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ASYMPTOTIC PROPERTIES OF THIRD-ORDER DIFFERENTIAL 

EQUATIONS WITH DEVIATING ARGUMENT 

JOZEF D2URINA, Kosice 

(Received May 18, 1992) 

Let us consider the third order linear differential equation 

(i) «"'(0 + p(0iv[ff(0] = o. 

Ohriska [8] has recently shown that using the v-transformation of an equation we 
can deduce oscillatory and asymptotic behavior of the solutions of the equations of 
the form 

(2) (r(0(r(0«'(0) ' ) ' + P(0«[ff(0] = 0 

from that of equation (1). 
The aim of this paper is to present a comparison principle which enables us to 

deduce the asymptotic behavior of the solutions of the equation 

(3) (r2(0(ri(0«'(0) ') , + P(0«[s(0] = 0 

from that of equation (2). The desired comparison theorem (cf. Theorem I) per
mits us to transfer some asymptotic properties of equation (1) or equation (2) to 
equation (3). 

It is always assumed that functions p, r i , ro, r and g: [lo,oo) —* (0,oo) are con
tinuous and g(t) —+ oo as t —> oo. We suppose that for / J> to 

(4) g(t) ^ t, 

(5) Ri(t) = / , x -->• oo as t —* oo for i = 1,2; 
Jto r*(8) 

fl ds 
(6) R(t) = -^ oo as t — oo. 

Jt0
 r(s) 
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For covenience of notation we put formally ro(t) = 7*3(l) = 1, t G [lo,cc») and then 

we denote: 

L0(u;r0)(t) = u(t), 

Li(u; r0 , • • •, n)(t) = r z-(0[L t - i (u; r0 , • • •, r i - 1 ) ( / ) ] / for i = 1 , 2 , 3. 

We consider only nontrivial solutions of (3). Such a solution is said to be os

cillatory if the set of its zeros is unbounded and nonoscillatory otherwise. If u(t) 

is a nonoscillatory solution of (3) then according to generalization of a lemma of 

Kiguradze [4, Lemma 3] there is an integer £ £ {0,2} such that 

u(/)L,(u;7O,...,r,)(O>0, Q ^ i ^ t , 

( - l y - ' u W M " ; 7*o, • • •, r t-)(0 > 0, /? + 1 <C i <C 3 

for all sufficiently large t. A function u(t) satisfying (7) is said to be a function of 

degree t. The set of all nonoscillatory solutions of degree t of (3) is denoted by ..A/. 

If we denote by JV the set of all nonoscillatory solutions of (3), then 

^v - L.yQ u.A2-

The condition (7) with t = 0 implies that |L,-(«;r0, • • • ,?-,-)(0l (° ^ l ^ 2 ) a r e 

decreasing and Li(u; r0 , • • •, rz)(l) —• 0 as / —* oo for 1 ^ i: ^ 2. Hartinan and 

Wintner [3] have shown that if in equation (3) g(t) = / then Jf$ ^ 0, therefore we are 

interested in the following extreme situation in which .A'' = «,A0. When this situation 

occurs, following Kiguradze [5], we say that equation (2) enjoys property (A). 

In this paper we have been motivated by the observation that there are very 

few effective criteria for transfering property (A) from equation (2) to equation (3). 

Equation (2) has been the object of intensive investigation in recent years and we 

have many sufficient conditions for equation (2) to have property (A) (see e.g. [8], 

[9])-
We begin by formulating some preparatory results which are needed in the sequel. 

T h e o r e m A. Let (5) hold. Equation (3) has property (A) if and only if so does 

the differential inequality 

(8) | ( r 2 ( / ) ( r i ( l ) i i , ( / ) ) , ) , + D(l)u[g(0]}sgnit[g(l)]^0. 

This theorem is a special case of [7, Corollary 1] and exhibits an important rela

tionship between the differential equation (3) and the differential inequality (8). 
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T h e o r e m B . Let (6) hold. Further assume that 

(9) g E C 1 ([/o,oo)), g(t)^t and g'(t)>0. 

Then equation (2) has property (A) if 

Yiminf R2[g(t)] J p(s)ds>^=. 

For the proof see [1, Theorem 11]. 

