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Czechoslovak Mathematical Journal, 44 (119) 1904, Praha 

^/-CLASSES IN THE DIRECT PRODUCT OF TWO SEMIGROUPS 

IMRICH FABRICI, Bratislava 

(Received July 21, 1992) 

In [3] the mutual relation between a principal two-sided ideal J (a, 6) in the direct 
product of two semigroups and the direct product of two principal two-sided ideals 
J(a) x J(b) is investigated. In particular, some conditions are given under which 
J(a,b) = J(a) x J(b) holds. 

The aim of the present paper is to study the mutual relation between a J?-class 
J(a,6) in 5i x 5 2 and the direct product J a x Jb of two ^-classes both in the general 
case and in the special case of maximal ^-classes. Finally, we give conditions under 
which J(*j>) ~ Ja x Jb. 

All notions and notations which are not defined are meant as in [1]. 

1. 

Theorem 1. Let Ja be a ^-class in S\, Jb a ^-class in S2) J(a,b) a ^-class in 
Si x S2. Then 

V J(a,b) Q Ja x Jb) 
2. if J(a,b) C J a x Jt, then Ja x Jb is the union of at least two ^/-classes in S\xS2. 

P r o o f . 1. Let (u,v) G J(a,b)> then J(u,v) = J(a,6). If (u,v) = (a,b), then 
J(u) = J(a) in 5i and J(v) = J (6 ) in5 2 . If (u,v) ?- (a,6), then (u,v) G [(5xax526)U 
(a5ix652)U(5ia5ix52652)] and (a, 6) G [(5iux52v)U(i/5iXv52)U(5iix5ix52v52)]. 
This implies that (u,v) belongs to at least one of the summands and (a, 6) belongs 
to at least one of the summands. If e.g. (u, v) G (5ia x 526) and (a, b) G (S\u x S2v) 
then u G 5ia, v G 526 and a G S\u, b G S2v. Hence we have J(u) C J(a) and 
J (a) C J(u), hence J (a) = J(u), so u G Ja. Similarly, we can show that v G Jb, 
therefore (u,v) G Ja x Jb. 

2. Let (u,v) G Ja x Jb — J(a,6)« Then u G Ja, v G Jb, hence Ju = Ja in 5i and 
Jv = Jb in 5 2 . Then JuxJv = Jax Jb and by 1, J(u,v) C Jux Jv = Jax Jb. D 
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Corollary. If Ja = {a} in Si, J6 = {6} in 52 , then J(a,b) — J a x J6 in Si x 5 2 . 

Definition 1 ([7]). A nonempty subset M of a semigroup 5 is said to be a 
two-sided antiideal of 5, if M n {5M, MS, SMS} = 0. 

Theo rem 2. If (a,b) G Si x S2 is a one-element two-sided antiideal in S\ x S2, 
then J(a,6) = {(a,6)}. 

P r o o f . Let (a,6) g {(SiaxS26)U(aSi x6S2)U(SiaSi xS26S2)}. If | j ( a > 6 ) | > 1, 
then there is at least one element (u,v) G J(a,b) such that (u,v)#(a,b) and J(u,v) = 
J(a,b), hence 

(u, v) U (5itx x S2v) U (ixSi x vS2) U (SiuSi x S2vS2) 

= (a, 6) U (Sia x S26) U (aSi x 6S2) U (SiaSi x S26S2). 

Consequently, (u,v) G {(Sia x S26) U (aSi x 6S2) U (SiaSi x S26S2)} and (a, 6) G 

{(Sin x S2v) U (uSi xvS2)U (SxuSi x S2vS2)}. 

If e.g. (u,v) G (SiaxS26) and (a, 6) G (S\uxS2v), then (SiuxS2v) C (5iaxS 26), 

(wSi x vS2) C (SiaSi x S26S2), 

(1) (SitiSi x S2vS2) C (SiaSi x S26S2) 

and (Sia x S26) C (Sxu x S2v), (aSx x bS2) C (SxuSi x S2vS2), 

(2) (SiaSi x S26S2) C (SiizSi x S2vS2). 

