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SOME PROPERTIES OF a-IDEALS AND GENERALIZED a-IDEALS, 

7,-SEMIGROUPS AND 77-GROUPS 

ANTONI CHRONOWSKT, Cracow 

(Received February l l , 1992) 

The authors of the papers [1], [3] and [7] considered some basic properties of a-

ideals and generalized a-ideals in semigroups. In this paper we deal with some further 

properties of these notions and their connection with the theory of 71-seinigroups and 

77-groups. 

Let 5 be a semigroup. The family P(S) of all non-empty subsets of S is a semi

group under complex product. Put P°(S) = P(S) U {0}. Let X be a non-empty 

set. The symbol A'* denotes the free semigroup over the alphabet A'. The number 

of terms of a word a G A'* is called the length of the word a and denoted by / ( a ) . 

Suppose that F = {0, l }* \ {1}*. Let a £ F be a word of the form a = a i a 2 . . . a,,. 

We define a mapping f% : P(S) —± P(S) by the formula 

f*(X) = XlX2...Xn 

for every Л' Є P(S), where 

Л',- = 
•{'. 

for aг-

for ftj 

= 1, 

= 0 

and i = 1, 2, . . ., 77. 

If we do not introduce additional assumptions, we will denote by a any word from 

F such that l(a) = n. We will write fa instead of f^ when no confusion can arise. 

Unless otherwise stated we assume that S denotes a semigroup. 

D e f i n i t i o n 1 (cf. [3]). A non-empty subset A of a semigroup S is said to be a 

generalized a-ideal of S if fa(A) C A. 

A generalized a-ideal of S is called an a-ideal of S if A is a subsemigroup of ,5'. 
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The symbol Ig«(S) [/«('S')] denotes the family of all generalized o-ideals fa-

ideals, respectively] of the semigroup S. Put Il]gQ{S) = /</«(£) U {0} and I°(S) = 

/«(-?) U{0}. 

Proposition 1. If At e I°g(,(S) for t G 7\ t/ien 

r | M t : « € r ) e / 0 i / a ( S ) . 

Definition 2. Let N he a non-empty subset of a semigroup ,S\ The generalized 
o-ideal 

(A'),, = f l ( A e / < / a ( 5 ) : A 'CA) 

is called the generalized a-ideal generated by A' in the semigroup ,S\ 

From Theorem 1.7 (cT. [3]) we get 

Corollary 1. Let X he a non-empty subset of a semigroup S. Then 

( A % = A ' U / a ( A ' ) . 

Let us define a mapping C\k: P°(S) —•» F)0(S) by the formula 

n . , .v , = (('V)" r"-Y'"' 
{ 0 for A' = 0. 

The mapping (7ft is a closure operator on 5. Therefore, wo have 

Proposition 2. Tiie sot /°;/„(.S') i.s a complete lattice, an</ /or an ar/>i(rary /'aiiii/y 

(A, G l°ya(S): I G T) the foi/oivin^ con</i(ioiis iio/</: 

(i) A(^<: t G T) = fl(-4<: ' G I')-

(ii) V M « ^ € r ) = oa(UM<:<GT'))-

Proposition 3. Asstinie (/tat A< G !"(.S') /or / G T. T/icn 

OV'eT jeO.s ' ) . 

Definition 3. Let A' be a non-empty subset of a semigroup ,S\ The a-ideal 

(X)a =f](Ae US): X CA) 

is called the a-ideal generated by A' in the semigroup ,S\ 
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From Theorem 3 (cf. [1]) we get 

Corollary 2. Let X be a non-empty subset of a, semigroup S. Then 

(X)Q = X U X2 U . . . U Ar'(a>-1 U fQ(X). 

Let us define a mapping EQ: P°(S) —•> P°(S) by the formula 

\ 0 forA' = 0. 

The mapping Ea is a closure operator on S. Therefore, we have 

Proposi t ion 4. The set la(S) is a complete lattice, and for an arbitrary family 
(At £ Ia(S): I £ T) the following conditions hold: 

(i) /\(At:teT) = [)(At:t€T), 

(ii) V (^. : t€T) = £a(U(^.:<e:r))-

Proposi t ion 5. IfX,Y E P°(S), then 

(i) 6 a ( A ' ) u 6 * a ( V ' ) c 6 a ( A ' u y ) , 
(ii) 6„(A' n Y) C Ga(X) n Ga(Y), 
(iii) Ea(A')UEQ(V)CEa(A'Uy), 
(iv) Ea(Any)cEa(A')nEa(y). 

The proof is straightforward. 

