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#-CLASSES IN THE DIRECT PRODUCT OF TWO SEMIGROUPS

IMRICH FABRICI, Bratislava

(Received July 21, 1992)

In [3] the mutual relation between a principal two-sided ideal J(a,b) in the direct
product of two semigroups and the direct product of two principal two-sided ideals
J(a) x J(b) is investigated. In particular, some conditions are given under which
J(a,b) = J(a) x J(b) holds.

The aim of the present paper is to study the mutual relation between a _#-class
J(a,p) in S1 X Sz and the direct prdduct Ja x Jy of two _#-classes both in the general
case and in the special case of maximal _#-classes. Finally, we give conditions under
which J(a,b) = Jo X Jp.

All notions and notations which are not defined are meant as in [1].

Theorem 1. Let J, be a #-classin Sy, J, a #-class in Sz, J(ap) a #-class in
Sl X 52. Then

L. Jiap) € Ja X Jp;

2. if Jiapy C Ja X J, then J X Jy is the union of at least two £ -classes in Sy x Ss.

Proof. 1. Let (u,v) € J,4), then J(u,v) = J(a,b). If (u,v) = (a,b), then
J(u) = J(a) in Sy and J(v) = J(b) in Sy. If (u,v) # (a,b), then (u,v) € [(S1ax S2b)U
(aSy xbS2)U(S1aS1 X S2bS2)] and (a,b) € [(S1ux S20)U(uS1 Xv.S52)U(S1uS1 X S2vS2)].
This implies that (u,v) belongs to at least one of the summands and (a,b) belongs
to at least one of the summands. If e.g. (u,v) € (S1a x S2b) and (a,b) € (S1u x Syv)
then u € Sia, v € S2b and a € Siu, b € Syv. Hence we have J(u) C J(a) and
J(a) C J(u), hence J(a) = J(u), so u € J,. Similarly, we can show that v € Jj,
therefore (u,v) € J, X Jp.

2. Let (u,v) € Jo X Jp — J(a)- Then u € J,, v € Jy, hence J, = J, in §; and
Jy=Jyin Sy Then Jy x Ty = Jo X Jy and by 1, Jua) S Ju X Jy = Joa x Jy. O
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Corollary. If J, = {a} in S1, J, = {b} in Sy, then J(o4) = Jo X J; in Sy x Ss.
Definition 1 ([7]). A nonempty subset M of a semigroup S is said to be a
two-sided antiideal of S, if M N {SM,MS,SMS} =0.

Theorem 2. If (a,b) € S; X S is a one-element two-sided antiideal in S; x Ss,
then J(a,b) = {(a, b)}

Proof. Let (a,b) ¢ {(Slangb)U(aSl bez)U(SlaSI X SzbSQ)} If IJ(a,b)' > 1,
then there is at least one element (u,v) € J(,) such that (u,v)#(a,b) and J(u,v) =
J(a,b), hence

(u,v) U (Slu X Sz’U) U (U.Sl X ’US-z) U (5111.51 X Syu8s)
= (a,b) U (Sla X Szb) U (a51 X sz) U (Sla.S'l X SzbSQ)
Consequently, (u,v) € {(S1a x Szb) U (aS1 x bS2) U (S1aS; x S2bS2)} and (a,b) €
{(Slu X 521)) U (u51 X ’USQ) U (SluSI X 521.)52)}.

Ife.g. (u,v) € (S1axSzb) and (a,b) € (S1ux Sav), then (Syux Sqv) C (S1a x Sgb),

(USl X ’USQ) _C_ (Slasl X Szsz),

(1) (S145) x S3vS2) C (S1aS: x S3653)
and (S1a x S3b) C (Siu x Sav), (aSy x bSz) € (S1uSy x S3vSs),
(2) (S1aS) x S2bS3) C (S1uS; x S2vSsy).
From (1) we obtain
T(u,v) = (u,0) U (S x Sav) U (uSh x vS3) U (SyuS; x SpvSs)
C (S1a x S3b) U (S1aS; x S26S3) € J(a,b).

However, J(a,b) = J(u,v), therefore (a,b) € J(u,v) C (S1ax S2b)U(S1aS; X S3bS,),
hence
(a,b) € {(S1a x S2b) U (aS; x bS3) U (S1aS1 x S2b52)},
which contradicts the hypothesis.
In the case that (u,v) € (aS; x bS2) and (a,b) € (uS; X vSz), or any other
possibility, we proceed analogously. a

Corollary. If Ji, ) = Jo X Jb, then either
1. J, = {a} and J, = {b} or
2. no element in J, X Jy is a two-sided intiideal in S; X Ss.

