\alpha}=\left\{f_{\beta} ; \beta<\alpha\right\}$ for a fixed ordinal α. Then the proof of Theorem 2 also works.

References

[1] G. Birkhoff: On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433-454.
[2] G. Birkhoff: Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50 (1944), 764-768.
[3] G. Kalmbach: Orthomodular lattices, Acad. Press, London, 1983.
Author's address: Povstalecká 6, 97401 Banská Bystrica, Slovakia.