Prom (1) we obtain 

J(u,v) = (u,v) U (Si 14 x S2v) U (uSi x vS2) U (SiuSi x S2vS2) 

C (Sia x S26) U (SiaSi x 526S2) C J(a,6). 

However, J(a,6) = J(u,v), therefore (a,6) G J(u,v) C (S\axS26)U(SiaSi xS26S2), 

hence 

(a, 6) G { (Sia x S26) U (aSi x 6S2) U (SxaSi x S26S2)}, 

which contradicts the hypothesis. 

In the case that (u,v) G (aSi x 6S2) and (a, 6) G (uS\ x vS2), or any other 
possibility, we proceed analogously. • 

Corollary. If J(0,6) = J a x J6, then either 
1. Ja = {a} and J& = {6} or 
2. no element in Ja x J\, is a two-sided intiideal in Si x S2. 

The following example indicates that 2 in Corollary represents only a necessary 
condition. 
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E x a m p l e 1. Let 5i = {a i , a 2 , a 3 , a 4 } , 52 = {6i,62,63,64} be two semigroups, 

in which associative binary operations are given by means of multiplicative tables: 

ai o2 03 a4 
0.1 0.1 0.1 ai ai 
o2 ax o2 o2 o2 

03 0.1 o2 03 a4 
a4 Ol o2 03 a4 

h h òз h 
Һ h h Ьi h 
Һ h h h Һ 
h h h Һ Һ 
h h h h Һ 

Ja3 = {03,04} in Si, Jb2 = {62} in 5 2 . Then Ja3 x Jb2 = {(a3,62), (a 4 ,6 2)}. 

We have (a 3,6 2) G (5ia 3 x 5 26 2), so (a 3,6 2) is not a two-sided antiideal in 5i x 5 2 . 
Similarly (a 4,6 2) G (5ia 4 x 5 26 2), so (a 4,6 2) is not a two-sided antiideal in 5i x 5 2 . 
Hence no element in Ja3 x Jb2 is a two-sided antiideal in Si x 5 2 ; however, 

<I(a3,62) = (Si03 x S262) U (Sia 3 Si x S262S2) 

= {ai,a 2 ,a 3 } x {61,62} U {a i ,a 2 ,a 3 ,a 4 } x {61} 

= {(ai ,6i),(a 2 ,6i),(a 3 ,6i),(a 4 ,6i),(ai ,6 2 ),(a 2 ,6 2 ),(a 3 ,6 2 )}, 

J(a4,62) = (5ia 4 x S262) U (Sia 4Si x 5 26 2S 2) 

= {ai ,a 2 ,a 4 } x {6X,62} U {a i ,a 2 ,a 3 ,a 4 } x {61} 

= {(ai, 61), (a2,61), (a3,61), (a 4,6L), (ai,6 2), (a 2 ,6 2 ), (a 4,6 2 )}. 

We have J(a3,62)#J(a4,62), (a 3,6 2) £ J(a4,62), (a4,62) £ J(a3,62). So J(a3,62) = 

{(a3 ,62)}, J(a4,b2) — {(o4,b2)}, but none of them is a two-sided antiideal in Si x S2. 

Lemma 1. Let Ja x Jb contain more than one element. If (a, 6) is in any two 

components of {(Sia x S26),(aSi x 6S2),(5iaSi x 526S2)}, then (a, 6) G (SiaSi x 
52652). 

P r o o f . It is sufficient to show that (a,6) G (Sia x S26) H (aSi x 6S2) implies 

(a, 6) G (SiaSi x S26S2). Let (a G Sxa A a G aSi) and (6 G S26 A 6 G 652). As 

a G Si a, we have aSi C SiaSi and because a G aSi C SiaSi, then a G SiaSi . 

Similarly we can show that 6 G (S2652), so (a,6) G (SiaSi x S26S2). • 

Theorem 3. If (a, 6) G (SiaSi x S2bS2), then J(a,6) = Ja x J6. 

