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1 . INTRODUCTION 

Consider the neutral delay differential equations 

d n 

(1.1) -^[X(t) + Px(t - To)] + ^Pi(t)x(t ~Ti)=0 
1 = 1 

and 

i n 

(1.2) ~[x(t) + px(t - T0)} + Q(t) ( £ aiX(t - T i)) = 0, 
1 = 1 

where 
(Hi) pi e C([0,oo), R+) , pi(t) are periodic functions with common period T and 

T0 < min{Ti, i = l , 2 , . . . , n } ; 
(H2) Q e C([0, oo), LR+), Q is T-periodic and p, a{ e R; 
(H3) Ti G R+ and there exists integers nt- such that T» = riiT. 

In this paper we obtain the following necessary and sufficient conditions for oscil
lation of all solutions of (1.1) and (1.2). 

Theorem 1. Suppose that 

1 fT 
Pi=ZT ^ ( 5 ) d 5 ' * = l , 2 , . . . , n . 

If (Hi), (H3) hold and p G R + then the following conditions are equivalent: 
(a) Every solution of (1.1) oscillates. 
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(b) Every solution of the neutral equation with constant coefficients 

i n 

(1.3) ~[x(t) +px(t - To)] + J^PiX(t - Ti) = 0 
t = l 

oscillates. 

Theorem 2. Suppose that 

P== I Q(s)ds. -UQ(,h 

If (H2) and (H3) hold then the following conditions are equivalent: 

(c) Every solution of (1.2) oscillates. 

(d) Every solution of the neutral equation with constant coefficients 

i n 

(1.4) —{x(t) +px(t - TO)] + 1^TPaix(t - n) = 0 
1 = 1 

oscillates. 

Theorem 3. Suppose that 

Øt= / Q(«s)d«s, i = 0,1,2, . . . , n . 
Jo 

If (H2) and (H3) hoid then the following conditions are equivalent: 
(e) Every solution of (1.2) oscillates. 
(f) Every solution of the neutral equation with constant coefficients 

d n 

(1.5) —[x(0 +I*r(* - r0)] + ^Oix(t - a{) = 0 dtl 

oscillâtes. 

By a solution of (1.1) (or (1.2)) on [0,00), we mean a continuous real valued 
function x defined on the interval [—0,00), where o = max{r{, i = 0 ,1 ,2 , . . . , n} and 
(x(t) +px(t — To)) is differentiable in [0,00) and satisfies (1.1) (or (1.2)). As usual, 
a solution of (1.1) or (1.2) is said to be oscillatory if it has arbitrary large zeros, and 
nonoscillatory otherwise. 

Applications of neutral equations occur in electrical networks containing lossless 
transmission lines. Such lines arise in high speed computers where the lossless trans
mission lines are used to interconnect switching circuits (see [1] and [6]). 
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2. P R O O F OF THEOREM 1 

Without any loss of generality, assume that Ti-\ < n, i = 1,2,..., n . For the proof 
of "(a) implies (b)", assume to the contrary that y(t) is a nonoscillatory solution of 
(1.3). From a result due to Kulenovic, Ladas and Meimaridou [7], it follows that the 
characteristic equation 

n 

(2.1) F(X) = -A( l +peA r°) + Y,pieXTi = ° 
z = l 

has a real root, say Ao- For each A E R define 

n 

(2.2) fx(t) = ( £ > ( t ) e ^ ) / ( l + p e ^ ° ) . 
i = l 

For k = 0,1,2 . . . , n, we have 

~ l + peAr° V ^ 6 V ' 
t=i 

Using (2.1) and (2.3) with A = Ao we obtain 

(2.4) f fXo(s)ds = \0Tk, fc = 0 , l , 2 , . . . , n . 
Jt-rk 

Set 

x(0 =exp(- fx0(s)ds). 

By (2.4) we have 

d n 

— [*(*) + px(t - ro)] + £# (* ) -* (* - Ti) 
(2.5) t = 1 

= ( - A o W -PAo(* - ^o)eAoTo + f > ( * ) e A o r < ) exp ( - j [ ' Ao (*) ds ) . 

