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1. INTRODUCTION

The purpose of this work is to investigate the nonemptiness and density properties
of the solution sct of the evolution inclusion
{ —i(t) € 0p(t,x(t)) + ext F(t,a(t)) ae., }

(1) ’L(O) = Zg.

Here ext F(t,z) stands for the set of extreme points of the orientor field F(t,z).
This evolution inclusion is important in control theory, in connection with the “bang-
bang” principle.

First we show that under certain continuity hypothesis on the orientor field F(t,-),
the solution set of the multivalued Cauchy problem (1) is nonempty. Subsequently
by strengthening the hypothesis on F(t,-) to Hausdorff Lipschitz continuity, we show
that the solution set of (1) is a dense, Gs-set (i.e. a residual set) in the solution of

{ —a(t) € Op(t, z(t)) + F(t, z(t)) ae., }

@ 2(0) = xo.

Our work here extends Theorem 4.1 of DeBlasi-Pianigiani [9], who studied differ-
ential inclusions in reflexive spaces, with no subdifferential term present and with
the orientor field being compact (see hypothesis H’, p. 486) or jointly continuous
and satisfying a Lipschitz condition involving the Kuratowski measure of noncom-
pactness (sce hypothesis IV, p. 488). Their hypotheses, preclude the applicability of
their work to partial differential equations with multivalued terms and in particular
to distributed parameter control systems. However, their techniques and methods
are very interesting and have inspired our approach in this paper. Our density result
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extends theorems 5.1 and 5.2 of [21], where the orientor field was of special type
and instead of ext F'(t,x) versus F(t,x) that is considered here, we had F(t,x) ver-
sus COnvF(t,x) (i.e. a standard “relaxation theorem”). In the last section, we use
our result from this paper to establish a “bang-bang” type property for a class of
nonlinear parabolic control systems with control constraints.

2. MATHEMATICAL PRELIMINARIES

Let (2, E) be a measurable space and X a separable Banach space. Throughout
this paper we will be using the following notations:

Ps)(X) = {A C X: nonempty, closed, (convex)}
and  Pruyi(e)(X) = {4 C X: nonempty, (weakly-)compact, (convex)}.

A multifunction (set-valued function), is said to be “measurable” if and only if
for all z € X, the Ry-valued function w — d(z, F(w)) = inf{flz — z||: = € F(w)} is
measurable. Next let (-) be a finite measure defined on (2, X). By ST.1 < p < o0,
we will denote the set of measurable sclectors of F'(+), that belong in the Lebesgue-
Bochner space LP(X); ie. Sk = {f € L?(X): f(w) € F(w) p-a.e.}. In general,
this set may be empty. However, using Aumann'’s sclection theorem (sec for example
Wagner [24], Theorem 5.10), we can easily check that for a measurable multifunction
F: Q — P;(X), the sct S} is nonempty if and only if w — inf{||2]|: € F(w)} € LT

Let o: X = R = RU{+00}. We will say that o(-) is proper if it is not identically
+00. Assume that o(-) is proper, convex and lower semicontinuous (l.s.c.) (usually
this family of R-valued functions is denoted by T'o(X)). By dom ¢, we will denote the
effective domain of ¢(-); i.e. domy = {2 € X: p(x) < +0o}. The subdifferential of
@(+) at z, is the set dp(z) = {2* € X*: (a*,y —2) < ¢(y) — ¢(z) for all y € dom ¢}
(in this definition by (-,-) we denote the duality brackets for the pair (X, X*)). It
is well-known that if ¢(+) is Gateaux differentiable at a point 2 € X, then dp(zx) =
{¢'(x)}. We say that ¢ € To(.Y) is of compact type, if for every A € R, the level
sct {2 € X: ||2]|* + ¢(x) < A} is compact.

Recall that on Py(.X'), we can define a generalized metric, known in the literature
as Hausdortf metric, by sctting for A, B € Pf(X)

(A, B) = max [sup d(a, B),sup d(b, A)]
a€A beB

where d(a, B) = inf{|ja — b||: b € B} and d(b, A) = inf{||b — a||: a € A}. Tt is well-
known (sce for example Klein-Thompson [15]), that the metric space (Pr(X), 1)
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is complete. A multifunction F: X — Py(X) is said to be Hausdorff continuous
(h-continuous), if it is continuous from X into the metric space (Pr(X), /L).