Corollary 3. If A, B e I°gQ(S), then 
(i) GQ(A)UGQ(B)CGQ(AUB), 
(ii) GQ(AnB) = GQ(A)DGQ(B). 

Corollary 4. IfAJJe IQ(S), then 
([) EQ(A)UEQ(B)CEQ(AUB), 
(ii) Ea(A r\B) = EQ(A) n EQ(B). 

In general, the inclusions in Proposition 5 and Corollaries 3 and 4 cannot be 
replaced by equalities. Let us consider suitable examples. 

Let (N, •) be the semigroup of the natural numbers under multiplication. We take 
a = 110, X = {2}, Y = {3}. Therefore, we have C7a(K) = {2}U/ a(2) = {2}U{4} • 
N = {2,4,8,12,16,. . .}, GQ(Y) = {3} U/ a (3 ) - {3} U {9} • N = {3,9,18,27,. . .}. 
Notice that GQ(X) = EQ(X) and GQ(Y) = EQ(Y). Put A = GQ(X) and B = 

41 



Ga(Y). Thus, Ga(AuB) = ( A U B ) u [ ( A U B ) - ( / l U B ) N ] . Notice that 6 G Ga(AuB), 

but 6 ^ Ga(A) UGa(B). Similarly for the operator Ea. 

For the intersection we get Ga(X ClY) = Ga($) = 0. On the other hand, Ga(X)C\ 

Ga(Y) / 0, because for example 36 G G a (A r )nG ,
a (V) . Similarly for the operator EQ. 

Notice that / l , H £ I«(N), but A U B (£ Ia(N). 

In general, the lattices I°ga(S) and /£(.$') are not distributive. 

Indeed, assume that, a, A and B have the same meaning as in the above example. 

Consider C = Ga(6) = {6}U{36}-N = {6 ,36 ,72 , . . . } . Of course A, B, C G I°ga(N). 

We have 
(A V/3) A C = (,4 V B)HC, 

(A A C) V (B A C) = (Ar\ C) v (B n C) . 

It is easy to check that 6 G (A V B) A C but 6 g (A A C) V (B A C) . Since A, B, C G 

I^(N), the same reasoning applies to the lattice /C°>(N). 

P r o p o s i t i o n 6. If X G F(.$'), then fa(X) G Ia(S). 

P r o o f . By Lemma 1.4 (cf. [3]) we have fa(X)fa(X) C / « ( K ) , hence fa(A) 

is a subseinigroup of .$'. Applying Lemma 1.5 (cf. [3]) we obtain fa(fa(X)) C 

fa(X U fa(X)) C fa(X), and so fa(A) G /«(.$). • 

P r o p o s i t i o n 7. If A G P(.$') and 1(a) = n, then 

Vm>n:Xm C fa(X). 

P r o o f . Since fa(X) = X\ . . . A'ri and A" C A", for i = \, . . ., 7J, it follows that 

Xn C fa(X). By Lemma 1.3 (cf. [3]) we have A n + 1 C Xfa(X) C fa(X). Thus, 

Xm C / « ( A ) for m *^7i. • 

P r o p o s i t i o n 8. If A' G P(.$') and 1(a) = n, then 

Vm> 1: Ea(X
m)C Ea(X). 

P r o o f . We know that Ea(X) = X U A 2 U . . . U A n _ 1 U fa(X). Observe that 

according to Proposition 7, A'm for m J> 1 is any one of the sets A ' , . . . , ^ ' " " 1 o r 

Xm C fa(X). Thus A m C Ea(X), and so Ea(X
m) C Ea(X). • 

P r o p o s i t i o n 9 (cf. [7]). Let (p: S —• S' be an epimorphism of a semigroup S onto 

a semigroup S'. If A G Iga(S) [A G Ia(S)], then <p(A) G Iga(S') [<p{A) G Ia(S'), 

respectively]. 
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Let p: S —• S' be an epiinorphism of a semigroup S onto a semigroup S'. If 

N',V' G F°(.S"), then 

(1) ^(X')p-l(Y')Cp-{(X'Yf). 

In general, the above inclusion cannot be replaced by equality. For example, it is 

enough to take the null semigroup S such that card(S) > 1, and for S' to take the 

one-element semigroup 5 ' . 

P r o p o s i t i o n 10. Let p: S —* S' be an epimorphism of semigroups S and S'. If 

A' G Iga{S') [A' G Ia{S% then p-x(A') G Iga{S) [p~\A') G Ia{S), respectively]. 

