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1. INTRODUCTION

Swamy [5] introduced the concept of an autometrized algebra which is a gener-
alization of, for example, abelian lattice ordered groups and Brouwerian algebras.
Ideals of autometrized algebras were studied by Swamy and Rao [7] and this work
has been continued by Rachtinek [2, 3, 4] who has studied prime ideals, polars and
regular ideals in autometrized algebras. In this paper minimal prime ideals are stud-
ied both for autometrized algebras, and for representable dually residuated lattice
ordered semigroups.

A system (A, +, <, #) is an aulometrized algebra if and only if

1) (A, +) is commutative semigroup with 0;

2) < is a partial ordering on A such that Va, b, c€ A

a<b = a+c<b+g

3) * is a metric operation on A, that is, *: A x A — A is a mapping such that for
all a, b, c € A,

(1) a*b>0andaxb=0 <= a=0,

(i) a*xb=0bx*a,

(ili) a*e < (a*x)+ (bxc).

An autometrized algebra (A, +, <, *) is called normal if and only if for all a, b,
c,d€ A,

(1) a<gax0,

(i) (a+c)*x(b+d) < (a*xb)+ (c*d),

(i) (a*xc)*(b*xd) < (ax*xb)+ (c*d),

(iv) a < bimplies that there exists z > 0 such that a + z = b.

* This research was funded in part by an Indiana University at Kokomo Summer Faculty
Fellowship, 1991.
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An autometrized algebra (A, +, <, *) is called semiregular if for alla € A, a« > 0
implies a x 0 = a.

An autometrized algebra is called an £-algebra if and only if < is a lattice order
and for all a, b, c € A,

a+(bve)=(a+b)V(a+c) and a+(bAc)=(a+b)A(a+c).

Note that semiregular normal autometrized f-algebras include all Brouwerian al-
gebras and abelian lattice ordered groups.

If A= (A, +, <, %) is an autometrized algebra then a non-empty subset I of A is
called an ideal of A if and only if

(i) Va,bel,a+bel,

(i) Vael,z€ A, z+x0<ax0impliesz € [.

For a normal autometrized algebra A, #(A), the set of all ideals of A, ordered by
set inclusion, is a complete algebraic lattice [7]. For B C A, I(B) is used to denote
the ideal of A generated by B. I({a}) is written simply as I(a), and I(a) = {z €
Alz+0< m(ax0) for some m > 0}, [7].

An ideal I of an automnetrized algebra A is a prime ideal if for all J, K in _#(A),
JNK =T impliesJ =1 or K = 1.

For a semiregular normal autometrized ¢-algebra A, Rachinek [2] has shown that
an ideal [ is a prine ideal of A if and only if for all @, b€ I, 0 < aAb € I implies
a € I or b € I, and that every prime ideal contains a minimal prime ideal.

Elements a and b of an autometrized ¢-algebra A are said to be orthogonal (denoted
a L b)if (ax0)A(b*0)=0. For any subset B of A the polar of B is

Bt ={x € A|z Lbforallbe B).

{at} is denoted a* and C C A is called a polar in A if C = Bt for some B C A.
The collection of all polars in A is denoted £(A).

It is clear that for subsets B and C of A, BN B+ = {0} and if B C C then B+ D
C*. Rachiinek [3] has shown that any polar in a semiregular normal autometrized
(-algebra A is an ideal of A. Also if B C A, then B C B++ and Bt = B+++.

The following lemmma due to Swamy [5] will be needed.

Lemma 1.1. Let z, y, ¢ be elements of an autometrized €-algebra. If c Az =
cAy=0,then cA(z+y)=0.

More generally the following result holds.

Lemma 1.2. If a, b, ¢ are elements of an autometrized ¢-algebra and a, b, ¢ > 0
then
aN(b+c)<(and)+(bAc).

82



Proof. Ifa, b,e¢>0,then aAbAc>0anda<<a+ (aAbAc). Therefore

an(b+c)< [a+(anbACS) A(b+c)
= [(a+a)/\(a+b)/\(a+c)]/\(b+c)
= [(a+a)A(a+b)] Al(c+a)A(c+b)]
=[a+(anb)] Afc+ (anb)]
=(aAb)+ (aAc).

O

For an autometrized algebra A, the set of positive elements of A if At = {r € A |
z > 0}.

2. MINIMAL PRIME IDEALS IN AUTOMETRIZED ALGEBRAS

Let A = (A, 4, <, *) be a autometrized ¢-algebra. A nonempty subset F of A%
is called a filter on AT if

(i) 0¢F;

(1) @ and b€ F impliesaAbe F,

() a € Fandb > a,impliesb € F.