If Y, Z are Hausdorff topological spaces and G: Y — 22\ {#}, we say that G(*) is
upper semicontinuous (u.s.c.), if for every U C Z open, GT(U) = {y € Y: G(y) C U}
is open (see Klein-Thompson [15]).

Now let T = [0,0] and H a separable Hilbert space. By a “strong solution” of
(1) (resp. of (2)), we mecan a function z(-) € C(T,H) s.t. 2(-) is absolutely con-
tinuous on any closed subinterval of (0,0), x(t) € D(A) a.e. on (0,b), x(0) = o
and —i(t) € 0p(t,z(t)) + f(t) a.c. with f € SQF(.,I(_)) (resp. f € S%, F(e(y))- Recall
that an absolutely continuous function z: (0,b) — X is strongly differentiable almost
everywhere, so in the above inclusion z(-) is the strong derivative of z:(-).

Following Yotsutani [26], we will make the following hypothesis concerning (¢, x)
and it will be valid throughout this work:

H(p): ¢: T x H— R=RU/{400} is a function s.t.

(1) forevery t € T, o(t,-) is proper, convex, l.s.c. (i.e. ¢(t, ) € T'o(H)) and
of compact type,

(2) for any positive integer r, there exists a constant I{,, > 0, an absolutely
continuous function g,: T — R with g, € LP(T) and function of bounded
variation /i,: T — R s.t. if t € T, x € dom(t,-) with ||z]] < r and
s € [t, ], then there exists & € dom (s, -) satisfying

12— 2l < lg-(s) = g (I (I (t, )] + K7)*
and (s, ) < @(t, @) + |he(s) = ha(t)|((t, 2) + K;)

where a € [0,1] and B =2if e €[0,1/2) or B=1/(1 - a) if a € [§,1].

Remarks. (a) This hypothesis is more general than the one used by Watan-
abe [25].

(b) If p(t,-) = @(-) € To(H) (i.e. there is no t-dependence) and () is of compact
type, then it is clear that hypothesis H(p) above is automatically satisfied. So The-
orem 3.1 of this paper also improves Theorem 3.1 of Kravvaritis-Papageorgiou [16].

In what follows by S.(zg) (resp. S(zo)) we will denote the set of strong solutions
of (1) (resp. of (2)).
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3. AN EXISTENCE THEOREM

In this section we establish the nonemptiness of the solution set S (2¢) (“extremal
solutions”). To this end we will need the following hypothesis on the orientor field
F(t,z).

H(F): F:T x H— Pyr.(H) is a multifunction s.t.
(1) t = F(t,z) is measurable,
(2) x = F(t,x) is h-continuous,
(3) IF(t,2)] = sup{llyll: y € F(t,2)} < a(t) + B(®) ol ae. with (), A() €
Li.
Hy: xg € dom (0, ).
Let L1 (H) denote the Lebesgue-Bochner space L(H) equipped with the norm

lzllw = sup || f 7)d7 || (“weak norm”). Also from Yotsutani [26], we know
0L<s<th

that given f € LZ(H), the Cauchy problem —i(t) € dp(t, z(t)) + f(t) a.c., x(0) = xo,
has a unique strong solution p(f)(-) € C(T, H). The next proposition establishes the
continuity of p(-) with respect to the weak norm on L?(H).

Proposition 3.1. If{f., f}n>1 C L*(H), fa e fandsup || full L2(y < 00, then
n>1
p(fn) = p(f) in C(T, H).

Proof. First we will show that f, = f in L?(H). To this end let s(-) € L*(H)
be a step function; i.e.