T h e o r e m C . Assume that (6) holds. Then equation (2) has a solution u(t) 

satisfying 

(10) lim L2(w,r0,r,r)(l) = a G R - { 0 } 
t—+oo 

if and only if 

/

oo 

R"{g(t))p(t)út 

The proof is found in Kitamura and Kusano [6]. 

< oo. 

L e m m a 1. Suppose that (4), (5) and (6) are satisfied. Let u(t) be a positive 

solution of (3) such that u G ^Vi- Assume that 

/

oo 

R2{g{t))pЏ)àt 0 0 . 

Further assume that there exists a real A > 1 such that 

(12) T7E>X^ for < G^°°) 
r\(t) r(t) 

and 
(13) — is a nonincreasing function. 

r 

Then for all t\ ^ to, a.nd t (^ t\) large enough 

1 fx 1 f00 

7777 / 7 7 7 7 / P(53)w[if(53)] ds 3 ds 2 

(14) ^ ' tx 2 ( 2 ) ^ S 2 

1 f* 1 f°° 
^ 77T / 7777 / 1>(53)w[g(B3)]ds3d.s2. 
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P r o o f . Suppose that ?/(/) is a positive solution of equation (3) satisfying in

equalities (7) with £ = 2 for all / ^ t\ (> /0) . Integrating twice the inequality 

^2(w;r0,?T,r2)(0 > 0 yields u(t) ^ ci1?i(/), where ci is a positive constant. Let 

/2 ^ t\ be chosen so that u[g(t)] ^ Ci1?i[g(/)] for / ^ /2. Then 

/*oo i /»00 

/ —7—: / 7>(s3)w[f/(.S3)]cl.S3cls2 
Jt2 r 2 ( S 2 ) J , 2 

/*oo -I /*oo 

(15) £ C , / - 7 - - - / 7>(*3)/?l[l7(*3)]fl*3<l*2 
7( 2 '-2(*2) 75,, 

^ C 2 / ft|L<7(S3)]R2(*3)7'(*3)(IS3, 

Jt2 

where c2 ^ Ci is a positive constant. Taking (12) and (4) into account we see that 

rti[0(O]fl2(O£ r ^ 7 r d O ^ « 2 M 0 ] , 
Jio r H- s ) 2 

which in view of (11) and (15) implies that 

(16) / ——- / p(s3)v[g(s3)]ds3ds2->oo as / -+oo . 
J to r2(s2) JS2 

Now assume that t\ ^ /0 is a real number. Denote P(t) = f p(s)u[g(s)]ds, t^> t\. 

Integration by parts yields 

jt, '": 

P{S2) ds, = Ңl)R,(t)- Ңtl)R2(tl) 
M^) 

+ / K2(s)p(s)u[g(s)]ds, t^t\. 
Jtx 

From (16) it follows that 

(17) / R2(s)p(s)u[g(s)]d>. 
Jťi 

,s —*• oo as / —• oc. 

Let A > 1 be a real number from (12). Then there exists a Z2 ^ t\ such that 

- ^ { J ' R2(s)P(s)u[g(s)]<\s-P(h)R2(l^ 

^—[— f R7(s)p(s)u[g(s)]<\S ^i'i(t) Jti 

>-ң{[ ҖtMФЫsУď-PЏiWi)}' <>'-" Ј_ 
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where we have used (12) and (13). Combining the last inequalities with the fact that 

P(t)R2(t) ^ P(t)R(t) 

r{(t) r(t) 

we obtain (14) . The proof is complete. • 

Now, we are prepared to compare equation (3) with equation (2). 

T h e o r e m 1. Suppose that (4), (5), (6), (12) and (13) are satisfied. Then equation 

(3) has property (A) if so does equation (2). 

P r o o f . Let u(t) be a nonoscillatory solution of (3). Without loss of generality 

we may assume that u(t) is positive. Suppose that u(t) E -A2, that is u(t) satisfies 

inequalities (7) with C — 2 on [/],oo) . Integrating (3) with the aid of (7) we may 

write 

fx 1 T 1 1 f°° 
u(t) > t / ( / i ) + / — — / — — / p(s3)u[g(s3)]ds3ds2dsu t > t{. 