P r o o f . If (a,6) G (SiaSi x S2652), then J(a) = SiaSi, J(6) = S2652. Ja C 

J(a) in Si, J6 C J(6) in 5 2 . If (c,d) G JaxJ6 then (c,d) G (SiaSi xS2652). It implies 

J(c, d) C (SiaSi x S2652) C J(a, 6). Since it can be verified that SicSi = SiaSi and 

S2dS2 = S2652, then J (a) x J(6) = (SiaSi x S2652) = (SicSi x S2dS2) = J(c) x J(d), 

so (a,6) G (SicSi x S2dS2). Hence we have J(a,6) C (SicSi x S2dS2) C J(c,d). 
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The last relation with the previous one give J(c,d) = J(a.b). We have proved that 

Ja x Jfe C J(afb) and because in general J(a>b) C Ja x Jb by Theorem 1, we conclude 

J(a,b) = Ja X Jb-

• 
It remains to find conditions under which J(a,&) = Ja x J& in the case that Ja x J& 

contains more than one element and either 

(i) (a, b) G (Sia x S2b) A (a, b) £ [(aSx x 6S2) U (SiaSi x S2bS2)] 

or 

(ii) (a,b) G (aSi x 652) A (a,6) g [(Si a x S2b) U (5ia5i x S2bS2)]. 

L e m m a 2. Let J a x Jb contain more than one element, (a, b) G (5iax526)A(a, b) £ 

[(aSixbS2)U(S1aS1xS2bS2)]. Let (a,b) G JaxJb, (aub) G J a x J b , J(a?6) ^ J(ai>6). 
Then neither J(a\,b) C J(a,b) nor J(a,b) C J(a\,b). 

P r o o f . Suppose that J(a\,b) C J(a,b). We will show that (a,6) $ J(a\,b). 
If (a,6) G J(a\,b), then J(a,b) C J(a\,b). The last relation with our assumption 
give J(a\,b) = J(a,b), which contradicts the hypothesis, hence (a,b) £ J(a\,b), so 
(a, b) £ [(SxaixS2b)U(SiaiSixS2bS2)]. Consequently, (a, b) £ (SiaxxS2b)A(a,b) $ 
(SiaiSi x S2bS2). It implies a g Siai , since b G 526. From the assumption of 
Lemma 2 we have: I. (a, b) $ (SiaSi x S2bS2), and from the relation above we have: 
II. (a, b) £ (S\aiSi x S2bS2). Prom I and II we get the following possibilities: 

I. L a g SiaSi A b g S2bS2, II. V. a g S ^ S i A b <£ S2bS2, 
2. a G SiaSi A b $ S2bS2, 2'. a G SiaiSi A b $ S2bS2, 
3. a g SiaSi A 6 G 52652, 3'. a g SiaiSi A 6 G 52652 . 

Since we have supposed J(ax , b) C J(a, 6), we have (a\,b) G [(Sia x S2b) U (SiaSi x 
52652)], so (aib) belongs to at least one of the two summands. In both cases we 
get J(a i ) C J (a). We shall show that if we combine any possibility of I with any 
possibility of II, then we find that some of them cannot occur and in the remaining 
cases J(a i ) C J (a) holds. 

(1,1') •' a $• SiaSi A a $ SiaiSi . Then a g Siai A a g SiaiSi implies a g 
(Siai U SiaiSi) = J(a i ) , therefore J(ai) C J (a). 

(1,2'): a g S\aS\ A a G SiaiSi . This cannot occur, since a G SiaiSi implies 
a G SiaSi, and this contradicts the hypothesis. 

(1,3'): a £ SiaSi A a £ S ^ i S i . Then similarly as in (1,1') we get J(ai) C J(a). 

(2,V): a G SiaSiAa g SiaiSi . Then a g SiaiAa g SiaiSi implies J(ai) C J (a). 
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(2.2'): a € SiaSi A o E Sia iSi . It implies ai G SiaxSi A a € Sia iSi . Then 
SiaSi = SiaiSi and from SiOi C Si a (since J(ai) C J (a) and a £ SiOi) we get 
Siai USia iSi C S iaUSioS i , hence J(ai) C J (a). 