N
s(t) = Z X(te—y,tn) () V-
k=1

Then we have:

N

[(fa = £,9) 2 <>

k=1

</L ) fn - f(S)) ds

r—1

[l

<o = fllw- Z vkl = 0 as N = oo.

k=1

Because step functions are dense in L?(H), we conclude that f, = f in L?(H).
For cconomy in the notation, let z, = p(f,) and x = p(f). Exploiting the mono-
tonicity of the subdifferential operator, we get

(=000 300, 20) = 2a(8) < (8= 10,200 - () ae
= 2 Cllan®) = 2O < 1a6) = SO - J2a(®) = 3(0)] 2

= illl‘n(t) —2(|* < /O 1 fu(s) = F()I - llzn(s) — 2(s) ds .
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Applying Lemma A.5, p. 157 of Brezis [7], we get

lan (t) — 2]l / | fn(s) = f(s)ds

Since f,, = f in L?(H), there exists M; > 0 s.t. || full2, || fll2 < M. So we have
forallt € Tandalln >1

[2n(®)]| < l2lloo +2V0My = Mz < co.

Also from Yotsutani [26] (inequality (7.9), p. 645), we have that there exists M3 >
0 such that foralln > land allt € T

(P(t, In(t)) g AIJ

(the constant Mj depends only on the variation of I (var(h)) and on ||g|lg, M1, zo
and p(0,x0)). Soforallt € T

{2a(®)}nz1 C{z € H: ||2|* + o(t,2) < M + M3 = M4}
= {2,(t)}n>1 is compact in H (recall that (t,-) is of compact type).

Also if s,t € T, s < t, we have

2n(8) = 2a(s)]| = / in(r)dr|| < / lEa(r)]l dr

b b 1/2
_ ) I — . 2
_ /0 Ve (M lén(Dll dr < VETS s( JAEG! dr)

(Cauchy-Schwartz inequality).

But from Yotsutani [26] (see Lemma 6.11, p. 644), we have that

sup ||@nllL2¢n) = Ms < 0.
n>1

Hence we deduce that {x,}n>1 € C(T, H) is equicontinuous.

Thus invoking the Arzela-Ascoli theorem, we have that {z,},>; is relatively com-
pact in C(T, H). Furthermore since {i,}n>1 is L2(H)-bounded, it is relatively se-
quentially weakly compact. So by passing to a subsequence if necessary, we may
assume that x,, — y in C(T, H), while &,, = v in L2(H). It is easy to sec that v = v.

Let ®: L?2(H) = R = R U {+00} be defined by

2(2) = {fo p(t.x®) dt i p(,2()) € L),

+00 otherwise
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(note that from Lemuna 3.4, p. 629 of Yotsutani [26]. for every ©: T — H mecasurable.
t — ga(t,:c(f.)) is measurable). It is well known (sce for example Yotsutani [26],
Lemma 4.4), that

O%(x) = {ve L*(H): v(t) € Dp(t, x(t)) a.c.}.
Theu for every n > 1, we have
[tn, —&n — fu] € Grod.

But recall that Gr9® is demiclosed (i.e. sequentially closed in L?(H) x L*(H),,:
see for example Brezis [7]). Since [, =i, — fo] 5" [y, —y— f] in L*(H) x L2(H), we
have [y, =y — f] € Gr ® = —y(t) € dp(t,y(t)) + f(t) ae., y(0) = x0 = y = p(f) = .
Hence every subsequence of {p(f,,)},>1 has a further subsequence that converges to
p(f) in C(T, H). Therefore p(f,) = p(f) in C(T, H). O

Using this continuity result we can have the following existence theorem for Cauchy

problem (1).

Theorem 3.1. If hypotheses H(p), H(F) aud Hp hold, then the solution set
Se(xp) of (1) is nonecmpty.
Proof. First we will establish an a priori uniform bound for the clements in

S(xo) C C(T,H). So let a(-) € S(xp) and let y(+) € C(T, H) be the unique solution
of the evolution inclusion

{ —y(t) € dp(t,y(t)) a,.e.,}
y(0) = wo.