Jt. r{(s{) Jti r2(s2) JS2 

We have supposed that equation (2) has property (A) and hence equation (2) cannot 

have any solution v(t) such that lim L2(v; r0 , r, r)( /) = a E R — {0}. Therefore by 
t—oo 

Theorem C the relation (11) is satisfied. Then according to Lemma V there exists a 

in ^ t\ such that 

(18) u(t) > H(/,) + í - L . í ^ J— í p(s3)u[g(s3)]ds3d* 
Л, Ф i ) Jtl Ңs2) f , 2 

.S-> CІÄi , / > /•> . 

Let us denote the right hand side of (18) by y(t). Repeated differentiation of y(t) 

shows that L0(g; rQ)(t) > 0, L{(y; r0 , r)(t) > 0, L2(y\ r0 , r, r)(t) > 0 for / ^ t2 and 

( r ( / ) ( r ( / )H / ( / ) ) , ) , +/>( / ) t t [g ( / ) ] = 0, t>t2. 

Since u[g(t)] ^ */[</(/)], for all large /, say / ^ /3 , we obtain 

(r(/)(r(/V(0) /) ,+/^M .7(0]^0, t>t3. 

As y is a function of degree £ — 2, Theorem A ensures that equation (2) cannot enjoy 

property (A) . This is a contradiction, and the proof is complete. D 
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In the next theorem we illustrate an application of the above-mentioned compar

ison principle. 

(19) 

T h e o r e m 2 . Suppose t/iaf (5) and (9) are satisfied. Let 

s{i) R2(s) , f°° , ^ . 1 [яyi) R2(s) f°° 
lim inf / — — - ds / p(s) ds > 
«-~ Л„ П(в) Jt бл/5* 

aлđ 

(20) Rn(t) ( / — — - ds ] be nonincreasinz. 
\Jt0 >'i(s) 

Then equation (3) has property (A). 

P r o o f . Choose A > 1 such that 

fg{t) Ro(s) f°° 
(21) l iminf / -=7-rds / p(s) ds > 

*-°° J<0
 r H * ) Jt 6>/3" 

We consider equation (2) with a function r(t) defined by the relation 

p . , ^ = i ^ . ' > < • • 
r( l) A n ( / ) 

Integrating (22) and extracting the square root of the resulting equality, we arrive 
at 

<23) *"=$(/. 3$ "-j'-00-'-00-
where we have used (5). It is easy to see that 

(24) 4-= m = ^^If *%*,)'*• 
V ' r(0 V2Ar,(.) Vjt„ 'M*) j 
Hence, function r\/r is nonincreasing if and only if (20) holds. From (23) we conclude 

that condition (21) is equivalent to the condition 

л(X> 

HminfЯ 2 fø(0] / p(s)ds 
ť - ~ Jt 

1 
> 

Зл/51 

which is, as we see from Theorem B, a sufficient condition for equation (2) to have 

property (A). Our assertion follows from Theorem 1. The proof is complete. • 
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Corol lary 1. Assume that the hypotheses of Theorem 2 hold except that rela

tion (20) is replaced by one of the following conditions: 

<M 2 ftR^s)A <IM11 , . , 
(25) —r-r / — r ~ T d s ^ 77T~> t^to, 

r2(t)Jto rx(s) rx(t) 
or 

r-> 
(26) --1 is nondecreasing. 

Then equation (3) Das property (A). 

P r o o f . The function R>2(t)(ft r
2

( g y ds) " is nonincreasing if its first deriva

tive is nonpositive, which occurs if (25) holds. Using (26), it is not hard to see 

that 
r R-2(s) ̂  ^ r2(t) / f R2(s) r2(t) [R2(t)}2 , > , 

Is) rx(t) 2 
/ ť M£) fu<!^ííl f fl-(* 

Jto -,(*) N',(í)jtDr2(s| 
which is equivalent to (25). The proof is complete. • 

E x a m p l e . Let us consider the equation 

(**(*V(0)'Y + 4 : ^ 0 = °i ^ !i 6 e (o, i]. 
^ / l 6 

By Corollary 1, this equation has property (A) if a > / V / 6 • Note that we obtain 

for the equation a better result than e.g. Tanaka's criterion [10] provides. 

The technique we have used in the proof of Theorem 2 can be applied to obtain 

sufficient conditions for equation (3) to have property (A) from those which are 

known for equation (2) or even for equation (1). The relation (24) shows how to 

define the function r(t) to obtain equation (2) for comparing with equation (3). 