Clearly, if /A 0(^) is a T-periodic function then /AO(-0 = /A 0 (* ~ ro)- Using (2.2) in 
(2.5) for A = Ao we see that x(t) is a nonoscillatory solution of (1.1), a contradiction 
to our assumption. Hence "(a) implies (b)" has been proved. 
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Now we prove that (b) implies (a). If possible, suppose that y(t) is a nonoscillatory 
solution of (1.1). Without any loss of generality, assume that y(t) > 0 for t ^ to- To 
complete the proof of this theorem we have to obtain a contradiction. Whenever we 
write an inequality, we mean that it holds for large t. 

It is known from [7], that all solutions of (1.3) are oscillatory if and only if the 
characteristic equation F(X) = 0 has no real roots. Since F(0) > 0, we have the 
following lemmas. 

L e m m a 1. There exists a positive number mo such that 

n 

-p(l + pe^T°) + J2 Pi^Ti > rn0 for / iGR. 
i=i 

L e m m a 2. If y(t) is a solution of (1.1) then x(t) = y(t) + py(t — To) is also a 
solution of (1.1). 

Their p r o o f s are very straightforward and hence are omitted. Now set 

x(t) =y(t) +py(t-T0), 

z(t) = x(t) +px(t - T0), 

zi(t) = z(t) +pz(t- To) 

and 

Zm(t) = Zm-l(t) +pZm-l(t-T0), 771 = 2 , 3 , . . . 

It follows from Lemma 2 that x(t), z(t) and zm(£), m = 1,2... are solutions of 
n 

(1.1). Clearly, x'(t) = — J2 Pi(t)y(t — Ti) implies that x'(t) < 0 eventually. Similarly, 
i= i 

z'(t) < 0, zm(t) < 0, m = 1,2,... eventually. Let 

Am = {A > 0 | zf
m(t) + fx(t)zm(t) ^ 0 for large t}. 

Now we prove the following two lemmas for Am. 

L e m m a 3. Am 7-- 0 for each m G I+, I+ = {1,2, . . .} . 

P r o o f . First we prove that Ai 7-= 0. Since z'(t) < 0 eventually, we have 

Z\(t) Zi(t-Ti+To) Zi(t) 
(2.6) 

Z(t-Ti) Z(t-Ti) Zi(t-Ti+T0) 

z(t -n + т0) + pz(t - Ti) Zi(t) 

Z(t-Ti) Zi(t-Ti+T0) 

Zi(t) 

<(1+PҺi(t-тi + т0 
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Let n ~ To = C-iF, where ai e I+. Prom (2.6) we have 

(2.7) - ^ < ( i + p ) . - * ( _ ) . . 
_ j ( . - T i ) ^ v " « i ( . - a . T ) ' 

From (2.7) we have 

(2.8) £_£_.< z ( t _ T . ) . 
1 + P 

Using (2.8) and the fact that z(t) is a solution of (1.1) we have 

1 n n 

(2.9) *[(*) + ^Pi(t))Zl(t) < zi(4) + _>>(*)*(* " *0 = 0. 
^ t = i i = i 

Consequently, from (2.9) we obtain 

(2-10) j ^ < " ( ! > < ' ) ) A 1 + - > ) • 

Now using (2.10) we have 

f___-2_exp(_r mis\ 
«l(*) V ./t-a.T *l(*) / 

*MiT5/l,.j |>(8))d»} 

—{^(_f £„,(£«<•))*•)} 

—{_£(£'.}• 
From (2.7) and (2.11) we have 

Hence 

(2-13) £ й ( t ) _ < « Z _ . > Ê л W ^ . 
*-W «_i 
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where 

Consider the functions 

*-ú-Mт£,Фn)l 
9 i { 0 ) = l + p e " » ' *' = 1 » 2 - - - ^ -

Clearly, g[(d) > 0 and gi(0) -> oo monotonically as 6 -> oo. Since ^(0) = 1/(1 + p) 

and Ki > 1/(1 + p), there exists a constant pi > 0 such that gi(pi) = Ki, i = 

1,2, ...,n. Let /i = min{LJi,,„2, • • • ,/^n}- Then p > 0 and g;(/Li) ^ gi(/i). Conse

quently, from (2.13) we have 

E P ^ - T T T T - ^ _> ( t )*< = EP*W»'(W) ^ EP-WS-W-
i = i * i W i = i i = i i = i 

that is, 
n n 

Y^Pi(t)z(t - Ti) ^ (^Pi(%i(M))zi(t) = /M(t)Zi(t). 
1 = 1 1 = 1 

Hence by the above inequality we have 

n 

*i(0 + //*(*)*-(*) < *i w + X>w*(* - rO = o. 
1 = 1 

This implies that p G Ai. To show that An is nonempty we adopt exactly the same 

procedure where zn-i(t) serves the purpose of z(t). Hence the proof of this lemma 

is completed. • 

L e m m a 4. There exists a positive real number A* such that A* is the upper bound 

of Am for all m € I+. 