The existence of y(-) is guaranteed by the result of Yotsutani [26]. As we did in
the proof of Proposition 3.1, by exploiting the monotounicity of the subdifferential

-
]

operator and using Lemma A.5, p. 157 of Brezis [7], we get

(1) — vl < / 17()]l ds < / (a(s) + A(s)(s)) ds

where f € S'f,( and —i(t) € O¢(t, (1)) + f(t) a.c. Hence we have

w2 (4))
@I < llyllcer.m +/0 (a(s) + B(s)lla(s)ll) ds, teT

Applying Gronwall’s inequality, we deduce that there exists My > 0 s.t.if o(-) €
S(ag) and t € T, then
le(®)ll < M.
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Hence without any loss of generality, we may assume that |F(t,z)| < sup{]|y]:
y € F(t,2)} < ¥(t) ac. with () € L2 (just consider instead F(t,z) = F(t,pa, (2)),
with pay, (+) being the M, -radial projection and use hypothesis H(F)(3)). Set B(¢) =
{ue L*(H): |lu@®)]] < ¥(t) a.e.}. Let K = p(B(¥)), where p(-) is the solution map
as in Proposition 3.1. We claim that I is relatively compact in C(T, H). To this
end let z(-) € K and t < t’. We have

(@) =2 < [ to)as < / (902 ds ) / li(s))1 as)

(t’ )1/2]\12

since from Yotsutani [26] (Lemma 6.11), we know that there exists M2 > 0 s.t. for
all 2 € K ||2]|p2(py < Ma. Hencc we have established that K is equicontinuous.

Next let N (1) = {a(t): € K'}. Recall (see Yotsutani [26] (inccuality (7.9),
p- 645)) that there exists ]\13 > 0 depending only on the total variation of &, on
gl s, on ||3]l2, on My, on 2 and on (0, zg), and

o(t,z(t)) < Ms.

Hence K(t) C {x € H: ||lz|> + o(t,x(t)) < M} + M3 = M,} and the latter
is relatively compact in H, since by hypothesis H(¢), ¢(t,-) is of compact type.
Thercfore I\—(t) is compact in H. Thus by the Arzela-Ascoli theorem, we get that
I is compact in C(T, ). Set K = conv. From Mazur’s theorem, we know that
I € P..(C(T,H)). Obscrve that S(z¢) C IK.

Now let R: K — Pyrc(L'(H)) be defined by

R(y) = Sty

Apply Theorem 1.1 of Tolstonogov [23], to get g: J = L} (H) a continuous map
such that g(y) € ext R(y) = S, FCu()) (sec Benamara [6]) for all y € K (recall that
L (H) (lenotcs the Lebesgue-Bochner space L' (H) furnished with the norm ||A||, =

sup || jt I(s)ds|)). Then consider the map v: K — K defined by v = poy.
o<t €

Using Plopo»mon 3.1 above, we get that v(-) is continuous. Apply Schauder’s fixed
point theorem to get y € K s.t. v(y) = y. Clearly then y € Se(xo) = Se(wg) # 0.
O

Remark. Note that ext F(¢,z) need not be a closed set and x — ext F(¢,2) is
not nccessarily a lower semicontinuous multifunction. Hence Theorem 3.1 improves
the corresponding existence results of Kravvaritis-Papageorgiou [16] and Papageor-
giou [21].



4. A BAIRE CATEGORY TYPE THEOREM

In this section we show that the set S.(2o) is residual in S(zq); i.c. it is a densc,
Gs-subset of S(zo). Recall (see Papageorgiou [21]) that S(xo) € P (C(T, H)).

Our approach uses the Choquet function of the orientor field F(¢,x). This method
was used recently by DeDBlasi-Pianigiani [9], who showed that the Choquet theory of
extreme points of compact convex sets, is the right tool in the study of nonconvex
differential inclusions.

So let {z}}x>1 € H, ||z}l = 1 be a sequence which is dense in the unit sphere
of H. Following Choquet [8] and DeBlasi-Pianigiani [9], we define a function 7z :
TxHxH-R=RU{+o00} by

n . 2

Z (z'é;kv) v € F(t,z),
’YF(t1m1U) = k=1

+00 v & F(t,z).

Let Aff(X) = {the set of all continuous affine functions a: H — R}. Let 4p:
T x Hx H— RU{—o00} be defined by

Fr(t,z,v) = inf{a(v): a € Aff(X) and a(z) 2 vr(t, 2, 2) for all z € F(t,x)}.