Now we present another application of Theorem 1. For the special case of equa

tion (3), namely for the equation 

(27) J 7 " ' ( 0 + P ( 0 » ( 0 = 0 

Chantur ia and Kiguradze [2] have obtained the following result. 

T h e o r e m D . Assume that 

f ^ i 2 ^ 

sp(s) ds > - - - -

Г 
lim inf / / 

ť - ~ Jt 
/•oo 

m sup t / sp(s 
ť ^ o o Jt 

lim sup t I sp(s) ds > 2. 
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77ien equation (27) has property (A). 

We extend the above mentioned result to equation (3). 

T h e o r e m 3. Assume that (5) and (20) hold and g(t) = t. Further suppose that 

lllllinf / ; - r ( , S / P(* / 7-T ( ,- r ( , ' s > 
' — \Jt0 r<>(s) J Jt \Jto r2(.r) J (J 

or 

.-00 V.Ao ?'2(«) 7 J< Vfo r~'(-'') / 

77ie/i equation (3) has property (A). 

P r o o f . Choose A > 1 such that 

XУД 
cl.г } cl.s > 

) 7 H 

-cb: ) " (I.S > Л. 

and 

,», v,,nfajf!hH<uy r^ffMi 
.-co VJto ''2(-s) 7 Jf Ufo ?'~'(* 

Let us consider equation (2) with the function ?•(/) given by relation (2 I). According 

to the theory of u-transforination of an equation (see [S]), equation (2) has property 

(A) if and only if so does the equation 

(30) ?/"(/) + r[irl(t)]p[R-\t)]iAI) = il 

whore R~[(t) is the inverse function to R(t). On the other hand, Theorem I) ensures 

that equation (30) has property (A) if 

liminf / / 6r[Ir l ( .s)M/r l ( .s)]d 
ť-°° Jí 

lim sup / / sr[R~[(s)]p[R 
t — C\J J f 

2УД 

•s > — 

- ' ' . s ) ì ( l . s > 2 , 

which are in view of (22) equivalent to (28) and (29), respectively. Hence equa

tion (30) as well as equation (2) have properly (A). By Theorem 1 we see that the 

assertion of Theorem 3 holds true. • 
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The following considerations are intended for extending the previous result to 

equations with deviating arguments. 

T h e o r e m E. Assume that (5) an</ (9) are satisfied. Then equation (3) has prop

erty (A) iFso does the equation 

P [ . ' / - ' ( 0 ] (rM(„VW<OY) + í ^ „ ( 0 = 0 

where the function (j (I) is the inverse to g(t). 

For the proof of Theorem E see e.g. [1] or [7]. From Theorem E and Theorem 3 

we have 

T h e o r e m 4. Assume that (5), (9) and (20) hold. Further suppose that 

r ^ O p,(e\ \ 2 r™ / py(*) 

OГ 

< - ~ Vj<„ »-2(s) j J, Vjío ' 'ai*) 

/ /•»('>/.•,(*). v r , j / ^ ^ ( i 
lun sup / — _ _ d . s / }>(.<?) / —— 

< - ~ Vjío ''2(s) j Ji \Jt0 r2(x 

x I a.s- > — 

Then equation (3) /ias property (A). 

Taking Corollary 1 into account we see that if we replace condition (20) either by 

condition (25) or by (26) then the conclusions of Theorems 3 and A remain valid. 

As a mat ter of fact we are able to prove a more general comparison theorem. In 

the sequel we suppose that functions z and w: [/Q,OO) —* (0,oo) are continuous. 

T h e o r e m 5. Assume that (5), (6), (9), (12) and (13) are satisfied. Further suj>-

pose that 

v(t)>y(t), fZh, 

/

CO /-CO 

: ( s ) ' l 0 l P(s )ds , l>t0. 
If equation (2) has property (A), then so iloes the equation 

(31) ( ' • 2 ( 0 ( n ( 0 « ' ( 0 ) ' ) ' + : ( 0 « [ " ' ( 0 ] = o. 

P r o o f . From Theorem 1 we have that equation (3) has property (A). On the 

other hand by Theorem A in [1] we see that the equation 

(32) ( r 2 ( 0 ( n ( 0 « ' ( 0 ) ' ) ' + ~iO»[.'/(0] = 0 
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has property (A) . Applying Theorem 1 in [7] to equations (32) and (31) we get that 

equation (31) has property (A) . The proof is complete. • 
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