P r o o f . It is enough to prove that / J ( y ? " 1 ^ ' ) ) C p~l(A'). By the defi

nition we have f^'(A') = A\ . . . A'n C A1. Applying (1) we get f2{<p-l{A')) = 

P~\A\). ..<p'\A'n) C <p-*{A\ • • .A'n) = <p-l(f*'{A')) C p-'(A'). D 

By Propositions 9 and 10 we obtain 

Corol lary 5. Let a be a congruence on a semigroup S. A subset A' C S/c is a 

generalized a-ideal [a-ideal] if and only if there exists a generalized a-ideal [a-ideal, 

respectively] A C S such that A' = {a/a: a G A). 

T h e o r e m 1. Let us suppose that a = a i . . . a n and there exists an 1 ^ i <^ n 

such that a; = 1. Let A be an a-ideal in a semigroup P. Let P be an a-ideal in a 

semigroup S. If A A = A, then A is an a-ideal in the semigroup S. 

P r o o f . We shall distinguish the following four cases: 

(1) f*(A) = AA2... An^S = An~\AA2. ..An.xS) = An~lf^(A) C 

An-lfS(P)CAn-ipcf!?(A)cA; 

(2) fi(A) = SA2 ...An.xA = (SA2 . ..An^A)A"~l = fs(A)An~x C 

fZ(P)An~l C PAn~' C f£(A) C A; 

(3) fs
a(A) = AA2 . ..Ak_lSAk+l . ..An.xA = Ak~\AA2 . ..A^SA^x ... 

An-.xA)An-k = Ak-lf*(A)A"-k C Ak-^fs(P)An-k c Ak-lPAn~k C 

f£(A) C A; 

(4) fi(A) = SA2 . ..Ak.xAAk+1 . ..An-XS = (SA2. ..Ak.lA
n-k+l)An~2 • 

(AkAk+1...An.1S) C f*(A)An-2fS(A) C f'(P)An~2f!(P) C 

PAn~2Pcf£(A)cA. 

The proof is complete. • 

The assumptions of Theorem 1 that (i) AA = A and (ii) there exists an i, 1 ^ 

i ^ 7j such that »; = 1 cannot be omitted. To this end, consider the semigroup 

S = {a, b, c, 0} under multiplication such that the product of two elements is equal 0, 

43 



except for the case ab = c. To check that the assumption (i) is essential, it is enough 

to take S = { a , 6 , c , 0 } , P = {6,c ,0}, A = {6,0}. Notice that A is a left ideal in P 

and P is a left ideal in S\ but A is not a left ideal in S. 

For the assumption (ii), it is enough to take S = {a,6,c , 0}, P = {c,0}, A = {0}. 

Put a = 00. Therefore AA = A, PP C A, SS C P, and SS (JL A. Thus, A is an 

a-ideal in P and P is an a-ideal in S, but A is not an a-ideal in S. In addition, 

observe that A = {0} is not an a-ideal of the semigroup S with zero. 

Now we will investigate some relationships between the generalized a-ideals and 

a-ideals in semigroups, and the theory of 7i-semigroups and 7i-groups (cf. [4], [5], 

[6]). For simplicity of notation, it will be convenient to abbreviate xi,... ,x^ as xf 

for / <C k. If / > k, then x\ is an empty symbol. If x\ = x2 = . .. = Xk = x, then we 

write xk. 

Let S be a semigroup . Define a mapping g: Sn —* S (n >̂ 2) by 

(1) g(xx,x2, . . .,xn) = x\x2 . . .xn 

for all x\,x2).. .,xn G S. 

The algebraic structure (S, g) is an ?i-semigroup. 

Assume that A G Iga(S) and 1(a) ^ 2. Notice that (A,g) with g given by (1) is 

an n-semigroup. 

Since every a-ideal A £ Ia(S) with 1(a) = n ^ 2 is an 7i-semigroup (A,g) and 

a subsemigroup of S, our further considerations will imply some consequences for 

a-ideals. 

T h e o r e m 2. Let A he a subsemigroup of a semigroup S. The n-semigroup (A, y) 

is an n-group if and only if A is a subgroup of the semigroup S. 