(As always, inf § = —o00).
Then the Choquet function dp: T x H x H - RU {—o00} corresponding to the
orientor field F(t,z), is defined by

6F(t’ :1:7 'U) = ’?F(t) a:‘l v) - 7F(t7 1"7 v)’

Then next proposition establishes the properties of 6z (¢, x,v) that we will nced in
the scquel (see also DeBlassi-Pianigiani [9], Proposition 2.1, p. 473).

Proposition 4.1. If hypothesis H(F') holds, then

(i) (t,z,v) = dp(t,x,v) is measurable,

(ii) (x,v) = dp(t,z,v) is u.s.c.,

(iii) v — 6p(t,x,v) is concave and is strictly concave on F(t,z),

(iv) 0 < op(t,2,v) < da(t)? +48(t)?||z||* a.e. for all (t,z,v) € Gr F,
(v) Op(t,z,v) =0 if and only if v € ext F(t, x).

Proof. (i) From Theorem 3.3 of Papagecorgiou [18], we know that because
of hypotheses H(F)(1) and (2), (t,z) — F(t,x) is measurable. Hence GrF =
{(t,a,z) € T x Hx H: z € F(t,z)} € B(T) x B(H) x B(H), with B(T) (resp.
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B(H)) being the Borel o-field of T' (resp. of H). Using this fact and the definition of
vr(t, z,v), it is clear that (¢, x,v) = vr(t, @, v) is measurable. Furthermore because
of the closedness and the convexity of the set F'(t,z), it is evident that yg(t,2,-) is a
Ls.c. and convex function. Hence using Lemma 2.1 (i) of Hiai-Umegaki [13], we get
that for every 2* € H

(t.x) = nr(z*)(t,x) = sup [yr(t,z,2) — (z*,2): 2 € F(t,2)]

is a measurable function.
Now obscrve that

Ar(t,@,v) = inf [(z*,v) + nr(z*)(t,2): * € H].

Fix (t,x) € T x H. Then the set F(t,x) equipped with the weak topology is a
compact metrizable set. Let .- (¢,2)(-) = vr(t,z, ) — (z*,-). Our claim is that if
ay > 2 in H, then 6,. (t,2)(-) < 6.« (t,2)(-), where by 5 we denote convergence in
the cpigraphical sense (sce Attouch [1], p. 39). To this end, first note that for every
z € H, we have

(3) 01’,’, (t7:v)(:) = 7F(t,$’z) - ("1":11’3) - "YF(t,(L‘,Z) - (‘T*‘Z) = 01‘(t1w)(z)'
Also if z, = z in F(t,z), then we have

lim 0z (£, 2)(2n) = lim [yp(t, 2, 20) = (2%, 2n)]

2 limyp(t,z, z,) — lim(z), z,).

But yp(t,z,-) being ls.c., convex, is weakly l.s.c. and so we have
limyp(t, @, 20) 2 Yr(t,2,2).
Thus finally we have:
(4) lim 0., (¢, 2)(2n) 2 vr(t 2, 2) = (27, 2) = 02+ (¢, 2)(2).

Hence from (3) and (4) above and the properties of epigraphical convergence (sce
Attouch [1], p. 39), we have that

Oz (t,2)(-) 5 O+ (t,7)(-) as n — 0.
Then invoking Theorem 2.11, p. 132 of Attouch [1], we get
n(z)) (¢, x) = n(x*)(t,x) as n — oo.
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Thercfore if {%,, }n>1 is dense in H, we can write that

*

Ap(t,z,v) = .}111>f1 [(a:m,v) + 7](:L‘:l)(t,ﬂ,‘)]
= (t,x,v) = yr(t,z,v) is measurable

(t,z,v) = dp(t, z,v) is measurable.

(ii) Since by hypothesis H(F), F(t,-) is h-continuous, from the definition of
vr(t,x,v) we can easily check that g (¢, -, ) is continuous on Gr F(¢, -) for the relative
H x H,-topology (here H,, denotes the Hilbert space H equipped with the weak
topology) and also is l.s.c. on H x H. Next recall that

Ap(t,2,v) = inf [(z*,v) + nrp(a®)(t,2): 2* € H].

