Czechoslovak Mathematical Journal

A. A. Ermolitski

Riemannian regular σ-manifolds

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 1, 57-66

Persistent URL:
http://dml.cz/dmlcz/128440

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

RIEMANNIAN REGULAR σ-MANIFOLDS

A. A. Ermolitski, Minsk

(Received March 24, 1992)

Symmetric spaces and their generalizations play an important role in modern differential geometry and its applications, [4], [5]. In this paper we introduce and study the so-called Riemannian regular σ-manifolds which generalize on the one hand the spaces with reflections [6] and on the other hand the Riemannian regular s-manifolds [4]. We want to point out that the term "subsymmetry" was first used in [8]. The main point of the present paper is to show that any Riemannian regular σ manifold is a fibre bundle over the base space $N=G / H$, with a standard fibre Λ and a structure group $(i$, which is associated with the principal fibre bundle $G(G / H, H)$. The manifold N is a regular s-manifold. When M is compact then N is a Riemannian regular s-manifold.

All manifolds and mappings are supposed to belong to the class $C^{\infty}, \mathscr{X}(M)$ denotes the algebra of vector fields on M. TM denotes the tangent bundle, I the identity operator.

1. Riemannian locally regular σ-manifolds

Definition 1.1. We shall call a connected Riemannian manifold (M, g) with a family of local isometries $\left\{s_{x}: x \in M\right\}$ a Riemannian locally regular σ-manifold (R.l.r. $\sigma-\mathrm{m}$.$) , if$

1) $\left.s_{x}(x)=x, 2\right)$ the tensor fields $S: S_{x}=(s)_{x * x}$ is smooth and invariant under any subsymmetry $s_{s}, 3$) there exists a connection $\bar{\nabla}$ on M invariant under any s_{x}, such that $\bar{\nabla} S=\bar{\nabla} g=0$.

As $S_{x}=\left(s_{x * x}\right)$, it is evident that

$$
\begin{equation*}
g(S X, S Y)=g(X, Y), \quad X, Y \in \mathscr{X}(M) \tag{1.1}
\end{equation*}
$$

If a tensor field S is O-deformable, then the existence of a connection $\bar{\nabla}(\bar{\nabla} S=$ $\bar{\nabla} g=0)$ follows from (1.1), [1]. Let the closure $G=\mathrm{CL}\left(\left\{s_{x}\right\}\right)$ of the group generated
by the set $\left\{s_{x}: x \in M\right\}$ in the full isometry group $I(M)$ be a transitive Lie group of transformations.

Then M is a Riemannian homogeneous space with the canonical connection $\bar{\nabla} . S$ is $\left(G\right.$-invariant (S is invariant under every s_{x}) and it follows that $\bar{\nabla} S=\bar{\nabla} g=0,[3]$.

Definition 1.2. We shall call a connected Riemannian manifold (M, g) with a family of local isometries $\left\{s_{x}: x \in M\right\}$ a Riemannian locally regular σ-manifold of order k (R.l.r. σ-m.o. k), if

1) $s_{x}(x)=x$,
2) the tensor field S determined by the formula $S_{x}=\left(s_{x * x}\right)$ is smooth, invariant under any s_{x} and satisfies the condition $S^{k}=I$.

Let M be a R.l.r. σ-m. (R.l.r. σ-m.o.k) and suppose all the symmetries are determined globally. Then we shall call M a Riemannian regular σ-manifold (R.r. σ-m. and R.r. σ-m.o.k, respectively).

The following theorem shows that any R.l.r. σ-m.o. k is a R.l.r. $\sigma-\mathrm{m}$.
Theorem 1.1. Let M be R.I.r. σ-m.o.k, $S^{k}=I$, let ∇ be a Riemannian connection of g. Then the connection