(2,3'): a G SiaSi A a £ S ^ i S i . Then similarly as in (2,1 ;), J(ax) C J(a). 

(3, V): a £ SiaSi A a £ SiaiSi- Then similarly as in (1,1'), ^(ai) C J(a). 
(3,2'): a £ SiaSi A a G Sia iSi . Similarly as in (1,2;) this cannot occur. 

(3,3'): a £ SiaSi A a £ S1O1S1. Then from SiOi C Sia and from J(ai) C J(a) 

we get J(ai) C J (a). 

Therefore, in all the cases that may occur we have J(ai) C J(a), but this is a 
contradiction because a € Ja, ai G Ja, so J(ai) = J (a). Hence our assumption 
J(ai, 6) C J(a, 6) cannot be fulfilled. In a similar way we could prove that J(a, 6) C 
J(ai, 6) cannot hold. D 

L e m m a 3. Let Ja x J6 contain more than one element. Let (a, 6) G (Sia x S26) A 

(0,6) £ [(aSi x 6S2) U (SiaSi x S26S2)]. Then Ja x Jb is the union of at least two 

different ^-classes iff at least for one of Ja, J6 the following holds: S1J1 C SiJ a . 

S2J2 C S2J6 for every proper subset J\ C Ja, J2 C Jb. 

P r o o f , a. Let Ja x Jb be the union of at least two ^-classes. We will show 
that at least for one of the ^-classes Ja, J6 the inclusion S1J1 C SiJa , S2J2 C S2J6 
holds, where Ji is any proper subset of Ja, J2 is any proper subset of J6. Because 
|JiXJ6| > 1, the following cases may occur: 1. |Ja | > 1A|J6| = 1,2. |J a | = 1A|J6| > 
1,3. | J a | > l A | J 6 | > l . 

If 1 holds, then the ^f-classes in Ja x Jb are of the form J(aijb)-> -f 2 holds, then 
the ^-classes in Ja x Jb are of the form J(a,bi),

 2 € L If 3 holds, then we get the 
following possibilities: 

(a) the ^-classes are of the form J(ai,6)» -f ^2b = S2J6 and the case 1 occurs; 
(b) the ^/-classes are of the form J(a%bi), if S10 = SiJa and the case 2 occurs; 
(c) Si a C SiJa A S26 C S2J6. Then there are at least two ^-classes of the form 

J(a{,b) and at least two ^-classes of the form J(a,6,-)» i € I-

Let 7(0|6), J(ai,b) be any two ^-classes for o#a i , J(a, 6)#J(ai , 6). Then J(a, 6) = 
(Sia x S26) U (SiaSi x S26S2), (0,6) G (Si a x S26) A (a, 6) £ \(aSx x 6S2) U (S2aSi x 
S26S2)]. Further, J(ai,6) = (SiOi x S26)U(SiOiSi x S26S2), (axb) G (SiOi x S26) A 
(ai,6) $ [(01 Si x 6S2) U (SiaiSi x S26S2)]. 

We claim that (01,6) £ J(a,6). If (01,6) G J(a,6), then J(ai,6) C J(a,6). There 
are only two possibilities: either J(ai,6) = J(o,6), or J(ai,6) C J(a,6). The first 
possibility contradicts the fact J(ai,6)#<I(a,6)- If the other possibility occurs, then by 
Lemma 2 it leads to a contradiction. Therefore, (ai,6) £ [(Sia x S26) U (SiaSi x 
S26S2)]. So (01,6) ^ (Sia x S26), hence 01 ^ Sia, as 6 G S26. Similarly we can show 
that (a,6) £ J(ai,6) and, moreover, a $ SiOi. 
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Let Ji C Ja be any proper subset. Hence there exists at least one ai £ Ja such that 
en £ J\> Then 5iJi C 5iJ a . There are only two possibilities: either 5iJi = 5iJ a , 
or 5iJi C 5iJ a . If 5iJi = 5iJ a , then from the relation c e S\c for any c G Ja we 
get Ja C 5i Ja = 5i Ji. So any element of Ja is contained in 5i aj for some aj € Ji, 
but this is a contradiction with the fact a; ^ 5iaj for a{#aj. Therefore, the other 
possibilities occurs, namely 5iJi C 5iJ a , for any proper subset J\ C Ja. 