The following example indicates that 2 in Corollary represents only a necessary
condition. ‘
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Example 1. Let S, = {a1,a2,a3,a4}, S2 = {b1, b2, b3, bs} be two semigroups,
in which associative binary operations are given by means of multiplicative tables:

| a az az a4 | by by b3 by
a| a1 a a1 a bi| by b b b
az| a1 az az az ba{ by by b b
az| ap ay az a4 b3| by by b3 by
as| a; az a3z a4 by| by ba b3 by

Ja3 = {a3,a4} in Sl, Jb2 = {b2} in S2- Then Jag X Jb2 = {((13,(22), (a4,b2)}.

We have (a3, b2) € (S1a3 X S2b2), so (a3, bs) is not a two-sided antiideal in Sy X Sa.
Similarly (a4, b2) € (S1a4 X S2b2), so (a4, bz) is not a two-sided antiideal in S; X Sa.
Hence no element in J,; X Js, is a two-sided antiideal in S; x Sp; however,

J(az,b2) = (S1a3 X Szbz) U (S1a3S1 X S2b2Ss)

= {a1,a2,a3} x {b1,b2} U {a1,az2,a3,a4} x {b1}

= {(a1,b1), (a2, 1), (a3, b1), (aq,b1), (a1, b2), (a2, b2), (a3, b2) },
J(aq,b2) = (S1a4 X S2b2) U (S1a451 X S2b252)

= {a1,a2,a4} X {b1,b2} U {a1,a2,a3,a4} x {b1}

= {(a1,b1), (a2, b1), (a3, b1), (aq,b1), (a1, b2), (az, b2), (as, b2)}-

We have J(ag,bz)#J(a4,b2), (a3,b2) ¢ J(a4,b2), (a4,b2) ¢ J(a3,b2). So J(a3,b2) =
{(a3,b2)}, Jiaq,b2) = {(a4,b2)}, but none of them is a two-sided antiideal in S; x S,.

Lemma 1. Let J, x J, contain more than one element. If (a,b) is in any two
components of{(SIa X Szb), (a.5'1 X bS2),(SlaSl X Sngz)}, then (a, b) € (SlaSI X
S2bS3).

Proof. It is sufficient to show that (a,b) € (S1a x Seb) N (aS; x bSy) implies
(a,b) € (S1aS1 x S2bS2). Let (a € SiaAa € aS;) and (b € SebA b € bSy). As
a € Sia, we have aS; C S;aS; and because a € aS; C S;aS;, then a € S;a5;.
Similarly we can show that b € (S2bS2), so (a,b) € (S1aS; x S2b52). a

Theorem 3. If (a,b) € (5145, x S2bS>), then Jiq4) = Jo X Jp.

Proof. If (a,b) € (S1aS; x S2bSs), then J(a) = S1aSy, J(b) = S2bSs. J, C
J(a)in Sy, Jy € J(b) in Sy. If (c,d) € J,x J then (c,d) € (S1aS; x S2bS5). It implies
J(c,d) C (S1aS; x S2bS3) C J(a,b). Since it can be verified that S;¢S; = S;aS; and
S2dSs = S3bS,, then J(a) x J(b) = (S1aS1 X S2bS3) = (S1¢S1 x S2dSs) = J(c) x J(d),
so (a,b) € (5151 x S,dS;). Hence we have J(a,b) C (S1¢S1 X S2dS;) C J(c,d).
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The last relation with the previous one give J(c,d) = J(a.b). We have proved that
Ja X Jb C Jiq,5) and because in general Ji, ) € Jo X Jp by Theorem 1, we conclude

J(a,,b) = Ja X Jb.

O

It remains to find conditions under which J(a,b) = Ja X Jp in the case that J, x J,
contains more than one element and either

(i) (a,b) € (S1a x S2b) A (a,b) ¢ [(aS1 x bS2) U (S1aS;1 X S2bS2)]
or

(ii) (a,b) € (aSy x bS2) A (a,b) ¢ [(S1a x Szb) U (S1aS; x S2bS2)).