A maximal filter on At is called an ultrafilter, and a filter F' on A% is called a
prime filter if forz, y € At 2 +y € Fimpliessz € Fory€e F.

Proposition 2.1. Let A be a normal semiregular autometrized €-algebra. A non-
empty subset I’ of At is a prime filter if and only if A¥ \ F = It for a prime ideal
I of A. Thus the mapping [ — At \ I is a one-to-one map of the prime ideals of A
onto the prime filters on A*; the inverse map is F — I(A* \ F).

Proof. Let F be a prime filter on AT and let I = I(A*\ F). It must be shown
that [* = A*\ F and that [ is prime. Clearly A*\ F C I*. Suppose A*\ F G I,
then 32 € ITNF,and x € It impliesthat zx0 < m; (a;*0)+ma(az*0)+. . .my (ax*0)
for some positive integers my, ..., my and some ay, ..., ax € A¥\ F. Then, since F' is
a prime filter on At and z € I, a; *0 € F for some j. But this gives a contradiction
since A is semiregular implies aj * 0 = aj ¢ F. Therefore A* \ F = I*. Suppose
0<anbel, thena, b€ AT, aAb¢ F and since F is a filter on A% either a ¢ F or
b ¢ F and therefore, since A* \ ' = [*, either « € I or b € I and thus I is a prime
1deal of A.

Conversely suppose that [ is a prime ideal of A and let F = At \ I. Then

1) 0l = 0¢ F,

1) Since 0 € I, and [ is convex it is clear that a € F and b > a implies b € F;
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i) Let a,b €& F. Then a, b ¢ I and I a prime ideal impliesa Ab ¢ I, and thus
aNbeF,

iv) Since [ is a subsemigroup of A, ifz, y € At andz 4+ y € F then z € F or
yeF.

Therefore F is a prime filter on A%, O

Proposition 2.2. Let A be a normal autometrized ¢-algebra. Every ultrafilter
on A% is a prime filter.

Proof. Let % be an ultrafilter on AT and let z, y € AT \ %. Since % is an
ultrafilter, 3a € % with aAz = 0 (otherwise aAz > 0 for each a € %, and {z} U
generates a filter on AT that properly contains %). Similarly 3b € % with bAy = 0.
Let c=aAb,then c€ % and cAz =cAy=0,s0by Lemma 1.1, cA(z 4+ y) = 0.
Therefore @ + y ¢ % and % is a prime filter. O

The following result is a direct consequence of Propositions 2.1 and 2.2.

Proposition 2.3. Let A be a normal semiregular autometrized (-algebra. An
ideal I of A is a minimal prime ideal if and only if A* \ I is an ultrafilter on A*.

Proposition 2.4. Let A be a normal semiregular autometrized ¢-algebra. For a
proper prime ideal I of A, the following are equivalent:

(a) 1 is a minimal prime ideal,

) 1=Ule* g ¢ 1),

(¢) Veel, zt ¢ 1

Proof. (a) = (b).

If I is a minimal prime ideal, then by Proposition 2.3, % = At \ I is an ultrafilter.
Let g € %, then gt = {z € A | (2 %0)A(g+0) = 0} and (¢1)t = {v € A+ |
(2%x0)A(9%0) =0} ={x e At |2 Ag =0} (since A is semiregular). Now rAg =0
and g € 4 an ultrafilter, implies & ¢ % = At \ I. Therefore (¢+)t C [ and so
gt C Il o Let J=U{gt |92 1} =U{g* |y € %} C I. It must now be shown that
J is a prime ideal of A.

i) Let a, b € J. Then a € g+, b € ht for some g, h € %, and thus a + b €
I(gt Uht). But g Ah €% nnplies (¢ A W)t C J and since g Uht C (g A )L,
a+bel(gtuht)C(gnh)t CJ.

ii)Leta€ J, b€ Aand b*x0 < a*0. Then a € g* for some g € %, which implies
b e gt since gt is an ideal of A, and therefore b € J.

Thus J is an ideal. To show that J is prime let 0 < a Ab € J. Then for some
gEX,anbe gt = (aNb)Ag=0and, since % is a filter, a A b ¢ % and cither
a@ ¥ orbg¢ . Nowif 0 <agJ, theneAg>0forall g €% and since % is
an ultrafilter on At x € 2. Therefore, since either a« ¢ % or b ¢ %, it must be
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the case that either a € J or b € J, and thus J is a prime ideal. Finally since J is a
prime ideal contained in I, and I is a minimal prime ideal, I = J = J{g* | g ¢ I}.