So to establish the upper semicontinuity of 4r(t,-,-), it suffices to show that
nr(x*)(t,-) is u.s.c. To this end we need to show that for every A € R, the set

Ur={x € H:np(z*)(t,x) 2 A}

is closed in H. So let z,, € Uy and assume z, — 2. Then there exist z,, € F (t,xy)
such that

A < 'YF(tvxmzn) - (-'L'*y zn)~

Since F(t, -) is h-continuous, its support function 2 — U(:*, F(t, 7‘)) = sup [ z*,z2):
z € F(t,ar)] is continuous for every z* € H (just recall by Hormander’s formula
we have L(F(t,z), F(t,y)) = sup [Jo(z*, F(t,2)) — o (2", F(t,9))]: lz*]l < 1]) and
so since F(-,-) is assumed to be Py (H)-valued, we have that F(t,-) is u.s.c. as a
multifunction from H into H,, (sce Aubin-Ekeland [3], Theorem 10, p. 128). Thus
Theorem 7.4.2, p. 90 of Klein-Thompson [15] tells us that |J F(t,xn) € Pur(H).

nzl

. T s v . .
Since {zn}nz1 € U F(t,z,) , by passing to a subscquence if necessary, we may
n=1

assume that z, = z € F(t,z) (since F(t,-) is u.s.c. from H into H, ). Then recalling
that on Gr F'(t,-), vr(t,-, ) is continuous from H x H,, into R, we have

lim ’YF(L Tn, zn) = ’YF(ta-'Ev :)
= A< yp(ta, z) = (2%, 2)
= A <n(a")(t )

= a € U,.
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So indeed the set U, is closed and so we have established the upper semicontinu-
ity of np(x*)(t,-). Thercfore 4r(t,-,-) is u.s.c. on H x H and then so is (z,v) —=
Op(t,x,v).

(iii) Recall that yr(t,x,) is convex. Also since
Ap(t, z,v) = inf [(x*,v) +np(x*)(t,z): a* € H],

we have that 4z (t, 2, -) being the lower envelope of affine functions is concave. There-
forc v = 05 (t,z,v) is concave. Strict concavity on F(¢,a) follows from the fact that
the sequence {x;}k>1 separates points in H.

(iv) First note that from the definition of the function ng(2*)(t, z), we have:
[ (%) (¢, ) =[ p [ve(t z,2) — (.t*,z):zeF(t,m)H
oo * 2
x5,z
sup [z ( k{)k )y _ (x*,2): z € F(t,w)]
k=1 -

oz, F(t,x))?
< —_hr
2k

+o(z*, F(t,2))
k=1

D A Y RGO G LRI

where ,@)] = sup{]|z]|: z € F(t,z)}. So we have:

|AE(t z,v)| = |mf [ x*,v) +yp(a*)(t,x): a* € H]|
< inf [l2*|[(Ilv]l + |F(¢t,2)]) + |F(t,2)]*: 2* € H|
= |F(t, ).

On the other hand, it is clear from the definition of yp(t,z,v) that for all v €
F(t,x) we have
lyr(t,x,0)| < |F(t,2)]%

So finally, we have for (t.2,v) € Gr F

0 < Sr(t,2,0) < et a,0)] + et 2,0)] < 20F(t @) < 4a(t)? + 4802l ae

(v) From part (iii) we know that dpz(¢,x,-) is strictly concave on F(t,2) and
recall that 0 < dr. So from these two facts, we get easily that if dp(t,z,v) = 0, then
v € ext F(t,2). On the other hand from Bauer’s minimum principle (see Holmes
[14], Corollary 2, p. 75) and the definition of 9, we have that if v € ext F(¢,2), then
Fr(t,x,v) = yp(t,2,v) and so ép(t,2,v) = 0. 0O
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Now to prove our Baire category type theorcm, we will need the following stronger
hypothesis on the orientor field F(t, ).
H(F);: F: T x H— Py.(H) is a multifunction s.t.
(1) t = F(t,z) is measurable,
(2) L(F(t,z),F(t,y)) < k)|l — yl|| a.e. with k(:) € L},
(3) IF(t, )] < a(t) + B(t)||z]| a.c. with a, 3 € L.
The next result shows that Se(zo) is residual in S(xo) € P (C(T, H)).