P r o o f . Clearly, for k = 1,2,... , n, 

/ 2 1 4 \ zm-x(t-Tk) < Zm_i(£-T fc) 

*mW ^ p 2 m _ i ( t - T 0 ) 

and 

l n 

(2-15) ,. ^ , T , (_3f t ( t ) -Vn- 2 ( t -T < ) ) 
1 = 1 

^m-2(^-TA:) 

= p*rø 

2 m _ i ( Ѓ - T f c + T 0 ) 

Zш-2(t~Tk)  

zш-2(t-тk + тo) + pzш-2(t - Tk) 

Pk(t) 

l+P 
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Since pi(t) > 0, i = 1,2,..., n are periodic functions, there exists a constant /3 > 0 
such that pi(t) > ft for all t E [0, oo) and alH = 1,2,... ,n. Now using (2.15) and 
the fact that Zm-2(t) is a solution of (1.1) we have 

6 n 

(2.16) 2 m - i W + Y T - * — i (* - fa ~ T°)) < 4 - i W + $>i(*)*m-2(* - n) = 0. 
i= i 

Applying a lemma of Ladas, Sficas and Stavroulakis [10] to (2.16) we have 

(2.17) zm-i(t)> ( ^ ^ ^ ^ r n - i ^ - f a - r o ) ) , fc = l , 2 , . . . , n . 

Replacing t by t — To in (2.17) and using the resulting inequality along with the fact 
that Zm(t) ^ pzm-i(t — To) we obtain 

(2.18) Z'm(t) + { _TPi(t) , l ( 1 + P ) L U m W S* *m(t) + ^ W Z m - l ^ " Ti) = 0. 

Since gi(0) -» 0 as 6 -» —oo, there exists a real number /i; such that 

4 (1+p) 2 

9iifli) = P(P(n-ro)r
 i = 1 ' 2 - - » -

Take A* = max{/ii , / /2 , . . . , jwn}. Since g'{(t) > 0, we have gt(A*) ^ 9i(Hi), i = 
1,2,.. . , n. Hence from (2.18) we have 

n 

(2.19) zm(*) + h-(t)zm(t) = z'm(t) + (_]pi(t)9i(\*))zm(t) 
1=1 

n 

>4.W +(£-*(%.(/*.))*»(*) 
i= l 

= ̂ W + (E«W^~^)-v-W>o . 

Hence A* is the upper bound of Am, because if A* < A G Am then 

n n 

A-(0 = EP'W9'(A') < 5>(')i*(*) = AW-
i= l i= l 

Consequently, 

4 W + fx*(t)Zm(t) ^ Z'm{t) + fx(t)zm(t) = 0, 

a contradiction to (2.19). This completes the proof of this lemma. D 
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Now we proceed to find our final contradiction. Set A = (JA; C R and 7 = 
ra/(l + peT°A*). By Lemma 4, the set A is bounded. Hence it possesses a finite 
supremum A*. Let A G A be such that A* - 7/2 < A < A*. Then there exists an 
integer m such that A G Am. Set 

(2.20) <px(t) = zm(t)exp(J fx(s)ds\ 

Clearly, ipx(t) ^ 0 eventually and 

(2.21) zm+1(t) + h+iWzm+^t) 

= {zm(t)+pZm(t - T0))' + h+l(t)(Zm(t) + pzm(t - T0)) 
n 

= - (5ZP.(*)*m(*-T.)) +h+y(t)(Zm(t)+pZm(t-T0)) 
t = l 

= -(i£ll>i(t)<P\(t-ri))exp(-J ' fx(s)ds) 