(b) = (0).

Let # € I, then 3¢ ¢ I such that € g*, which implies (g * 0) A (z * 0) = 0 and
g€at. Thus 2t ¢ I.

(c) = (a).

Suppose J is an ideal properly contained in I, and let z € I* \ J. Then 2t ¢ I
implies 3y ¢ I withc Ay=0. ThenzAy=0and z ¢ J, y ¢ J implies that J is
not a prime ideal. Therefore I is a minimal prime ideal. O

Corollary 2.5. Let A be a normal semiregular autometrized (-algebra. FEach
polar P in A is the intersection of all those minimal prime ideals not containing P*.

Proof. Let P be a polar in A and suppose M is a minimal prime ideal of
A such that PL is not contained in M. Then there exists z € (P1)* \ M. Since
x € Pt et D P = Pialso x ¢ M, M aminimal prime ideal implies £+ C M.
Thus P C £t C M and the intersection of such minimal prime ideals contains P. If
x ¢ P, then there exists y € PL with (z * 0) A (y * 0) > 0 and therefore there is an
ultrafilter % on A% containing z * 0 and y* 0. Then M = I(A* \ %) is a minimal
prime ideal that does not contain P+ (since y ¢ M) and further = ¢ M. Thus for
each € P, x is not in the intersection of all minimal prime ideals not containing
P*L. Therefore the intersection of all such minimal prime ideals is P. O

Proposition 2.6. Let A be a normal semiregular autometrized (-algebra. Let
a€ A let X = {2 |0< 2 < ax0} and let % be an ultrafilter on X. Then
M = U{z* | ¢ € %} is a minimal prime ideal of A and a ¢ M. Moreover each

minimal prime ideal of A not containing a is obtained in this way.

Proof. Let ¥ ={ye€ A|y> z forsomez € %}. Since 0 < z < y implies
vy Cat, Uyt vy e V) C U{zt |z € #}. However  C V¥, so the reverse
inclusion also holds and J{y* |y € ¥} = U{e* | 2 € }. Clearly ¥ is a filter on
A*. Further ¥ is an ultrafilter on A%, for if not there exists 0 < b € A* \ ¥ such
that bAy > 0 for all y € ¥, and then foreach 2 € Z C ¥, (bA(a*0)) Az =
bA((a*x0)Ax) =bAz > 0. Then since % is an ultrafilter on X, bA(ax0) € % C V',
whence b > b A (ax0) implies b € ¥, a contradiction.

Now since 7" is an ultrafilter on A, there is a minimal prime ideal M of A with
AT\NM =7, and thena g M = J{y* |y ¢ M} =U{y* |lye At \ M} = U{y* |
yery=Ulet |z en).

Conversely suppose that Al is a minimal prime ideal of A and a ¢ M. Then
7 = At \ M is an ultrafilter on A*, ax0€ ¥, and M = J{z* | £ € 7}. Let
N={z|0<z<ax0}and let Z = ¥NX. Clearly % is a filter on X. If
0<b<ax0andb ¢ %, thenb ¢ 7 and so bAy = 0 for some y € ¥. Let
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€U, then 0 < zAy€e€V and0<zAy<<z<ax0sothat z Ay € . Also
bA(zAy) =2z A(bAy) =0, and thusif b € X \ % then b Ac = 0 for some ¢ € %
and therefore % 1s an ultrafilter on .X.

Then fromn above M’ = |J{at | ¢ € %} is a minimal prime ideal of A. Further
& C v implies M' CJ{y* | y € ¥} = M, and since M is a minimal prime ideal
M = M' ={zt |z € %} as required. O

An argument similar to that above gives the following result.

Proposition 2.7. Let A be a normal semiregular autometrized (-algebra. Let
I be an ideal of A and % an ultrafilter on IY. Then M = J{zt |z € %} is a
minimal prime ideal of A not containing I. Moreover each minimal prime ideal of A
not containing [ is obtained in this way.

3. REPRESENTATIVE DR(-SEMIGROUPS

The notation of a dually residuated lattice ordered semigroup (DR/{-semigroup)
was introduced by Swamy [6].

A system A = (A, +, <, —) 1s a DRé-semigroup if

(i) (A, +, <) is a commutative lattice ordered semigroup with a zero element 0;

(i) for each a, b € A there exists a least element £ € A such that b+ x > ¢, and
this element z is denoted by a — b;

(ii1)) foralla, b€ A, (a=b)VO+b<aV;

(iv) foralla€e A,a—a>0.