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y-\frac{1}{k} \sum_{j=1}^{k-1} \nabla_{X}\left(S^{j}\right) S^{k-j} Y \tag{1.2}\\
& =\frac{1}{k} \sum_{j=0}^{k-1} S^{j} \nabla_{X} S^{k-j} Y, \quad X, Y \in \mathscr{X}(M)
\end{align*}
$$

is determined on $M, \bar{\nabla} S=\bar{\nabla} g=0$, and $\bar{\nabla}$ is invariant under every s_{x}.
Proof. $\bar{\nabla}$ is obviously a connection. We have

$$
\begin{aligned}
\bar{\nabla}_{X}(S) Y= & \frac{1}{k} \sum_{j=0}^{k-1}\left(S^{j} \nabla_{X} S^{k-j+1} Y-S^{j+1} \nabla_{X} S^{k-j} Y\right) \\
& =\frac{1}{k}\left(\nabla_{X} S^{k+1} Y-S^{k} \nabla_{X} S Y\right)=0, \\
g\left(\bar{\nabla}_{X} Y, Z\right)+g\left(Y, \bar{\nabla}_{X} Z\right) & =\frac{1}{k} \sum_{j=0}^{k-1}\left[g\left(S^{j} \nabla_{X} S^{k-j} Y, Z\right)+g\left(Y, S^{j} \nabla_{X} S^{k-j} Z\right)\right] \\
& =\frac{1}{k} \sum_{j=0}^{k-1}\left[g\left(\nabla_{X} S^{k-j} Y, S^{k-j} Z\right)+g\left(S^{k-j} Y, \nabla_{X} S^{k-j} Z\right)\right] \\
& =\frac{1}{k} \sum_{j=0}^{k-1} X g\left(S^{k-j} Y, S^{k-j} Z\right)=X g(Y, Z),
\end{aligned}
$$

that is $\bar{\nabla} g=0$. As ∇ and S are invariant under every s_{x}, it follows from (1.2) that $\bar{\nabla}$ is also invariant under every s_{x}.

The condition $\bar{\nabla} S=0$ on R.l.r. $\sigma-\mathrm{m} . M$ implies that S has on M a constant Jordan normal form. An almost product structure can be defined on $M: T(M)=T^{1}(M) \oplus$ $T^{2}(M)$, where T^{1} is a distribution corresponding to the eigenvalue $1, T^{2}=T^{1 \perp}$.

In the case when $T^{1}=\{0\}, M$ is a Riemannian locally regular s-manifold [4]. Further on we assume $T^{1} \neq\{0\}$.

Theorem 1.2. Let M be a R.I.r. σ-m. Then the distribution T^{1} is integrable and its maximal integral manifolds are totally geodesic submanifolds with respect to ∇.

Proof. From the fact that comnections $\nabla, \bar{\nabla}$ are invariant it follows that the tensor field $h=\nabla-\bar{\nabla}$ is also invariant under every s_{x}. Since h is invariant and $s_{x}=\left(s_{x * x}\right)$, it follows that $h(S X, S Y)=S h(X, Y), X, Y \in \mathscr{X}(M)$. Let $X, Y \in T^{1}$, then $S h(X, Y)=h(S X, S Y)=h(X, Y)$ and $h(X, Y)=\nabla_{X} Y-\bar{\nabla}_{X} Y \in T^{1}$.

Since $\bar{\nabla} S^{\prime}=0, T^{1}$ is invariant under $\bar{\nabla}$ and we get

$$
\bar{\nabla}_{X} Y \in T^{1}, \quad \nabla_{X} Y=\bar{\nabla}_{X} Y+h(X, Y) \in T^{1}, \quad[X, Y]=\nabla_{X} Y-\nabla_{Y} X \in T^{1}
$$

T^{1} is autoparallel under ∇ and it follows that its maximal integral sumbmanifolds are totally geodesic.

The distribution T^{1} defines the foliation $\tilde{\Lambda}=\left\{\Lambda_{x}: x \in M\right\}$. The fibres of $\tilde{\Lambda}$ will be called the mirrors.

The canonical connection is unique for any Riemannian locally regular s-manifold [4]. For R.I.r. σ-m. we have

Proposition 1.3. Let $\bar{\nabla}, \bar{\nabla}^{\prime}$ be canonical connections from Definition 1.1 and $X \in T^{2}$. Then $\bar{\nabla}_{X}=\bar{\nabla}_{X}^{\prime}$ on M.