Lemma 2. Let J, xJ}, contain more than one element, (a,b) € (S1axS3b)A(a,b) ¢
[(a51 X sz)U(Slasl X Szng)] Let (a,b) € Jo x Jp, (al,b) € Jo X Jy, J(a.,b) # J(al,b)-
Then neither J(a;,b) C J(a,b) nor J(a,b) C J(a;,b).

Proof. Suppose that J(a1,b) C J(a,b). We will show that (a,b) ¢ J(a1,b).
If (a,b) € J(a1,b), then J(a,b) C J(a1,b). The last relation with our assumption
give J(ay,b) = J(a,b), which contradicts the hypothesis, hence (a,b) ¢ J(a1,b), so
(a,b) ¢ [(S1a1xS2b)U(S1a151 X S2bS2)]. Consequently, (a,b) ¢ (S1a1 X S2b)A(a,b) ¢
(S1a151 x S2bSz2). It implies a ¢ Sia, since b € S2b. From the assumption of
Lemma 2 we have: L. (a,b) ¢ (S1aS; X S2bS2), and from the relation above we have:
IL (a,b) ¢ (S1a1S1 x S2bS;). From I and II we get the following possibilities:

I. 1.a ¢ S1aS8; A b¢ Szsz, II. 1. a ¢ S1a1S1 A Db ¢ S2bS,,
2.a € S1a5; A b¢ S2bSs, 2'.a€ S5 ANb ¢ S2bSs,
3. a ¢ S1aS1 A b € S3bSs, 3. a ¢ S1a1S81 A b € S3bSs.

Since we have supposed J(a;,b) C J(a,b), we have (a;1,b) € [(S1a x S2b) U (S1aS; x
S2bS2)], so (a1b) belongs to at least one of the two summands. In both cases we
get J(a;) C J(a). We shall show that if we combine any possibility of I with any
possibility of II, then we find that some of them cannot occur and in the remaining
cases J(a;) C J(a) holds.

(1,1'):a ¢ S1aS: ANa ¢ S1a1S;. Then a ¢ Sia1 Aa ¢ Si1a1S; implies a ¢
(S1a1 U S1a151) = J(a1), therefore J(a1) C J(a).

(1,2"): a ¢ S1aS; A a € S1a1S51. This cannot occur, since a € Sya1S; implies
a € S1aS;, and this contradicts the hypothesis.

(1,3): a ¢ S1aS1 Aa ¢ S1a1S;. Then similarly as in (1,1') we get J(a;) C J(a).

(2,1'): a € S1aS1Aa ¢ S1a151. Then a ¢ Sia;Aa ¢ S1a1S; implies J(a;) C J(a).
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(2.2"): @ € S1aS1 Aa € S1a151. It implies a; € S1015 Aa € S1a15;. Then
S1a8; = S1a,5; and from Sia; C S)a (since J(a;) C J(a) and a ¢ Sia;) we get
Si1a; U S1a15; C S1aU S1a8;, hence J(a;) C J(a). '

(2,3'): a € $1aS1 Aa € S1a1S:. Then similarly as in (2,1'), J(a1) C J(a).

(3,1"): a ¢ S1aS1 Aa € S1a1S;. Then similarly as in (1,1'), J(a1) C J(a).

(3,2'): a ¢ S1aS1 Aa € S1a15;. Similarly as in (1,2) this cannot occur.

(3,3'): a ¢ S1aS1 Aa ¢ S1a1S;. Then from Sja; C Sia and from J(a;) C J(a)
we get J(a1) C J(a).

Therefore, in all the cases that may occur we have J(a;) C J(a), but this is a
contradiction because a € J,, a3 € J,, so J(a1) = J(a). Hence our assumption
J(a1,b) C J(a,b) cannot be fulfilled. In a similar way we could prove that J(a,b) C
J(ay,b) cannot hold. O

Lemma 3. Let J, X J, contain more than one element. Let (a,b) € (S1a x Szb) A
(a,b) ¢ [(aS1 x bSz) U (S1aS; x S3bS3)]. Then J, x Jp is the union of at least two
different _# -classes iff at least for one of J,, J, the following holds: SiJ; C S1J,,
SoJy C S J, for every proper subset J, C J,, Jo C Jp.

