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FILIPPOV'S OPERATION AND SOME ATTRIBUTES 

JOHN S. SPRAKER and DANIEL C BILES, Bowling Green 

(Received August 12, 1992) 

Let / : U -» R be given. The Filippov of / is defined as follows: 

«*•[/](*)=n n ^i(Be{x)\z), 
£>OZ:^{Z)=0 

where // denotes Lebesgue measure, convA. represents the closure of the convex hull 
of the set A and B£(x) represents the open ball of radius e about the point x. The 
Filippov is used in defining a generalized solution of the ordinary differential equa
tion x' — f(x), particularly in the case in which / is discontinuous. Information 
concerning the Filippov can be found in many references, including [1] through [10]. 
(Actually, Filippov's operation and the notion of a Filippov solution were defined for 
nonautonomous differential equations. However, for the present paper, consideration 
of the nonautonomous case essentially has only the effect of introducing an unneces
sary parameter t into our results.) In this paper, we treat 5 a s a function, mapping 
real-valued functions into set-valued functions, and investigate the properties of &. 

Such results add to our understanding of this operation. We note that there is an 
alternate definition of the Filippov (for / £ L°°), equivalent [5] to the previous one, 
that we will frequently use: 

&\f\(x) = {y: lim cssinf / ^ y ^ lim ess s u p / } . 
e-+0 Be(x) e^O De(x) 

\\7c first consider choosing an appropriate domain for &. Certainly, there are a 
number of possibilities, but we require that the domain be restricted to / ' s which 
are useful for differential equations in the following sense. It can be shown that 
the functions in L°° arc precisely the ones which satisfy the classical local existence 
theorem for Filippov solutions in the case of x' = / (x) , namely Theorem 4 in [5]. 
Hence, we choose L°° as the domain for J£~, using || • || to denote the usual norm 
on L°°. 
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We now discuss the selection of a codomain for the function &. Wc recall two 
standard definitions (see [1]). We shall say F: U -> tP(U) (= power set of R) is 
bounded if and only if sup{sup{|g|: y G F(x)}} < oo. Also F is said to be upper 

xeR 

semicontinuous if and only if for each x G U and for each open set IV containing 
F(x) there exists an open set M containing x such that F(M) C N. We choose 
for the codomain the set 08 — {F: U -> 0?{U) \ F is upper semicontinuous, F is 
closed-interval valued and F is bounded}. 08 can be made into a metric space by 
defining 

D(F,G) = sup{h(F(x),G(x))}, 
xER 

where F,G G 08 and h represents the Hausdorff distance between the two sets F(x) 
and G(x). It follows easily that ^[L00] C 08 using well-known facts such as for 
/ G L°°, &[f]: U -> 0?(U) is upper semicontinuous. We note that D(F,G) is 
alternatively given by 

D(F,G) = sup{max{| minF(x) - minG(T)|, | maxF(L) - maxG(x)|}}, 
xGR 

where, for example, maxF(.r) = max{n: y G F(x)}. 
We now consider questions involving the range of &. In the results which follow, 

we shall make use of the following definition. Let F: R —> 0?(U). Then the Filippov 
of F is defined by 

^(*)=n n ™ u w 
E>OZ:ft(Z)=0 yeBt(x)\Z 

(Note that the purpose of this is to extend the Filippov so that it can be applied to 
set-valued functions. We emphasize that in Corollary 1 and Theorems 2, G, 7 and 9 
that the domain of S?, as mentioned earlier, is L°°.) Results from Jarnik's paper [8] 
allow us to completely characterize the range of &. 

Theorem 1. Let F: U -> ^ ( R ) . Then, there exists / G L°° such that 3?[f] = F 

if and only if F satisfies the following conditions: 

1) F is upper seinicontinuous, 

2) There exists M > 0 such that F(x) C [-M, M] for all x G R, and 
3) &[F] = F. 