Proof. S has no fixed vectors except the null vector in T^{2}, hence $(I-S)$ is an isomorphism on T^{2} and $(I-S) X \neq 0, X \in T^{2}, X \neq 0$. Let $X \in T^{2}, Y \in \mathscr{P}(M)$, let $\bar{\nabla}, \bar{\nabla}^{\prime}$ be canonical connections from Definition $1.1, E=\bar{\nabla}-\bar{\nabla}^{\prime}$. Then

$$
E_{X} Y=E_{(I-S) X_{1}} S Y_{1}=E_{X_{1}} S Y_{1}-E_{S X_{1}} S Y_{1}-S E_{X_{1}} Y_{1}-S E_{X_{1}} Y_{1}=0
$$

and $\bar{\nabla}_{X}=\bar{\nabla}_{X}^{\prime}\left(X=(I-S) X_{1}, Y=S Y_{1}, S E_{X_{1}} Y_{1}=E_{X_{1}} S Y_{1}\right.$ because $\bar{\nabla}(S)=$ $\bar{\nabla}^{\prime}(S)=0, S E_{X_{1}} Y_{1}=E_{S X_{1}} S Y_{1}$ because E is invariant under every $\left.s_{x}\right)$.

2. Riemannian regular σ-manifold and manifold of mirrors

In this section we assume that M is a R.r. $\sigma-\mathrm{m}$.

Lemma 2.1 [2]. Let ϱ and ψ, be isometries on $(M, g), \varrho(x)=\psi(x), \varrho_{*}(x)=\psi_{*}(x)$ for some $x \in M$. Then $\varrho=\psi$ on M.

Lemma 2.2. All the sulsymmetries s_{x} are affine transformations with respect to $\bar{\nabla}$.

Proof obviously follows from Definition 1.1.

Proposition 2.3. Let M be a R.r. $\sigma-m$. and s_{x} a subsymmetry on M. Then we have $\left.s_{x}\right|_{\Lambda_{x}}=\left.\mathrm{id}\right|_{\Lambda_{x}}$ and if $x_{1} \in \Lambda_{X}$, then $s_{x}=s_{x_{1}}$ on M.

Proof. Since s_{x} and S commute, T^{1} and Λ are invariant under s_{x} and it follows that $s_{x}\left(\Lambda_{x}\right)=\Lambda_{x}$. For the restriction $\left.s_{x}\right|_{\Lambda_{x}}$ we have $s_{x}(x)=x, s_{x * x}=I$. According to Lemma 2.1, $s_{x}=$ id on Λ_{x}. Let $x_{1} \in \Lambda_{x}$, then $\left.s_{x_{1}}\right|_{\Lambda_{x}}=$ id and $s_{x_{1}}(x)=s_{x}(x)=x$. Consider $v \in T_{x}(M)$ and a curve τ_{t} connecting x and x_{1}. Denote the parallel transport with respect to the comnection $\bar{\nabla}$ by $\bar{\tau}_{t}$. According to Lemma 2.2, all subsymmetries commute with the parallel transport; the parallel transport commutes with S, because $\bar{\nabla} S=0$. Thus $\bar{\tau}_{t}\left(s_{x_{1} * x}(v)\right)=s_{r_{1} * x_{1}}\left(\bar{\tau}_{t}(v)\right)=S \bar{\tau}_{t}(v)=\bar{\tau}_{t}\left(S^{\prime} v\right)$ and we get $s_{x_{1} * x}=s_{x * x}=S$. According to Lemma $2.1 s_{x_{1}}=s_{r}$ on M.

Theorem 2.4. Let M be R.r. $\sigma-m ., N=\left\{\Lambda_{r}: x \in M\right\}, \pi: M \rightarrow N: x \mapsto \Lambda_{r}$. Then N is a smooth manifold and π is a differentiable submersion.

Proof. According to [7] it is sufficient to show that the foliation is regular. Let $U(x)$ be a convex neighbourhood of x in which there exists a foliated chart of the foliation $\tilde{\Lambda}$, [9], and let $x_{1} \in U(x)$. Suppose that $\bar{\Lambda}_{r_{1}}, \bar{\Lambda}_{x_{2}}$ are connected components of $\Lambda_{x_{1}} \cap U(x)$ which do not coincide $\left(x_{2} \in U(x)\right)$. 'Then there exists a unique minimizing geodesic $\gamma(t)$ in $U(x)$, where $t \in\left[t_{1}, t_{2}\right], \gamma\left(t_{1}\right)=x_{1}, \gamma\left(t_{2}\right)=x_{2}$. The isometry s_{x} transforms γ into a geodesic $\gamma^{\prime} \subset U(x)$ and γ^{\prime} is a minimizing geodesic [2]. Proposition 2.3 yields that $s_{x_{1}}\left(\Lambda_{x_{1}}\right)=\Lambda_{r_{1}}$ and $s_{x_{1}}\left(x_{1}\right)=x_{1}, s_{x_{1}}\left(x_{2}\right)=x_{2}$. Since the minimizing geodesic which connects x_{1} and x_{2} is unique we have $\gamma^{\prime}=\gamma$. Thus $s_{x_{1}}(\gamma)=\gamma$ and $s_{x_{1} * x_{1}}(\dot{\gamma})=S_{x_{1}}(\dot{\gamma})=\dot{\gamma}$ and hence $\dot{\gamma}_{x_{1}} \in T_{x_{1}}^{1}$.