Proof. a. Let J, x Jy be the union of at least two _#-classes. We will show
that at least for one of the _#-classes J,, J;, the inclusion S;J; C S1J,, S2J2 C S2J
holds, where J; is any proper subset of J,, J; is any proper subset of J,. Because
|J1 x Jp] > 1, the following cases may occur: 1. |J,| > 1A|Jy| = 1, 2. |Jo| = 1A|J,| >
1,3. |Jul > 1A > 1.

If 1 holds, then the _#-classes in J, x J, are of the form J(ai b)s if 2 holds, then
the #-classes in J, x J, are of the form Ji,4,), ¢ € I. If 3 holds, then we get the
following possibilities:

(a) the _#-classes are of the form J(a; ,b)» if S2b = S2Jp and the case 1 occurs;

(b) the _#-classes are of the form J(,,), if S1a = S1J, and the case 2 occurs;

(c) Sia C S1Ja A Sab C SaJ,. Then there are at least two _#-classes of the form
J(a:b) and at least two _¢Z-classes of the form Ji,,), 4 € I.

Let Jia,5)s J(a;,5) e any two _#-classes for a#a;, J(a,b)#J(a1,b). Then J(a,b) =
(Sla X Szb)U (Slasl X Sngg), (a, b) € (.5'1a X Szb) A (a, b) ¢ [(aSl X sz) U (SlaSI X
S2bS,)]. Further, J(a1,b) = (S1a;1 x S2b) U (S1a151 X S2bS>), (a1b) € (S1a; x S2b) A
(al,b) ¢ [(a181 x sz) U (SlaISI X Szsz)]

We claim that (a1,b) ¢ J(a,b). If (a1,b) € J(a,b), then J(a;,b) C J(a,b). There
are only two possibilities: either J(a;,b) = J(a,b), or J(a1,b) C J(a,b). The first
possibility contradicts the fact Jia, 3)#J(a,p)- If the other possibility occurs, then by
Lemma 2 it leads to a contradiction. Therefore, (a1,b) ¢ [(Sia x S2b) U (S1aS; x
S2b52)]. So (a1,b) ¢ (S1a x S2b), hence a; ¢ S1a, as b € Syb. Similarly we can show
that (a,b) ¢ J(a1,b) and, moreover, a ¢ S;a;.
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Let J; C J, be any proper subset. Hence there exists at least one a; € J, such that
a; ¢ Ji. Then S1J; C S1J,. There are only two possibilities: either S;J; = S, J,,
or S$1J1 C S1J,. If S1J; = S1Ja, then from the relation ¢ € Sic for any c € J, we
get J, € S1J, = S1J1. So any element of J, is contained in Sja; for some a; € Ji,
but this is a contradiction with the fact a; ¢ Sia; for a;#a;. Therefore, the other
possibilities occurs, namely S;J; C Sy J,, for any proper subset J; C J,.

b. As J, x J, contains more than one element, at least one of J,, J, contains
more than one element. Let J, contain more than one element and let S;J; C S, J,
for every proper subset J; C J,. Denote S;J, = L. Then for any z € L there is
ay € J, such that z € Sia;. By the hypothesis Sja C S1J, = L. Hence there is
y € L such that y ¢ Sia, but y € Sic for some ¢ € J,, cfa. We shall show that
c ¢ Sia. If c € Sia, then Sic C Sia and because y € Sic C Sja, so y € Sja and this
is a contradiction. We also show that a ¢ Sic. If a € Sic, then S1a C Sjc. Hence
we have L = S1J, = S1J1 where J; = J, — {a}, but this is a contradiction with
our assumption that S;J; C S1J, = L for every proper subset J; C J,, so ¢ ¢ Sia,
aé¢ Sic

Consider principal two-sided ideals J(a,b) and J(c,b) in S; x Sy with a € J,,
c € Jo. J(a,b) = (S1axS2b)U(S1a51 X 52bS3), J(c,b) = (S1cxS2b)U(S1cS1 x S2bS5).
We show that J(a,b)#J(c,b). Indeed, (a,b) € J(a,b), but (a,b) ¢ J(c,b), since
(a, b) ¢ (SchS2b) asa ¢ Sic. If (a, b) € (Slcsl XSzsz), then a € S;¢S1, b € S,bS,.
Consequently a € S;cS; implies a € S;aS;, hence (a,b) € (S1aS; X S2bS2) and this
contradicts the fact that (a,b) ¢ (aS; x bS2) U (S1aS; x S2bS2), which is contained
in Lemma 3. Similarly (c,b) € J(c,b), but (c,b) ¢ J(a,b), since (c,b) ¢ (S1a x S2b)
because ¢ ¢ Sia, (c,b) ¢ (S1aS1 x S2bS3), because if (c,b) € (S1aS; X S2bS2),then
c € S1aS1, b € S2bS;. However, ¢ € S;aS; implies a € S;aS; and then (a,b) €
(S1aS; x S3bS;) and it is a contradiction again. Therefore, for (a,b) € J, x Jb,
(c,b) € Jax T, (a,b)#(c,b) we get J(a,b)#J(c,b),50 Jiap) C JaX Ty, Jicp) C Jax .
Hence, J, x Jy is the union of at least two _#-classes. O