b. As Ja x Jfe contains more than one element, at least one of Ja, Jfe contains 
more than one element. Let Ja contain more than one element and let 5iJi C 5iJa 

for every proper subset Ji C Ja. Denote 5iJa = L. Then for any x G L there is 
ai G Ja such that x G 5 ia i . By the hypothesis 5ia C 5iJa = L. Hence there is 
y G L such that y £ S\a, but y G 5ic for some c G Ja, c#a. We shall show that 
c ^ 5ia . If c G 5ia, then 5ic C 5ia and because y G 5ic C 5ia, so y G 5ia and this 
is a contradiction. We also show that a £ S\c. If a G 5ic, then 5ia C 5ic . Hence 
we have L = 5iJa = 5iJi where Ji = Ja — {a}, but this is a contradiction with 
our assumption that 5iJi C S\Ja = L for every proper subset Ji C Ja, so c ^ 5ia, 
a ^ 5ic . 

Consider principal two-sided ideals J(a,b) and J(c,b) in 5i x 52 with a G Ja, 
c G Ja. J(a,b) = (5iax52&)U(5ia5ix52652), J(c,b) = (5icx526)U(5ic5i xS2bS2). 

We show that J(a, b)#J(c,b). Indeed, (a,6) G J(a,b), but (a,b) ^ J(c,b), since 
(a,b) i (SxcxS2b) a sa £ 5ic . If (a,b) G (5xc5i xS2bS2), then a G 5ic5x , b G S2bS2. 

Consequently a G 5xc5i implies a G S\aS\, hence (a,b) G (5ia5i x S2bS2) and this 
contradicts the fact that (a,b) £ (aS\ x bS2) U (5ia5i x S2bS2), which is contained 
in Lemma 3. Similarly (c,b) G J(c,b), but (c,b) £ J(a,b), since (c,b) £ (S\a x S2b) 

because c ^ 5ia, (c,b) £ (S\aSi x S2bS2), because if (c,b) G (SiaSi x S2bS2),then 

c G SiaSi, b G S2bS2. However, c G 5ia5i implies a G 5ia5i and then (a,b) G 
(S\aSi x S2bS2) and it is a contradiction again. Therefore, for (a,b) G Ja x Jfe, 
(c,b) e Jax Jb, (a, b)#(c, b) we get J(a, b)#J(c,b), so J(a,fe) C Ja xJfe, J(Cife) C Ja x Jfe. 

Hence, Ja x Jfe is the union of at least two ^/-classes. D 

Lemma 4. Let Ja x Jfe contain more then one element. Let (a, b) G (a5i x b52) A 
(a,b) ^ [(5xa x S2b) U (5ia5i x S2bS2)]. Then Ja x Jb is the union of at least two 

different ^-classes iff at least for one of Ja, Jfe the following holds: Ji5i C Ja5i, 
J252 C Jfe52 for any proper subset Ji C Ja, J2 C Jfe, respectively. 

P r o o f . The proof is similar to that of Lemma 3. D 

From Lemma 3 we get 

Theorem 4. Let Ja x Jb contain more than one element. Let (a,b) G (5ia x 
52b) A (a,b) £ [(a5i x bS2) U (5ia5x x S2bS2)]. Then Ja x Jb = JKfe) iff Sia = 5xJa 

and S2b = 52Jfe. 
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Analogously from Lemma 4 we can obtain 

Theorem 5. Let Ja x Jb contain more than one element. Let (a,b) G (a5i x 
bS2) A (a, b) £ [(Sia x 52b) U (SiaSi x S2bS2)]. Then JaxJb = 7(o,6) iff aSi = JaSx 

and bS2 = JbS2. 