According to Theorem 1.4, $\Lambda_{x_{1}}$ is a totally geodesic submanifold of M, so $\gamma \subset \Lambda_{x_{1}}$. Because $\bar{\Lambda}_{x_{1}}, \bar{\Lambda}_{x_{2}}$ are arewise connected in $U(x)$, they coincide. The contradiction obtained proves the theorem.

3. Riemannian regular σ-manifold as a fibre bundle

Let $I(m)$ be the full isometry group of R.r. σ-m. M equipped with the compact open topology and let $G=\operatorname{CL}\left(\left\{s_{x}\right\}\right)$ be the closure in $I(M)$ of the group generated by the set $\left\{s_{x}: x \in M\right\}$. Then G is a Lie group of transformations.

Lemma 3.1. The foliation $\tilde{\Lambda}$ is invariant under all transformations of the group G, that is, G transforms mirrors into mirrors.

Proof. Consider a sequence $\left\{g_{n}\right\} \rightarrow g \in\left(i\right.$ where $g_{n} \in G$. As S is invariant under subsymmetries, S is also invariant under each g_{n}. But then $g_{*} \cdot S=S \cdot g_{*}$. As the tensor field S is invariant under the group $\left(B, T^{1}\right.$ is also invariant under G. It follows that (; transforms mirrors of the foliation $\tilde{\Lambda}$ into mirrors.

Lemma 3.2 [4]. If $G \subset I(M)$ is a closed subgroup then all G-orbits are closed in M.

Let us define the action of the group G on the manifold $N: G \times N \rightarrow N:(g, y) \mapsto$ $\pi(g \cdot x)$, where $y=\pi(x)$. From Lemma 3.1 we see that this definition is correct. The action is obviously differentiable.

Theorem 3.3. Let M be a R.r. $\sigma-m$., and N the corresponding manifold of mirrors. Then the group G is a transitive Lie group of transformations of the manifold N.

Proof. Let $x_{0} \in M$, let $U\left(x_{0}\right)$ be a convex neighbourhood of x_{0} with respect to ∇, which is a foliated chart of the foliation $\tilde{\Lambda}$. Suppose that x is an arbitrary point in $U\left(x_{0}\right), x \notin \Lambda_{x_{0}}, r$ is a distance from x_{0} to the G-orbit $G(x)$ of the point $x: r=\inf _{y \in G} d\left(x_{0}, g(x)\right)$. Since $G(x)$ is closed, one can find $z \in G(x)$ such that $r=d\left(x_{0}, z\right)$. Let us suppose that $z \notin \Lambda_{r_{0}}$. Then there is a geodesic segment of the length r joining x_{0} and z. Let w be a point of this segment between x_{0} and z. Then $\dot{\gamma}_{w} \notin T^{1}$ because otherwise, according to Theorem 1.2 , the whole segment would lie in Λ_{w} and $z \in \Lambda_{w}=\Lambda_{r_{0}}$. Thus $s_{w}(z) \neq z, s_{w}(z) \in G(x)$.

Hence all the points $x_{0}, z, w, s(w)$ lie in $U(x)$. Using the triangle inequality we get

$$
\begin{aligned}
d\left(x_{0}, s_{u}(z)\right)<d\left(x_{0}, w\right)+d\left(w, s_{w}(z)\right) & =d\left(x_{0}, w\right)+d\left(s_{w}(w) s_{w}(z)\right) \\
& =d\left(x_{0}, w\right)+d(w, z)=d\left(x_{0}, z\right)=r
\end{aligned}
$$

The contradiction obtained shows that $z \in \Lambda_{x_{0}}$. Thus, for any mirror $y=\Lambda_{x}, y \in$ $\pi\left(U\left(x_{0}\right)\right)$, one can find an element of the group G transforming y into $y_{0}=\Lambda_{x_{0}}$, and for any $y_{1}, y_{2} \in \pi\left(U\left(x_{0}\right)\right)$ there exists a transformation $g \in G$ such that $y_{2}=g\left(y_{1}\right)$.