Lemma 4. Let J, x J, contain more then one element. Let (a,b) € (aS; x bS2) A
(a,b) ¢ [(S1a x Sa2b) U (S1aS1 x S2bS3)]. Then J, x Jy is the union of at least two
different _# -classes iff at least for one of J,, J, the following holds: J1.S; C J, 51,
Jo Sy C JpSy for any proper subset J; C J,, Jo C Jp, respectively.

Proof. The proof is similar to that of Lemma 3. m]

From Lemma 3 we get

Theorem 4. Let J, X J, contain more than one element. Let (a,b) € (Sia X
Sgb) A (a,b) ¢ [(aSl X sz) U (SlaSI X Sngz)]. Then Ja X Jb = J(a,b) iff Sla = SlJa
and S2b = Sng.
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Analogously from Lemma 4 we can obtain

Theorem 5. Let J, X J, contain more than one element. Let (a,b) € (aS; %
bS2) A (a, b) ¢ [(Sla X S2b) U (Slasl X S2b52)] Then Ja X Jb = J(a,b) iffaSl = JaSI
and b52 = Jb52.

Remark 2. It is known (see [2]) that in the case of £-classes (#-classes) the
situation is as follows: If |L, x Ly| > 1, then L, x L, is the union of at least two
Z-classes iff |Lo| > 1 and L, = {b}, b ¢ S3b, or L, = {a}, a ¢ Sia and |Ly| > 1 and
any .Z-class in L, x L is one-element. If |L,| > 1 and |Ly| > 1 then Ly X Ly = L(q)-

In the cases of _#-classes the situation is different, as we can see from the following
example.

Example 2. Let S; = {a1,a2,a3,a4} and let an associative binary operation
be given by means of the following table:

| ay az asz a4
a| a3 a a a
a2 ay ag ag a9
as a) (45)] as a4
a4| a1 a2 as aq

Jay = {a3, a4}, S1az = {a1,a2,a3}, a3S, = S, S1a3S; = Si.

S; = AUBU{0}, where A is the infinite cyclic group generated by an element {a},
B = {...b_2,b_1,bo,b1,bs,...}, {0} is zero in S;. An associative binary operation
is defined as follows: a’ - bj = b;y;, bj -a* = b; - b; = 0.

Sya’ = AU{0}, a'S; = S2, S2a'Sy = S5, J(a') = Sa, Jui = A.
S2b; =BU {0}) b; Sy = 0, S2bi82 =0, J(bl) =BuU {0},
Jo, =B, J(0) = {0}’ Jo = {0}

Let us consider the direct product Sy x Sy, Jo, in Si, Jp; in So. Then J,, X Jp, =
{a3,as} x B. Consider the principal two-sided ideals J(a3, ;) and J(a4, b;) in S; x S,.
We have

J(aa,bi) = (a3,bi) U (51(13 X Szbi) U (a351 X biS2) U (Slagsl X S2bi52)
= (a3,b,-) U {al,az,ag} X {B U 0} U (Sl X {0}) U (Sl X {O})
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= {a1,a2,a3} x {BU{0}} U(S1 x {0})
= {a1,a2,a3} x {BU{0}} U{(as,0)}
= {a1,a2,a3} x BU(S; x {0}),
J(aq,b;) = (aq,b;) U (S1aq x Sa2b;) U (asS1 X b;S2) U (S1a4S; X S2b;Ss)
= (a4, b;) U {a1,a2,a4} x {BU{0}} U (S1 x {0})
= {a1,a2,a4} x {BU{0}} U (S x {0})
= {a1,a2,a4} x {B} U {(a3,0)}
= {a1,az,a4} x {B} U (S; x {0}).