R e m a r k 2. It is known (see [2]) that in the case of =Sf-classes (^-classes) the 

situation is as follows: If |La x Lfc| > 1, then La x Lb is the union of at least two 

.if-classes iff |L a | > 1 and Lb = {b}, b £ 52b, or La = {a}, a ^ 5ia and \Lb\ > 1 and 

any .if-class in La x Lb is one-element. If \La\ > 1 and \Lb\ > 1 then LaxLb = It(a,6)-

In the cases of ^-classes the situation is different, as we can see from the following 
example. 

E x a m p l e 2. Let Si = {ai,a2,0.3,04} and let an associative binary operation 

be given by means of the following table: 

Oi o2 o3 04 

01 01 01 01 01 

o2 01 o2 o2 o2 
o3 01 o2 o3 04 

04 01 o2 o3 a\ 

Ja3 = {^3,04}, 5ia 3 = {a i , a 2 , a 3 } , a3Si = Si, Sia3Si = Si. 

S2 = i4U_?U{0}, where A is the infinite cyclic group generated by an element {a}, 
B = {... b_2, b_i, bo, bi, b2,...}, {0} is zero in 5 2 . An associative binary operation 
is defined as follows: a1 • bj = 6*+j, bj • a1 = b{; • bj = 0. 

S2a
{ = A U {0}, a{S2 = 5 2 , 52^52 = S2, J(o{) = 5 2 , Ja. = A. 

S2bi = BU {0}, 6,52 = 0, S2biS2 = 0, J(b{) = BU {0}, 

Jbi = B, 7(0) = {0}, 70 = {0}. 

Let us consider the direct product Si x 5 2 , 7a3 in Si, Jbi in S2. Then 7a3 x Jbi = 
{o3,04} x B. Consider the principal two-sided ideals 7(a3, b*) and 7(04, bi) in S\xS2. 
We have 

7(o3,bi) = (a3,6t) U (5ia3 x S2b{) U (a3Si x b{S2) U (Sia3Si x S26iS2) 

= (a3,6,)U {01, a2 ,o3} x {F?U0}U(5i x {0}) U (Si x {0}) 
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= {a i , a 2 , a 3 }x { £ u { 0 } } u ( 5 i x {0}) 

= {a i , a 2 , a 3 }x {B U {0}} U {(a4,0)} 

= {ai ,a 2 ,a 3} x B U (Si x {0}), 

J(a4,bi) = (a4,bi) U (5xa4 x S2b{) U (a4Si x b{52) U (5ia45i x 52b{52) 

= (a 4 ,b i )u{a i , a 2 , a 4 } x {HU{0}}u(5 x x {0}) 

= {a i , a 2 , a 4 }x {B U {0}} U (Sx x {0}) 

= {ai ,a 2 ,a 4 } x {B} U {(a3,0)} 

= {ai ,a 2 ,a 4} x{B}u(S1 x {0}). 

It is evident that J(a3, bi) 7-= J(a4, bj), because J(a3, ft;) contains elements of the form 
{(a3,bi)} that do not belong to J(a4,bi), and conversely J(a4,b;) contains elements 
of theform {(a4,bi)} that donot belong to J(a3,bj). Hence Ja3xJ6. = {a3,a4}x{L?} 
is decomposed into two ^-classes, namely J(a3,bi), <I(a4,&i)> an<^ e a c n of them contains 
infinite number of elements, but none of them is a two-sided antiideal in Si x 5 2 . 

2. 

In this part we shall investigate the mutual relation between J(a,6) and Ja x Jb in 
5i x S2 provided Ja is a maximal ^-class in Si, J& is a maximal J1 -class in S2. 

R e m a r k 3. If Ja is a maximal Jf -class in Si, then Ma = 5 — Ja is a maximal 
two-sided ideal in S and conversely ([4]). 

For the factor semigroup S/Ma exactly one of the following two possibilities occurs 

([6]): 
1. (S/Ma)

2 = 0 and S/Ma is a two-element semigroup, Ja = {a}, a e S - S2; 

2. S/Ma = S is a 0-simple semigroup and for every nonzero element a G S we 
have SaS = S, hence a G SaS for a G Ja = 5 - Ma. 