Covering a segment of the curve between two arbitrary points of N by a finite number of neighborhoods like $\pi\left(U\left(x_{0}\right)\right)$ we conclude that the group is a transitive Lie group of transformations of N.

Corollary 3.4. All fibres of the foliation $\tilde{\Lambda}$ are diffeomorphic to the standard fibre $\Lambda=\Lambda_{0}$, where $o \in M$ is a fixed point.

It is well known that the component of identity of a Lie group acting transitively on the manifold N is also transitive on N, so later on we will assume the group C to be connected.

Corollary 3.5. Let $o \in M$ and let H be the isotropy subgroup of $\Lambda_{0} \in N$. The mapping $\left(i / H \rightarrow N: g H \mapsto \Lambda_{g(0)}\right.$ is a diffeomorphism of the manifolds C_{i} / H and N.

Let $G(C i / H, H)$ be a principal fibre bundle with the base G / H and the structure group H. Since H acts on the manifold $\Lambda=\Lambda_{0}$ to the left, it is possible to consider $G \times{ }_{H} \Lambda$, which is the fibre bundle over the base space G / H with the standard fibre Λ and the structure group H associated with the principal fibre bundle.

Let $g \otimes x$ be the equivalence class containing (g, x), where $(g h, x) \sim(g, h x), h \in H$.
Theorem 3.6. Let M be a R.r. $\sigma-m$. The mappings $\Phi: G \times{ }_{H} \Lambda \rightarrow M: g \otimes x \mapsto$ $g(x)$ and $G / H \rightarrow N: g H \mapsto \Lambda_{g(0)}$ are diffeomorphisms. The following diagram is commutative:

Proof. Φ is obviously a correctly defined, differentiable mapping, Φ is surjective because G is transitive on N. Let us check the injectivity of Φ. Let $g_{1}\left(x_{1}\right)=g_{2}\left(x_{2}\right)$, then

$$
g_{1}^{-1} g_{2}=h \in H \quad \text { and } \quad g_{1} \otimes x_{1}=g_{1} h \otimes h^{-1} x_{1}=g_{2} \otimes x_{2} .
$$

The mapping $(: \times \Lambda \rightarrow M:(g, x) \mapsto g(x)$ is a submersion and the following diagram is commutative:

Thus Φ is a diffeomorphism and the diagram (3.1) is evidently commutative.

4. Manifold of mirrors as a regular s-manifold

Let $o \in M$ be again a fixed point, $y_{0}=\Lambda_{0} \in N$. According to Proposition 2.3 every subsymmetry s_{x} defines a diffeomorphism s_{y} of the manifold N, where $y \in \pi(x)$. It is clear that $s_{y}(y)=y$ and $s_{y * y}=\bar{S}$, where the Jordan normal form \bar{S} coincides with the normal form of the tensor field S restricted to T^{2}. It is also evident that \bar{S} is invariant under the group G acting transitively on N.

Lemma 4.1. Let $g\left(\Lambda_{0}\right)=\Lambda_{x}$, where $x=g(o) \in M$. Then $s_{x}=g \cdot s_{0} \cdot g^{-1}$ on M, $g \in G$.

Proof. $\quad s_{x}(x)=x$ and $\left(g \cdot s_{0} \cdot g^{-1}\right)(x)=x$. Then $s_{x * x}=S_{x}$ and $\left(g \cdot s_{0} \cdot g^{-1}\right)_{* x}=$ $g_{* 0} \cdot s_{0 * 0} \cdot g_{* x}^{-1}=g_{* 0} \cdot S_{0} \cdot g_{* x}^{-1}=S_{x}$, because S is G-invariant. According to Lemma 2.1, s_{x} coincides with $g \cdot s_{0} \cdot g^{-1}$ on M.

Proposition 4.2. Let M be a R.r. $\sigma-m$. and let N be a manifold of mirrors. Then $\mu: N \times N \rightarrow N:\left(y_{1}, y_{2}\right) \mapsto s_{y_{1}}\left(y_{2}\right)$ is a real analytic mapping.