P r o o f . Suppose there exists / G L°° such that ^[f] = F. As noted above, 
&[L°°] C 08, thus F satisfies 1) and 2), while F satisfies property 3) by (7) in [8]. 
Now assuming that F satisfies 1), 2) and 3), the existence of / G L°° such that 
^F[f] = F follows from the main result in [8] using a simple, but tedious, change of 
scale, which we omit for brevity. • 
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Corollary 1. ^ is not onto SS. 

P r o o f . Define F e SB by 

f {0} for x # 0, 
F(a;) = < 

[[0,1] forx = 0. 

Clearly, &[F] = {0}, so ^ [ F ] 7- F . Thus, by property 3) of Theorem 1 F is not 
the Filippov of an L°° function. • 

For our next result concerning the range of J?, we shall need the following. 

Lemma 1. For all F,G £ &, we have D(^[F],^[G]) ^ D(F,G) and hence 3?, 

thought of as mapping SS —•» &S, is continuous. 

P r o o f . It can easily be shown that &\8S\ C SS. Define a(x) = l imessinfF, 
J L J - V J £ ^ Q J 3 F { X ) 

b(x) = l imcsssupF, c(x) = limessinfrj (X\G and d(x) = linicsssupB u)G. Then, 
e->0 B£(x) £~*0 £^° 

D(&[F],&[G]) = sup{max{|a - c\,\b - d\}}. Similarly, define e(x) = minF(x), 
R 

f(x) = maxF(.T), g(x) = mh\G(x) and Ji(x) = max G(.r). Then, D(F,G) = 

sup{max{|e — g|,|/ — h\}}. In the proof of the following claim, we shall use the 
R 

fact that for jlCR, 

I ess sup A / — ess sup /i| ^ ess sup \f — h\. 
A A 

This is easily verified, so we omit the proof. 

Claim 1: For all x € R, \b(x) - d(x)\ ^ sup | / - Ji\. 
R 

P r o o f of Claim 1 

\b(x) — d(x)\ = |lim ess sup F — lim ess sup (71 
£~+° Be(x) £->° Be(x) 

= I lim ess sup / — lim ess sup h\ 
£~>° Be(x) e->° Be(x) 

^ lim ess sup I/ — h\ 
£->° Be(x) 

^ ess sup 1/ - h\ ^ sup| / - /i|. 
R R 

Claim 2: For ail x G H , \a(x) - c(x)\ ^ sup|e - g\. 
R 
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We omit the proof of Claim 2 since it is similar to that of Claim 1. We now have, 
applying Claims 1 and 2, for all x G U, 

m<xx{\a(x) - c(x)\, \b(x) - d(x)\} ^ max{sup|e - g|,sup|f - h\} 
R R 

= supmax{ |e- g\,\f - h\} 

and thus 
supmax{|a — c\, \b — d\} ^ supniax{|e — cj\, \f — Ji\}, 

R R 

i.e., D(3[F],3[G}) <C D(F,G). D 

Theorem 2. The range of 3: L°° -> 38 is closed and unbounded in (38, D). 

P r o o f . Let {Fn}^Li C 3[L°°] and Fn -> F in (38, D). Lemma 1 implies that 
&[Fn] -> &[F] in (38,D). By Theorem 1, for each n G N, &[Fn] = Fn, hence 
Fn —> J^[F]. Since limits are unique in (38,D), we have F = 3[F]. Also, since 
F G 3S, we have that i) F is upper semicontinuous and ii) there exists M > 0 
such that F(x) C [-M, AI] for all x G R. Thus, applying Theorem 1 to F, we 
have F G ^[L00] and hence 3 has closed range. Now, for each n G N, define 
fn G L°° by /,i(a:) = n, and also define f^ G F°° by foo(-'r) = 0. It follows that 
supD(j^[/n],J^"[/oo]) = oo, and hence the range is unbounded. D 

We now consider the question of whether or not 3 is one-to-one. In [2], the 
following appeared. 