Lemma 5 ([6]). Let Ja be a maximal Jp-class in a semigroup S and \Ja\ > 1. 
Then a G SaS. 

Theorem 6. Let Ja be a maximal J-class in Si, J& a maximal J?-class in S2, 
and let \Ja\ > 1 and \Jb\ > 1. Then 

J(a,b) = Ja x J6-

P r o o f . The statesment follows from Lemma 5 and Theorem 3. • 
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Corollary. Let Ja be a maximal J-class in Si, Jb a maximal J -class in S2. If 
Ja x J6 is the union of at least two J -classes in S\ x S2, then either 

1. |J a | > 1 and Jb = {b}, or 

2. Ja = a and \Jb\ > 1. 

Lemma 6. Let Ja be a maximal J-class in Si, Jb a maximal J-class in S2 and 

let J(ai,6O C Ja x J6, J(a2,62) C Ja x J6, J(aiM) 7- J(a2M)- Then either 

1. |J a | > 1, J6 = {6}, 6 eS2-Sl or 

2. Ja = {a}, a 6 Si- Sf, \Jb\ > 1 and 

J(aub1), J(a2,b2) are uncomparable. 

P r o o f . From the Corollary of Theorem 6 we get that either 1. |Ja | > 1 and 
Jb = {b}, or 2. Jtt = {a} and |J6 | > 1. Let 1 hold. Then 6X = 62 = 6. As both Ja 

and J6 are maximal ^-classes, then, since |Ja | > 1, we have a G SiaS\. However, 
Jb = {6}, therefore there are only two possibilities: 

(i) 6 G SbS, 

(ii) 6 G 5 2 - 5f by Remark 3. 

If 6 G S2bS2, then by Theorem 3 we have J(a,6) = Ja x Jb, a, contradiction to 
the hypothesis, therefore 6 G 52 - 5 | holds. Hence 6 £ (526 U 652 U S2bS2). It 
remains to show that J(ai,b), J(a2,b) are uncomparable. We have (ai,6) G J(ai,6) 
but (ai,6) ^ J(a2,b) since (ai,6) ?- (a2,6) as ai ^ a2, and (ai,6) ^ [(5ia2 x 
526) U (a25i x 652) U (5ia25i x 52652)] since 6 £ (526 U 652 U 52652). Similarly 
(a2,6) G J(a2,b), but (a2,6) £ J(ai,6). D 

Theorem 7. Let Ja be a maximal J -class in S\, Jb a maximal J -class in S2. 
Then either 

1. Ja x J6 is a maximal J -class in Si x 5 2 or 

2. Ja x J6 is the union of at least two maximal J-classes in Si x 5 2 . 

P r o o f . With regard to Lemma 3 it is sufficient to show that if J(aitbi) - Ja*Jb, 

then J(ai, 6i) is not contained as a proper subset in any principal ideal of 5i x 5 2 . 
Suppose that there exists such an element (it, v) G 5i x 5 2 - Ja x Jb that (ai, 6i) C 

J(u,v). Then 

(ai,6i) U (5xai x 526i) U (ai5x x 6X52) U (5iai5i x S2bxS2) 

C (u, v) U (Siu x S2v) U (uSi x vS2) U (5iu5i x S2vS2). 

Since (ai,6i) ^ (u,v), then 

(ai,6i) G [(5iu x 5i6) U (uSx x vS2) U (SxuSx x S2vS2)]. 
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If e.g. (ai,bi) G (5iu x S2v), then ai G S\u and bi G S2v. Hence J(ai) C J(u) in 
5i and J(bi) C J(v) in 5 2 . If both J(ax) = J(u) and J(bi) = J(v), then ix G Jai 

and v € Jb and (u,v) G Ja x J6, a contradiction. Therefore either J(ai) C J(u), or 
J(bi) C J(^). It means that either Ja in 5i or Jb in 5 2 is not a maximal ^-c lass and 
this contradicts the hypothesis. For the remaining possibilities (ai, bi) G (uSi xvS2), 
(ai,bi) G (5iu5i x S2vS2), we could proceed analogously. • 

Corollary. Let Ja be a maximal ^-class in S\ and \Ja\ > 1, J6 = {b}, b G 5 - 5 2 

a maximal ^-class in S2. Then Ja x Jb is the union of maximal ^-classes in Si x 5 2 

and each of them is one-element of the form J(ai)&) = {(a;,b)}, a; G Ja. 