If we define a*b = (a—b)A(b—a) for each a, b € A, then (A, +, <, *) is a
semiregular normal autometrized (-algebra.

A DRé{-semigroup is called representable if Va, b € A, (a —b) A (b—a) < 0.
Examples of representable DR(-semigroups include abelian f-groups and Boolean
algebras.

Proposition 3.1. An ideal I of a DR(-semigroup A is a prime ideal if and only
ifforalla, b€ A, aNb=0 impliesa €l orbel.

Proof. Clearly if [ is a prime ideal of A, then a Ab = 0 implies e Ab € [ and
therefore a € 1 or b € I.

Conversely suppose that [ satisfies the condition a Ab =0 umpliesa € [ or b € I
and let 0 < Ay € I. Then by Lemima 6 of Rachiinek [2], (z—(xAy))A(y—(xAy)) =0
which implies ¢ — (z Ay) € [ or y — (z Ay) € [. Without loss of generality assume
z—(zAy) €L Then 0 <z < (2 Ay)+ (z— (2 Ay)) € I and by the convexity of I,
z € [. Therefore I is a prime ideal. O
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Corollary 3.2. If I C J are ideals of a DR{-semigroup A and [ is prime, then J
is a prime ideal.

Proof. Since [ is a prime ideal, if aAb=0thena €l orbel. But I CJ
and thus a Ab = 0 implies a € J or b € J; therefore J is a prime ideal of A. a

One consequence of Proposition 3.1 is that for a DRé-semigroup A, Proposition
2.4 ca be strengthened in the following way.

Proposition 3.3. For a proper ideal I of a representable DRE-semigroup A, the
following are equivalent:

(a) [ is a minimal prime ideal;

(b) At \ I is an ultrafilter on A*;

() I=Ufa*ag 1)

(d) [Iisprimeand forallzel,zt ¢ 1.

Proof. From Propositions 2.3 and 2.4, all that remains to be shown is that if
I =U{at | a ¢ I}, then I is prime. Suppose z, y € A with z Ay = 0. Then y € =+
and if xr ¢ I, 2+ C I, therefore € [ or y € I, and thus I is prime. a

Definition. For each a € A, define the positive part of a to be at = (a—0)V0 =
a V0 and define the negative part of a to be a= = (0 —a) V0.

The properties of at and a™ are given in the following proposition.

Proposition 3.4. Let A be a representative DRE-semigroup and let a, b € A.
Then

(1) a=at < a20;

(11) a” =0 <= a20;

(iii) at =0 < a<0;

(iv) at Aa™ =0

(v) atva =ax0=at +a";

(vi) at+a” =at;

(vii) (a+b)t <at +bF.
Proof.

(1) a=at <= a=aVvV0 < a>0.

(11) e =0 <= 0-a)V0) <= 0-a<0 < a>0.

(iii) at =0 < aVvV0=0 < a<0.
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(iv) atAa” ={(a=0VO]A[(0-a)VO)
=[(a=0)A(0-a)] VO

=0 since A is a representable DR{-semigroup.

(v) atVva =[(a—0VO0]V[(0-a)V0]
=[(a=0)V(0-a)] VO
=(ax0)VO0
=ax0.

at+a” =(atVva )+ (at AaT)
=(atVvaT)+0
=atVa
=ax0.
(vi) a+a” =a+[(0-a)V0]

[a+(0—a)] V]ae+t0]
= [a+(0—a)]Va
>0Va

=at

and also a + a~ :a+[(0—a)V0] <aVv0=at
therefore a + a~ = a*.
(vii) a<aVv0=a", b<bvO=>b" and thus a4+ b < at + b*.
Therefore (a+b)* = (a+b) V0 < (a* +b¥) V0 =at +bt.
a

Let 0 # @« € A. An ideal I of A is a value of the element a if [ is maximal with
respect to not containing a. The set of all values of a is denoted by val(a). Rachinek
[4] has shown that if I is an ideal of A and a ¢ I then the is a value of a containing
I, and also that every ideal which is the value of some element a € A, is a prime
ideal.

Proposition 3.5. Let A be a representable DREé-semigroup. Then for each 0 #
a € A, val(a) = val(a * 0) = val(a®t) U val(a™) and val(at) N val(a™) = 0.