P r o o f . If A is a subgroup of the semigroup S, then the proof is immediate. Let 

(A,g) be an n-group. Let p G A be a fixed element. Therefore, the grupoid (A.o) 

endowed with the operation 

x o y — xpn~~y for x, y G A, 

is a group (cf. [6]). Put q = pn~2. Hence x o y = xqy for x,y G A. Let us take 

h(y) = qy for y G A. Notice that h is an injection. Indeed, if h(y\) = h(y2) for 

yi , t/2 G A, then x o y\ — x(qy\) = x(qy2) — x o y2 for any fixed x G A. Hence 

V\ — 2/2 - Since qoy — q(qy) = h(h(y)), it follows that h is a bijection. Since 

x oy — xh(y) for x,y G A, the semigroup A and the group (A,o) are isotopic, and 

so they are isomorphic (cf. [2]). • 
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D e f i n i t i o n 4. Let (5 , / ) be an 71-semigroup. An element a £ S is said to be a k-

divisor of an element 6 £ S if there exist elements x.\,..., Xk-\, -rjt+i, • • •, xn £ S such 

that f(x\~l, a, . r n
+ 1 ) = &• An element a £ 5 is called a k-divisor in the 7i-semigroup 

(5 , / ) if a is a k-di visor for every 6 £ S. 

P r o p o s i t i o n 1 1 . An element a £ S is a k-di visor in the n-semigroup (S, / ) if and 

on!yiff(Sk-l,a,Sn-k) = S. 

Def in i t i on 5. An element a £ S is said to be a divisor of an element b £ S in 

the 7j-semigroup (S, / ) if a is a k-divisor of 6 for each k = 1 , . . . , n. An element a £ S 

is called a divisor in the 7?.-semigroup (5 , / ) if a is a divisor in the 7i-semigroup (S, f) 

for every element b £ 5 . 

P r o p o s i t i o n 12 . An element a £ S is a divisor in the n-semigroup (S,f) if and 

only if f(Sk~l, a, Sn~k) = S for each k=\,...,n. 

P r o p o s i t i o n 13 . An element a £ 5 is a divisor in the n-semigroup (S,f) if and 

only if a is simultaneously the l-divisor and the n-divisor. 

P r o o f . Since / ( a , S n _ 1 ) = S, we have f(Sn) = S. Therefore, we ob

tain 5 = f(Sn) = f(Sk-\f(a,Sn-l),Sn-k) = f(Sk-1,a,f(Sn),Sn-k~l) = 

f(Sk-[,a,Sn~k). • 

Let us denote by D(S) the set of all divisors in the /z-seinigroup (S, / ) . 

T h e o r e m 3 . Let ( 5 , / ) be an n-semigroup. If D(S) 7- 0, then D(S) is an n-

subgroup of the n-semigroup (S, / ) . 

P r o o f . Assume that a{,...,an £ D(S). Then f(f(a{,..., an), S71"1) = 

/ ( a 1 , . . . , a n _ 1 , / ( a n , 5 n " 1 ) ) = f(ax,. . ., an_x, S) = f(au...,an_uf(S
n)) = 

/ ( « l , . . . , « n - 2 1 / ( « n - l , 5 n - 1 ) , S ) = / ( « ! , . . . , « n - 2 , S , 5 ) = . . . = / ( a ^ S " " 1 ) = S . 

Similarly, / ( S n " \ f(ax, . . ., anj) = 5 . Therefore, f(a{, .. ., an) £ D(S). Assume 

that a i , . . .,afc_i,ajfe + i, . . . , a n + i £ D(S) for a fixed k = l,...,n. We will prove 

that / ( « t " \ S , a n
+ 1 ) = 5 . Indeed, f(ak~\ S, a n

+ 1 ) = / ( a f " \ f(Sn), a n
+ 1 ) = 

/ ( a 1 - 2 , / ( a ^ l l S ' > - 1 ) 1 S l a £ + I ) = / ( a f - 2 , * ^ - ) = . . . = / ( S * " \ S, a n
+ 1 ) = 

/ ( S * - \ / ( S n ) , a n
+ 1 ) = / ( S f c - \ S , / ( S n - \ a , + 1 ) , a n

+ 2 ) = / ( S * , S , a n
+ 2 ) = . . . = 

f(Sn~], a n ) = 5 . Consequently, the equation f(ak~l, x, a n
+ 1 ) = a n + 1 has a solution 

for each k = \,. . ., n. Therefore, D(S) is an 7i-subgroup of the 71-semigroup (S, / ) . 

• 

P r o p o s i t i o n 14. Let S be a semigroup. Let A C S be a subsemigroup of S such 

that AA = A. If D(A) 7- 0, then D(A) is a subgroup of the semigroup A. 
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P r o o f . Assume that a,b G D(A). Thus, (ab)An~l = a(bAn~l) = aA = 

aAn~l — A. Similarly, An~{(ab) — A. Hence D(A) is a subsernigroup of the 

semigroup A. By Theorem 3, D(A) is an 7?-subgroup of the 7i-semigroup (A,g). 

Theorem 2 implies that D(A) is a subgroup of the semigroup A. • 
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