It is evident that J(as, b;) # J(aa, b;), because J(as, b;) contains elements of the form
{(as3,b;)} that do not belong to J(a4,b;), and conversely J(aq4, b;) contains elements
of the form {(aq4, b;)} that do not belong to J(as, b;). Hence Jo, x J», = {a3,as}x{B}
is decomposed into two _# -classes, namely J(q; 5,)s J(a4,5), and each of them contains
infinite number of elements, but none of them is a two-sided antiideal in S; x S,.

In this part we shall investigate the mutual relation between J(a,p) and J, X Jp in
S1 x S3 provided J, is a maximal _#-class in S;, Ji is a maximal _#-class in Ss.

Remark 3. If J, is a maximal _#-class in S;, then M, = S — J, is a maximal
two-sided ideal in S and conversely ([4]).

For the factor semigroup S/M, exactly one of the following two possibilities occurs
([6]):

1. (§/M,)? =0 and S/M, is a two-element semigroup, J, = {a}, a € S — S?,

2. S/M, = §S is a 0-simple semigroup and for every nonzero element @ € S we
have SaS = 5, hence a € SaS fora€ J, = S — M,.

Lemma 5 ([6]). Let J, be a maximal _#-class in a semigroup S and |J,| > 1.
Then a € SaS.

Theorem 6. Let J, be a maximal #-class in Sy, Jy a maximal £ -class in S,
and let |Jo| > 1 and |Jy| > 1. Then

J(a,b) = J, X Jp.

Proof. The statesment follows from Lemma 5 and Theorem 3. a
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Corollary. Let J, be a maximal _# -class in S, J, a maximal _#-class in S;. If
Ja % Jp is the union of at least two _# -classes in S; X Sz, then either

1. |Jo| > 1 and J, = {b}, or

2. J, =a and IJbl > 1.

Lemma 6. Let J, be a maximal ¢ -class in Sy, J, a maximal ¢ -class in S and
let J(al,bl) C Jo X Jp, J(a2’b2) C Jo X Jp, J(ahbl) # J(a.z,bg)' Then either

1. |Ja] > 1, Jpb = {b}, b€ S — Sg, or

2. J, ={a},a €S — S%, |Js| >1 and

J(a1,b1)> J(az,bs) are uncomparable.

Proof. From the Corollary of Theorem 6 we get that either 1. |J,| > 1 and
Jy = {b}, or 2. J, = {a} and |Jp| > 1. Let 1 hold. Then b; = by = b. As both J,
and J, are maximal _#-classes, then, since |J,| > 1, we have a € S,aS;. However,
Jy = {b}, therefore there are only two possibilities:

(i) b € SbS,

(ii) b € S; — S? by Remark 3.

If b € S2bS2, then by Theorem 3 we have J,35) = Jo x Jp, a contradiction to
the hypothesis, therefore b € Sy — S? holds. Hence b ¢ (S2bU bS; U S2bS3). It
remains to show that J(a;,b), J(az,b) are uncomparable. We have (a;,b) € J(a;,b)
but (ai,b) ¢ J(az,b) since (a1,b) # (a2,b) as a1 # ag, and (a1,b) ¢ [(Siaz %
S-)b) U (0.251 X sz) U (SlagSl X Sngg)] since b ¢ (Szb UbS, U Sngz) Similarly
(az,b) € J(az,b), but (az,b) ¢ J(a1,b). O

Theorem 7. Let J, be a maximal #-class in S, J, a maximal #-class in S;.
Then either

1. Jo x Jp is a maximal # -class in Sy x Sz or

2. J, x Jp is the union of at least two maximal _# -classes in S; x Sj.

Proof. Withregard to Lemma 3 it is sufficient to show that if J,, s,) C Jo X J,
then J(a;,b;) is not contained as a proper subset in any principal ideal of S; x Ss.

Suppose that there exists such an element (u,v) € Sy x Sy — J, X J that (a1,b;) C
J(u,v). Then

(al,bl) ] (Slal X Szbl) U (aIS; X blsg) U (S,alsl X Szb152)
C (u,v) U (Slu X Sav) U ('U,S] X vS3) U (Slusl x SavSs).