Proof. Foreach a € A, and each ideal ] of A, a € [ <= a*0 € I, therefore
val(a) = val(a x 0). Let [ € val(at). Then at ¢ I, at Aa~ = 0 and, since [ is a
prime ideal, a= € I, therefore I ¢ val(a™) and val(a*)Nval(a™) = 0.

If I € val(a®) then at ¢ I, a= € I and since a* = a+a~, a ¢ I. Therefore
there is a value I’ of a such that I C I'. If I g I’ then at € I', a= € I and since
at = a+a~, by Lemma?2of [1],a € I’ contradicting that I’ is a value of a. Therefore
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I' = I and val(a®) C val(a). A similar argument shows that val(a™) C val(a) and
therefore val(at) U val(a™) C val(a). To show the reverse inclusion let I € val(a).
Since at = a4 a” and « ¢ I, by Lemma 2 of [1], either a* ¢ [ or «= ¢ [. If
at ¢ I, there is a value ' of a* with I’ D I, and if I' 2 I, then a= € I'; a € I
and thus ¢t = a4+ a~ € I’ contradicting that I € val(a®). Therefore I' = |
and I € val(a*). Similarly if a= ¢ I it can be shown that I € val(a™), and thus

val(a) C val(at) U val(a™), as required. a

An element of a normal autometrized algebra, A is called special if it has a unique
value.

Corvollary 3.6. Each special element of a DR(-semigroup A is positive or negative.

Proof. Ifaisspecial eleinent of A, then by Proposition 3.5, val(a) = val(a*)U
val(a™) and val(at) Nval(a™) = 0, so either val(at) = @ or val(a™) = 0. Therefore
either a¥ = 0 or ¢~ = 0 which implies that either ¢ < 0 or @ > 0 so that every
special element of A is positive or negative. 0

Proposition 3.7. Let A be a representative DR{-semigroup. Then A is totally
ordered if and only if t Ay = 0 implies 2 = 0 or y = 0.

Proof. If A is totally ordered the condition is obviously satisfied. Conversely
suppose A satisfied z Ay =0 impliesz =0ory=0. Foreachz € A, 2zt Az~ =0
and thus 2zt = 0 or 2= = 0 and so either 2 < 0 or £ > 0. Therefore every element
of A is comparable to 0. Let a, b € A, then either a —b < 0 or b —a < 0, for
otherwise a —b > 0 and b—a > 0 implies (a = b) A (b—a) > 0 which contradicts that
(a=0)A(b—a) < 0. Therefore a < b or b < a and thus A is totally ordered. g

Proposition 3.8. Let P # {0} be a polar in A. Then the following are equivalent:
(a) P is totally ordered;
(b) Pt s prime;
(c) P* is a minimal prime;
(d)  P* is a maximal polar;
)

(e

Proof. (a) = (b). If P! is not prime then there exist z, y € At with
0<zAy€e Ptandz, y¢ PL. Then 2 ¢ PL implies there is an a« € P with
z A (a*0) > 0. Similarly there exists b € P with y A (b*0) > 0. Then since P is
totally ordered, 0 # (z A(a*0)) A (yA(b*0)) = (xAy) A ((a*x0)A(bx*0)); but
(ax0)A(bx0) € P and thus z Ay ¢ Pt a contradiction. Therefore P is prime.

(b) = (c). Since Pt is a polar in A, by Corollary 2.5, P+ is the intersection of
the minimal primes not containing P+* = P. Also since P+ is prime, P+ contains
a mininal prite, M say, and then PN M C P Pt = {0} so that M does not

P is a minimal polar.
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contain P. Then M C P+ = (N{minimal primes not containing P} C M. Therefore
Pt = M and Pt is a minimal prime.

(c) = (d). Let Q be a polar in A with Pt C Q. Since Pt is a prime ideal,
by Corollary 3.2, @ is also a prime ideal; since @ is also a polar, by applying the
preceding implication, @ is a minimal prime ideal. Therefore Pt = Q and P is a
maximal polar.

(d) => (e). For polars P and Q, Q C P <= P+ C Q. Therefore if Pt is a
maximal polar, P must be a minimal polar.

(¢) = (a). Let P be a minimal polar and let 2, y € P with e Ay =0. If » >0
then y € 2%, Also 0 # 2 € P implies that {0} # %+ C P and since P is a minimal
polar, 2+t = P and y € «*+. Therefore y € 2t Natt = {0}. Thus for r, y € P,
£ Ay=01unpliesz =0 or y =0 and by Proposition 3.7, P is totally ordered. O
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