Theorem 3. Let f,g G c€ = {h G L°°: there exists a set Ajx of full measure such 
that h\A is continuous}. If 3[f] = 3[g], then f = g (in L00). 

To complete the one-to-one question, we shall need the following lemmas, the first 
of which is proven, for example, in [8]. 

Lemma 2. Let A C R be Lcbesgue measurable with LIA > 0. Then, there exist 
Lebesgue measurable sets D and E such that D n F = 0 , D U F = A and for all 
s > 0, for all x G A with fi(B£(x) n A) > 0, we Lave both /J(D n B£(x)) > 0 and 
fi(E n B£(x)) > 0. (D and E arc known as "metrically dense" subsets of A.) 

Lemma 3. f G ft if and only if3[f] is a singleton a.e. 

The proof is given in [2]. We are now able to prove the following, which, in a 
sense, tells us that the set c6 in Theorem 3 is the largest subset of L°° on which 3 

is one-to-one. 
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Theorem 4. Let f G L°° \ <€. Then, there exists some g G L°° such that 

m] = &[o] butf^g (in L<*>). 

P r o o f . Define 7 , / : R - • R by 

fix) = l imesssup/ and f(x) = limessinf/. 
£ ~>° Be{x) ~~ £^° BeW 

Since / £ %\ by Lemma 3 there exists a set D C R of positive measure such that 

for all x G D, f(x) < f(x). It follows from Lusin's Theorem that there exists a set 

F with the following properties: 

1) FCD, 

2) F is closed, 

3) 1.1(F) > 0, and 

4) / and / are both continuous relative to F. 

Let A and B be disjoint metrically dense subsets of F such that AuB = F. (Such 

sets exist by Lemma 2.) Define ki,k2: R —> R by 

(f{x) f o r s g F , (f{x) f o r x ^ F , 

fciW = < J(x) for x G A, k2(x) = < /(x) for x e A, 

[ l(x) for x£ B, [ J(x) for I G B . 

Clearly, ki and k2 disagree on F, a set of positive measure. Without loss of 

generality, assume / and k\ disagree on a set of positive measure, and let g(x) = ki (x) 
for ail x en. 

Claim,: &[f] = &[g]. 

Case 1: x £ F. 

Since F is closed, there exists an open interval I C R \ F containing x. We note 

that f(y) = g(y) for all y G I, thus ^ [ / ] (x ) = ^[g](x). 

Case 2: x G F and a; is a point of density of F. 

We want to show 

lim ess sup g = lim ess sup / . 
£-*° B£(x) £~>° B£(x) 

Note that lim ess sup / = f(x) since / is continuous on F, and 
є^° Bє(x)ПF 

lim ess sup / ^ l imesssup/ = f(x). 
£->°B£(x)nF- £->° Be(x) 
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We then have 

lim ess sup g = lim max je s s sup g, ess sup g} 
£~^° B£(x) £->° Be(x)nF B£(x)nF-

^ lim m a x j e s s s u p / , ess sup / } 
£ _ > 0 B£(x)nF B£(x)nF> 

= max{lim ess sup / , lim ess sup / } 
£ _ > 0 B£(x)nF e->° B€(x)nF'-

— f{x) = lim ess s u p / . 
ff->° B£(x) 

For the opposite inequality, we note that for all e > 0 and for all Z C U with 

/i{Z) = 0, we have 

sup g ^ y u P g — sup / ^ / ( T ) , 

I3e(x)\z (B£(i)\z)nA (Be(x)\Z)n>i 

since / is continuous on A and x is a point of density of F. Thus, for all e > 0, 

ess sup # ^ / ( . T ) 

B£(x) and so 

lim ess sup g ^ /(T) -= lim ess s u p / . 
£->° B£(x) £->° B£(x) 

The fact tha t lim ess inf q = lim ess inf /' is handled analogously 
<r->0 B£(x) e-^0 B£(x) 

We note tha t we need not handle Case 3, in which x G F but x is not a point of 

density of F since these form a set of measure zero. The result follows since it can be 

shown tha t if &[f\ and ^[g\ agree on a set of full measure, then <^[f]{x) = ^[g]{x) 

for all x £U. • 

We now investigate whether or not & is continuous. It not only turns out to be 

continuous, but is "Lipschitz," in the following sense. 