Since (a1, b1) # (u,v), then

(al,bl) € [(Slu X Slb) U (u51 X 'USQ) U (SluSI X 52’052)].
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If e.g. (a1,b1) € (Si1u x Spv), then a; € Syu and by € Syv. Hence J(a;) C J(u) in
Sy and J(by) C J(v) in Sy. If both J(a;) = J(u) and J(by) = J(v), then u € J,,
and v € J, and (u,v) € J, X Jp, a contradiction. Therefore either J(a;) C J(u), or
J(b1) C J(v). It means that either J, in S; or J, in S; is not a maximal _#-class and
this contradicts the hypothesis. For the remaining possibilities (a;,b;) € (uS; xvS3),
(a1,b1) € (S1uS;1 X S2uS;), we could proceed analogously. O

Corollary. Let J, be a maximal #-classin Sy and |J,| > 1, J, = {b},b€ S-S
a maximal _# -class in So. Then J, x Jy is the union of maximal _# -classes in S; x Sz
and each of them is one-element of the form Ji,, ;) = {(a:,b)}, a; € J,.

Theorem 8. Let u € S; be any element, b € Sz — S? (a € Sy — S?, v € S, any
element). Then J,p) = {(u,b)} (Jia,v) = {(a,v)}) is a maximal _# -class in Sy x S.

Proof. Letu€ S; be any element, b € Sz — S2. Then b ¢ (S2bU bSs U S2b5S2),
hence b is an antiideal in S;. Then (u,b) € S; x S, is an antiideal in S; x S5 and by
Theorem 2 we have J(, ) = {(u,b)}. To prove that Ji, ;) is maximal in S; x Sy, it is
sufficient to show that (u,b) is undecomposable in S; x S. As u € S1, b € Ss, then
(u,b) € (S1 x S2). But b € S; — 52, s0 b ¢ S, and therefore (u,b) ¢ (S? x S2) =
(81 x S2)2. This implies (u,b) € (S x S2) — (S1 x S2)?, hence J(yp) = {(u,b)} is
maximal. O

Theorem 9. Let J, ;) be any maximal ¢ -class in S; x Sz. Then either

1. Ja,p) = Ja X Jb, where J, is a maximal ¢ -class in Sy, J, a maximal _# -class
in So, or

2. Jia,p) = {(a,b)}, where a € S is any element, b € S; — S5, ora € S; — S and
b € S; is any element.

Proof. As Jgp) is a maximal _#-class in Sy X Sz, then Sy x S — Jia5) = Mo
is a maximal ideal in S; x S; and for the factor-semigroup (S; x S3)/M, either

(a) (S1 x S2)/My is a 0-simple semigroup and for (a,b) € (S1 x S2) — Mo = Jia )
we have (a,b) € (S; x S2)(a,b)(S1 x S2), or

(b) [(S1 x S2)/M4)? =0 and (S; x S2)/M, is a two-elements zero semigroup.

In the case (a) (a,b) € (S1aS; x S3bS3), so a € S1aS; and b € S3bS2. Then
J(a,p) = Ja X Jp by Theorem 3. It remains to show that J, is maximal in Sy, Jp is
maximal in S;. If J, is not a maximal _#-class in Si, then thereis u € S; — J,
such that J(a) C J(u). Then J(a) = S1aS; C (v U Sju U uS; U S1uS;). It implies
that a € (S;uU S1uS;). If e.g. a € Syu, then S;aS; C S;uS;. Further, J(a,b) =
(S1aS7 x S2bS2) C (u,b) U (S1u x Sab) U (uS; x bS1) U (S1uS; x S2b52) = J(u,b).
Now there are two possibilities: either J(a,b) = J(u,b), or J(a,b) C J(u,b).
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If J(a,b) = J(u,b), then (u,b) € Jiq) = Ja X J, therefore u € J,, which means
J(u) = J(a), a contradiction to J(a) C J(u).

If J(a,b) C J(u,b), then we have a contradiction to the hypothesis. Therefore J,
is a maximal _#-class in S;. Similarly we can show that J is a maximal _#-class
in 52.

In the case (b) (S; x S2) — Mo = Jas) = {(a,b)} and the element (a,bd) is
undecomposable in S; x Sz, so (a,b) € (S1 x S2) — (S1 x S2)%. It means (a,b) ¢
(S x S2)% = (S? x S%). Hence either a ¢ SZ, or b ¢ SZ. Therefore the _#-class
Jiap) = {(a,b)} is of the form: a € S is any element, b € S; — S5 ora € S; — S},
b € S, is any element. 0O
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