Theorem 8. Let u G Si be any element, b G 52 - S2 (a G 5i - S2 , v e S2 any 

element). Then J(Uib) = {(u, b)} (J(a,v) = {(a,v)}) is a maximal J?-class in S\ x 5 2 . 

P r o o f . Let u G Si be any element, be S2-S^. Then b g (52b U bS2 U 52b52), 
hence b is an antiideal in 5 2 . Then (u, b) G Si x 52 is an antiideal in 5i x 5 2 and by 
Theorem 2 we have J(u,b) = { ( ^ b)}. To prove that J(u,6) -S maximal in 5i x S2, it is 
sufficient to show that (u,b) is undecomposable in 5i x 52 . As u G 5i , 6 G 5 2 , then 
(u,b) G (5i x 52). But b G S2 - Sf, so b <£ 5 | , and therefore (u,6) £ (S2 x Sf) = 
(5i x 52)2 . This implies (u,6) G (Si x 52) - (5i x 52)2 , hence J(u>6) = {(u,b)} is 
maximal. n 

Theorem 9. Let J(a,6) £>e any maximal J? -class in Si x 5 2 . Then either 

V ^(a,6) = Ja x Jb, where Ja is a maximal J?-class in Si, Jb a maximal J?-class 

in S2, or 

2- J(a,b) = {(a, b)}, where a e Si is any element, b G 52 - S2, or a G Si — S2 and 
b G S2 is any element. 

P r o o f . As J(a,6) is a maximal J^-class in Si x 5 2 , then Si x 52 - J(a,6) = ^Ia 
is a maximal ideal in Si x S2 and for the factor-semigroup (Si x S2)/Ma either 

(a) (Si x S2)/Ma is a 0-simple semigroup and for (a, b) G (Si x S2) - Ma = J(a,6) 
we have (a, b) G (Si x S2)(a,b)(Si x S2), or 

(b) [(Si x S2)/Ma]
2 = 0 and (Si x S2)/Ma is a two-elements zero semigroup. 

In the case (a) (a, b) G (SiaSi x S2bS2), so a G SiaSi and b G S2bS2. Then 
*I(a,b) = Ja x Jb by Theorem 3. It remains to show that Ja is maximal in Si, J6 is 
maximal in S2. If Ja is not a maximal ^-class in Si, then there is u G Si — Ja 

such that J (a) C J(u). Then J (a) = SiaSi C (uUSiuUuSiU SiuSi). It implies 
that a G (Si^U Si^Si) . If e.g. a G Si^, then SiaSi C SiuSi. Further, J(a,b) = 
(SiaSi x 52bS2) C (u,b) U (Siii x S2b) U (uSx x bSx) U (Si^Si x S2bS2) = J(u,b). 

Now there are two possibilities: either J(a,b) = J(u,b), or J(a,b) C J(u,b). 
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If J(a,b) = J(u,b), then (u,b) G J(a,b) = Ja x *I&, therefore u G Ja, which means 

J(u) = J (a), a contradiction to J (a) C J(u). 

If J(a,b) C J(w,6), then we have a contradiction to the hypothesis. Therefore Ja 

is a maximal J? -class in 5 i . Similarly we can show that J& is a maximal / -class 

in 5 2 . 

In the case (b) (5i x 52) — M a = J(a,&) = {(a, b)} and the element (a, 6) is 

undecomposable in 5i x 5 2 , so (a,6) G (5i x 52) - (5i x 52)2 . It means (a,b) £ 

(Si x S2)
2 = (Sf x 5 | ) . Hence either a £ 5f, or b £ Sf. Therefore the / - c l a s s 

J/0j&) = {(a, b)} is of the form: a G Si is any element, b G 52 — 5 2 or a G Si - S2 , 

6 G 5 2 is any element. • 
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