+ fx+y (t) J ifx (t) exp(-Jfx(s)ds) 

+ pipx(t - To) exp I- fx(s)dsj\ 

^<px(t-T0)exp(- fx(s)dsj 

x j ~ ZX^ e x p ( / L>(s)ds) 

+ fx+7(t)ll + pexp(J fx(s)ds 

Now using (2.3) in (2.21) we obtain 

(2.22) z'm+l(t) + fx+1(t)zm+l(t) 

(l+peNro)-l \ 1+pe^o + / A + ^ / ' 

where 

lfx(t-T0)exp(-J^fx(s) ds) < E Pi{t)eNTi 

1-f peЛ т° 1 - ^ г Є J 
ѓ = l 
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Lemma 1 implies 

1 + peAr° I r_^ J 1 + peAr° 1 + peA T» 

Hence 

(2.23) jN(t)>Jx+1(t). 

By using (2.23) in (2.22) we obtain 

4+iW + A + 7 ( ^ + i ( ^ f i -

This implies A + 7 G Am+i. Consequently, A + 7 G A. But 

A + 7 > A* + ̂  > A*, 

a contradiction to our assumption. Hence the proof is completed. 

3. PROOF OF THEOREMS 2 AND 3 

Suppose that every solution of (1.2) oscillates. If possible, suppose that y(t) is a 
nonoscillatory solution of (1.4). Set 

(3.1) S{t)={IoQ{9)de)/{ffo Q{e)d°) 
= -p(f QWde) and «(«) = »(«(*))• 

Clearly, s(t) —> 00 as t -> 00 and s(t) is increasing on [0,oo). Since Q is T-periodic 
we have 
(3.2) t 

f Q(6)d9= f ' Q(9)d6 = Ti(^ I* Q(6)de)=TiP, i = 0,1,2,.. .,n. 

Further, by using (3.2) we have 

(3.3) U(t-Ti)=y(±^ T'Q(0)d9) 

= yV'P~l Q(e)d9)=y(s-Ti)' i = 0,1,2,...,n. 
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From (3.2) and the fact that ^f = Q(t)/P we have 

—[«(*) + pu(t - TO)] + Q(t) ( J2 <*•«(* - r*)) 
1 = 1 

= -~;[l/(s) +Pl/(* - T O ) ] - | + Q(*)(5Za.y(a - *.)) 
i = l 

= p { - d s y ( s ) + r a ( s - T O ) ] + P( J2aiV(s ~ n))}Q(t) = o. 
x = l 

Hence u(£) is a nonoscillatory solution of (1.2), a contradiction to our assumption. 
Thus "(c) implies (d)" has been proved. 

The proof of "(d) implies (c)" can be easily done by using this variable transfor
mation in the reverse way. 

This completes the proof of Theorem 2. 
Now suppose that (e) holds. If possible, suppose that y(t) is a nonoscillatory 

solution of (1.5). Set 

s= [ Q(6)d6. 
Jo 

Proceeding along the lines of Theorem 2, it can be shown that u(t) = y(f0 Q(0) d6) 
is a nonoscillatory solution of (1.2), a contradiction to our assumption. Hence "(e) 
implies (f)" holds. The proof of "(f) implies (e)" can be done by using this transfor
mation in the reverse way. 

R e m a r k , (i) Theorem 2 and Theorem 3 generalize Theorem 1 due to Philos 
[11] and Theorem 1 due to Ladas Philos and Sficas [8], respectively. 

(ii) We may see that the condition 

r0 < min{T;, i = 1,2,3,. ..,n} 

assumed in Theorem 1 is only useful to show that (b) implies (a). 
(iii) When n = 1, it is not necessary to assume the above condition explicitly 

because the same follows from the assumption that the characteristic equation 

F(X) = -A(l + peAro) + F!eAri = 0 

has no real roots and this holds if and only if all solutions of (1.3) are oscillatory. 
Indeed, To ^ T\ implies that F(\) < 0 for large value of A. Further, F(0) > 0 implies 
that F(\) = 0 has a real root. 

(iv) When p = 0, Theorem 1 reduces to the main result due to Philos [12]. If p < 0 
the problem remains open. 
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A c k n o w l e d g e m e n t . Thanks are extended to the referee for suggesting sev
eral modifications. 
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