Proof. $N \cong G / H$ has the structure of a real analytic manifold such that the action of G on N and the projection $p: G \rightarrow G / H$ are analytic [2]. One can find a neighbourhood $W \subset N$ of a point y_{0} for which there exists an analytic section ν : $W \rightarrow G$ of the fibre bundle $p: G \rightarrow G / H$. According to Lemma 4.1, $s_{y}=\pi\left(s_{x}\right)=$ $\pi\left(g \cdot s_{0} \cdot g^{-1}\right)=g \cdot s_{y_{0}} \cdot g^{-1}$. Therefore, for any $y \in W, s_{y}=\nu(y) \cdot s_{y_{0}} \cdot(\nu(y))^{-1}$, $s_{y_{0}} \in G$ is analytic. Thus, the mapping $\left(y_{1}, y_{2}\right) \mapsto s_{y_{1}}\left(y_{2}\right)$ is analytic on $W \times N$ and, in fact, on $M \times M$.

Definition 4.1 [4]. A regular s-manifold is a manifold N with a multiplication $\mu: N \times N \rightarrow N$ such that the mappings $s_{y}: N \rightarrow N, y \in N$ given by $s_{y}(z)=\mu(y, z)$ satisfy the following axioms:

1) $s_{y}(y)=y$,
2) each s_{y} is a diffeomorphism,
3) $s_{y} \cdot s_{z}=s_{w} \cdot s_{y}$, where $w=s_{y}(z)$,
4) for each $y \in N, s_{y * y}: T_{y}(N) \rightarrow T_{y}(N)$ has no fixed vectors except the null vector.

Theorem 4.3. Let M R.r. $\sigma-m$. and N its manifold of mirrors. Then N is a regular s-manifold.

Proof. According to Proposition 4.2, μ is differentiable, the axioms 1) and 2) are evident, 4) follows from the fact that $\left.S\right|_{T^{2}}$ has no fixed vectors except the null one. Consider the axiom 3). Let $x, u, v \in M, \pi(x)=y, \pi(u)=z, \pi(v)=w$. Let us
prove that $s_{x} \cdot s_{u}=s_{v} \cdot s_{x}$. We have

$$
\begin{aligned}
\left(s_{x} \cdot s_{u}\right)(u) & =\left(s_{v} \cdot s_{x}\right)(u)=v \\
\left(s_{x} \cdot s_{u}\right)_{* u} & =s_{x * u} \cdot s_{u * u}=s_{x * u} \cdot S_{u}=S_{v} \cdot s_{x * u}=s_{v * v} \cdot s_{x * u}=\left(s_{v} \cdot s_{x}\right)_{* u} .
\end{aligned}
$$

According to Lemma 2.1 we have $s_{x} \cdot s_{u}=s_{v} \cdot s_{x}$. Projecting this equality onto N, we obtain that $s_{y} \cdot s_{z}=s_{w} \cdot s_{y}$, where $w=s_{y}(z)$.

Theorem 4.4. Let a R.r. σ-m. M be compact. Then its manifold of mirrors N is a Riemannian regular s-manifold.

Proof. Since the group $I(M)$ of all isometries of M is compact, the group G is also compact. Assume $<,>^{*}$ is an arbitrary Riemannian metric on $N, X, Y \in T_{y}(N)$. The elements of the group $(i$ are isometries with respect to the following metric $<$, $>$ on N :

$$
\langle X, Y\rangle=\int_{g \in G}\left\langle g_{*} X, g_{*} Y\right\rangle^{*} .
$$

The rest follows from Theorem 4.3.
Remark 4.5. If H is not compact then G / H can not be a Riemannian regular s-manifold because according to [3], the isotropy subgroup of a homogeneous Riemannian space must be compact.
5. The main example of a Riemannian regular σ-manifold of order k

Let $\left(N, g^{2}\right)$ be a Riemannian regular homogeneous s-manifold of order k [4], then $N \cong G / H$ where $G_{0}^{\sigma} \subset H \subset G^{\sigma}, C^{\sigma}=\{g \in G: \sigma(g)=g\}, C_{0}^{\sigma}$ is the component of the identity of G^{σ}, σ is the automorphism of the group G ($\sigma^{k}=\mathrm{id}$). (Here G_{i}^{\prime} is a connected group of isometries which acts transitively on $N)$. Let $G\left(G_{i}^{\prime} / H, H\right)$ be a principal fibre bundle with the base G / H and the structure group H. Let $\left(\Lambda, g^{1}\right)$ be the Riemannian manifold and let H act on Λ to the left. We consider the fibre bundle $G \times{ }_{H} \Lambda$ which is associated with $G(G / H, I I)$, and again denote by $g \otimes x$ the equivalence class containing (g, x), where $(g h, x) \sim(g, h x), h \in H$.