T h e o r e m 5. For all f,g G L°°, wc have D(&[f\,&[g\) ^ \\f - g\\. 

The proof is similar to that of Lemma 1, so for brevity, we omit it. Examples can 

be given to show that the Lipschitz constant of 1 is sharp, and also that , in general, 

the inequality cannot be replaced with equality. 

We now investigate other topological properties of &. 

T h e o r e m 6. ^ is not an open map. 
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P r o o f . Let U C L°° be an open ball containing the zero function in L°° (call it 

/ ) . Define F G @ by F(x) = {0} for all x G R. Note that &[f] = F so F G «^[[/]. 

Let c > 0. Define G G 38 by 

f {0} for x ^ 0 
G(x-) = ^ 

\[0, §] fora;-=0. 

Clearly, G lies in the s-ball centered at F. G cannot be in JF[U] since Filippovs 

which agree almost everywhere agree everywhere. Thus, F is not an interior point 

of &[U], so &[U] is not open. D 

T h e o r e m 7. & is not a closed map. (Here, closed map is intended to mean 
images of closed sets arc closed.) 

P r o o f . Let A and R\A be metrically dense in R and let An and Bn, n = 1, 2,..., 

be metrically dense in [?i, n + 1] \ A with An U Bn = [?i, n + 1] \ A and An H Hn = 0. 

For each n G N, define fn G L°° by 

/*(*) - 4 

|Ҷl-fl); v Л (; ? ;) for.г{ř[н,n + l] 

1 + 1 for a; Є [?i,?i + 1]ПA 

1 for x Є An 

0 for x Є I?n 

Then, <?[fn](x) = [0,1 + £]. Define F G 38 by F(x) = [0,1] for all x G R. Clearly, 

&[fn] -> F in (^,.D), but ^ [ / n ] ^ F for each u G N. Let K = {/n}~=i C L°°. 

If ?i y- 7/?., | | /n — /m|| ^ ^. Thus, there can be no Caucliy sequences and hence no 

convergent sequences in K (except, of course, those which are eventually constant), 

so A' is closed. However, F G <^[K] \<9r[K]. Therefore, & is not a closed map. • 

Another property often considered concerning functions is monotonicity. The no

tion of order depends on the particular application. To study monotonicity in this 

more abstract context, we can define a partial order •< on the domain L°° by: 

/ •< g iff f(x) ^ g(x) for almost all x G R 

where / , g G L°°. We next define a partial order on the codomain :i^, which we also 
denote by ^ : 

F X G iff for all x G R, we have both 

niiiiF(.x) ^ minG(x) and maxF(x) ^ maxG(T) 
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where F, G G £8. 

Theorem 8. Let f,geL°°.Iff±g, then &\f\ < &\g\. 

The proof is trivial so we omit it. Although the condition / < g is sufficient for 
&\f\ ^ ^[g]y it is not necessary. Such an example is provided by k\ and k-2 in the 
proof of Theorem 4. 

Theorem 9. ^ is not strictly monotone. 

P r o o f . Let A and U \ A be metrically dense in R and let E and A \ E be 
metrically dense in A. Define / G L°° by 

r 0 for x & A, 

f(x) = I \ for x G E, 

< 1 for x eA\ E. 

Clearly, / is strictly less than g = \A- We note that ^\g\ = [0,1] by the metric 
density of A and Ac. Let x G IRI and e > 0. Metric density implies that the sets 
(R\A)HB£{x) and (A\E)nB£(x) each have positive measure. Thus, <?\f\ = [0,1]. 
Therefore, &\f\ = &\g\. • 
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