Now we will state the main theorem of this section.
5.1. $M \cong G \times{ }_{H} \Lambda$ is a R.r. σ-m.o.k.

The proof will be given step by step in the next paragraphs.

Lemma 5.2 [5]. The formulas

$$
p H \cdot q H=p^{\sigma}\left(p^{\sigma}\right)^{-1} \cdot q^{\sigma} \cdot H, \quad p^{\sigma}=\sigma(p), \quad q^{\sigma}=\sigma(q), \quad p, q \in G
$$

define a regular multiplication on N.
Lemma 5.3. The formula

$$
(p \otimes u) \cdot(q \otimes v)=p\left(p^{\sigma}\right)^{-1} q^{\sigma} \otimes v
$$

defines a regular multiplication on $M \cong G \times{ }_{H} \Lambda$.
The projection $\pi: G \times{ }_{H} \Lambda \rightarrow G / H$ is a homomorphism of spaces with multiplications.

The proof is analogous to that considered in [6] when $\sigma^{2}=\mathrm{id}$.
We have a family of symmetries $\left\{s_{y}: y \in N\right\}$ on $N, s_{y}(z)=y \cdot z$, and a tensor field $\bar{S}_{y}=s_{y * y}$ which is invariant under all s_{y}. It is clear that $\bar{S}^{k}=I$. The family of subsymmetries $\left\{s_{x}: x \in M\right\}, s_{x}(z)=x \cdot z$, and the tensor field $S_{x}=s_{x * x}$ are defined on $M . S$ is invariant under all s_{s} from regularity condition. Since π is a homomorphism of spaces with multiplications, we have

$$
\begin{equation*}
\pi \cdot s_{x}=s_{\pi(x)}, \quad \pi_{x} \cdot S=\bar{S} \tag{5.1}
\end{equation*}
$$

Lemma 5.4. Let Λ_{x} be the fibre which contains $x \in M$. Then $s_{x}=$ id on Λ_{x} and if $x_{1} \in \Lambda_{x}$ then $s_{x}=s_{x_{1}}$.

Proof. Let $x=p \otimes u, z=q \otimes v \in \Lambda_{x}$, then $p=q H$ because $\pi(x)=\pi(z)$, $x \cdot z=(p) \cdot(q Q v)=(q Q h u) \cdot(q Q v)=q\left(q^{\sigma}\right)^{-1} \cdot q^{\sigma} \otimes v=q Q v$. If $x_{1}=p_{1} \Leftrightarrow u_{1} \in \Lambda_{r}$, then $p_{1}=p h$ because $\pi(x)=\pi\left(x_{1}\right)$ and $x_{1}=p_{1} \otimes u_{1}=p \otimes h u_{1}$, $x_{1} \cdot \bar{z}=\left(p\right.$ Q $\left.h u_{1}\right) \cdot(\bar{q} \otimes \bar{v})=\mu\left(p^{\sigma}\right)^{-1} \bar{q}^{\sigma} \otimes v=x \cdot \bar{z}, \forall \bar{z} \in M$.

The foliation $\tilde{\Lambda}=\left\{\Lambda_{x}: x \in M\right\}$ defines the distribution T^{1} on M. According to Lemma $\left.5.4 S\right|_{T^{1}}=I$ and since \bar{S} has no fixed vectors except the null vector, the eigenspace of S_{x} corresponding to the eigenvalue 1 coincides with T_{x}^{1}. Let T_{x}^{2} be the direct sum of all eigenspaces of S_{x} except T_{x}^{1}. From (5.1) we get $S^{k}=I$, and $\pi_{*}: T_{r}^{2} \rightarrow T_{\pi(x)}(N)$ is an isomorphism. The structure of the almost product $T(M)=T^{1} \oplus T^{2}$ is defined on M. The action of the group (G on the homogeneous space $N \cong\left(\dot{r} / H\right.$ induces the action of G on $M \cong G \times{ }_{H} \Lambda:(q, p \otimes u) \mapsto q \cdot p \otimes u$ and we have

$$
\pi(q \cdot x)=q \cdot \pi(x), \quad p, q \in G^{\prime}, \quad x \in M .
$$

Lemma 5.5. The tensor field S is invariant under all elements of G on M.
Proof. We shall show that $\left(q \cdot s_{x}\right)(z)=\left(s_{g(x)} q\right)(z), q \in G, x, z \in M$. Indeed, $q \cdot(x \cdot z)=q \cdot p\left(p^{\sigma}\right)^{-1} \cdot r^{\sigma} \otimes v,(q p \otimes u) \cdot(q r \otimes v)=(q p) \cdot\left(q^{\sigma} p^{\sigma}\right)^{-1} \cdot q^{\sigma} \cdot r^{\sigma} \otimes v=$ $q \cdot p \cdot\left(p^{\sigma}\right)^{-1} \cdot r^{\sigma} \otimes v$ where $x=p \otimes u, z=r \otimes v$. Considering the tangent mappings we get $y_{*} \cdot S_{x}^{\prime}=S_{g(x)}^{\prime} \cdot g_{*} x$.

According to Lemma 5.5 the distributions T^{1}, T^{2} are invariant under $(\boldsymbol{r}$, hence the foliation $\tilde{\Lambda}$ is also $(i$-invariant.

Define the following Riemamian metric on the distribution T^{2} :

$$
g_{r}^{2}(X, Y)=g_{\pi(x)}^{2}\left(\pi_{*} X, \pi_{*} Y\right), \quad X, Y \in T_{x}^{2}
$$

Then $g^{2}\left(p_{*} X, p_{*} Y\right)=g^{2}\left(\pi_{*} \cdot p_{*} X, \pi_{*} \cdot p_{*} Y\right)=g^{2}\left(p_{*} \cdot \pi_{*} X, p_{*} \cdot \pi_{*} Y\right)=g^{2}(X, Y)$, where $X, Y \in T^{2}, p \in G^{\prime}$. Thus the elements of the group $\left(\dot{F}\right.$ are isometries on T^{2}. Let $o \in M$ be a fixed point and $\Lambda_{0}=\Lambda$.

Defme a Riemamian metric on the distribution T^{1} as follows:

$$
g_{x}^{1}(X, Y)=g^{1}\left(p_{*} X, p_{*} Y\right), \quad p \in G, \quad p(x) \in \Lambda, \quad X, Y \in T^{1} .
$$

The element p exists because $(r$ is a transitive Lie group of transformations of N. Let $g \in G, g(x) \in \Lambda$ then Λ is invariant under $h=p \cdot g^{-1}$ and $h \in H$. Since H acts on Λ as an isometry group, we get $g^{1}\left(g_{*} X, g_{*} Y\right)=g^{1}\left(h_{*} g_{*} X, h_{*} g_{*} Y\right)=g^{1}\left(p_{*} X, p_{*} Y\right), X$, $Y \in T^{1}$.

It follows that the metric g^{1} is well-defined on T^{1}. It is clear that the elements of the group $\left(r\right.$ are isometries on T^{1}.

Define a Riemannian metric on M as follows: $\left.g\right|_{T^{1}}=g^{1},\left.g\right|_{T^{2}}=g^{2}, T^{1}, T^{2}$ are orthogonal in the metric g. From the above we see that G is an isometry group with respect to g. The transformation s_{x} is identified with an element of G and s_{r} is an isometry, too.

Hence Theorem 5.1 follows.

Reforences

[1] C. Jeffries: o-deformable (1,1) tensor fields. J. Diff. Geom. 3-4 (1972), no. 8, 575-583.
[2] S. Kobayshi, K. Nomizu: Foundations of Differential Geometry, vol 1. Wiley, New York, 1963.
[3] S. Kobayshi, K. Nomizu: Foundations of Differential (ieometry, vol 2. Wiley, New York, 1969.
[4] O. Kowalski: Generalized Symmetric Spaces. Lecture Notes in Math. 805. Springer, 1980.
[5] O. Loos: Symmetric Spaces. Benjamin, New York-Amsterdam, 1969.
[6] O. Loos: Spieglungsräume und homogene symmetrische Räume. Math. Z. 2 (1967), по. 99, 141-170.
[7] R. Palais: A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc. vol 22, 1957.
[8] Sabinin L. V.: About geometry of subsymmetric spaces. Nauchn. Dokl. V. Shk. Phys. Mat., 1958. (ln Russian.)
[9] I. Tamura: Topology of foliations. Editions Mir, Moscow, 1979. (In Russian.)
Author's address: Minsk, Republican Street 24-19, Belarus.