Theorem 4.1. If hypotheses H(p), H(F), and Hy hold, then S.(xg) is a dense
Gs-subset of S(zg).
Proof. Let A >0 and set

Iy = {m € S(xp): /Ob 6p(t,z(t), —z(t) — g(t)) dt < ,\}

where g € L*(H) is such that g(t) € 9p(t,x(t)) a.c. and —2(t) — g(t) € F(t, (1))
a.e. Our claim is that the set Iy is open in S(zg). We will show that S(xg) \ Ty is
closed. Solet z,, € S(zo) \ I'x and assume that @, — 2 in S(2¢). From Lemma 6.11
of Yotsutani [26] we know that {&,}n>1 is L*(H)-bounded. This combined with
hypothesis H(F);(3) tells us that {g,}n>1 is L?*(H)-bounded too. So by passing to a
subsequence if necessary, we may assume that &, — = and g, — g in L>(H). Clearly
z = &, while by using the integral functional ®(-) as in the proof of Proposition 3.1,
and recalling that Gr9® is demiclosed, we get that g € 9®(z) = g(t) € dp(t, (1))
a.c. Also for every h € L?(H) we have

(=Zn = gn, M) L2(my < U(/L,S}(.,I,,V(A))), n>1.

From Theorem 4.5 of [19] we know that o(h,SIF(__I"(‘))) — a(h,SlF(_@(‘))). Hence
in the limit as n = oo, we get

(=2 =g, ) L2y < a(h, 511-'(.,1(.)))
Since h € L?(H) was arbitrary and S}r(, 2()) is closed, convex, we deduce that

= —i(t) — g(t) € F(t,z(t)) a.c.

Furthermore because of Proposition 4.1 (i)-(iv), we can apply Theorem 2.1 of
Balder [4] and get

b
m/b Sp(t,an(t), —n(t) — gn(t)) dt s/ Sp(t,a(t), —a(t) — g(t)) dt
0 0
b
=A< / Sp(t,a(t), —2(t) — g(t)) dt
0
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with g € L2*(H), g(t) € dp(t,z(t)) ae. and —i(t) — g(t) € F(t,z(t)) ae. So
x € S(a9)Tx = Iy is indeed open in S(xp).
Next we will show that

Se(zo) = () T

n>1

where I';, =Ty, Ay = % Using Proposition 4.1 (v), we see that

Se(z0) € (] Tu-

n>1

On the other hand, if x € [ [y, then
nx1

b . 1
0< /0 Sp(t,z(t), —2(t) — g(t)) dt < - foralln > 1
b
= / §r(t,x(t) — @(t) — g(t)) dt =0.
0

Since 0 < 65, we get that dp(t,2(t), —@(t) — g(t)) = 0 a.e. Hence once again
Proposition 4.1 (v) tells us that

—2(t) — g(t) € ext F(t,z(t)) ae.
=> T E Se(.’Uo).

Thus we have shown that S.(z9) = [) Tn; i.e. Se(zo) is a Gs-subset of S(xo).
n>1
) ——C(T,H)
Next we are going to show that S, () = S(z0). From [21] we know that

S(xo) € Px(C(T,H)). Let z(-) € S(zo). So by definition there exists f € S}Z,(,’I(.))
such that —i(t) € dp(t,2(t)) + f(t) a.e., 2(0) = zo. Let K = convp(B(¥)), as in the
proof of Theorem 3.1, € = |K| = sup{||z]|oo: € K} and consider the multifunction
L: K = 2L'UD defined by

[

Ly) = {1 € Sk 0 s 1) = h(B)] < it

+ k(®)l2(t) — y(®)]| ae.}.

A simple application of Aumann’s sclection thecorem tells us that L(-) has
nonempty, closed and decomposable values (i.e. if iy, hy € L(y) and A C T is mea-
surable, we have x ahy + xacha € L(y)), while from Proposition 2.3 of Fryszkowski
(11], we have that L(-) is in addition ls.c. Hence y — L(y) is l.s.c. So applying
Fryszkowski’s continuous selection theorem [11], we get v, : K — L'(H) a continuous

map such that for all § € I{, v.(y) € L(y). Apply Theorem 1.1 of Tolstonogov [23],
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to get we: I — L% (H) a continuous map such that w.(y) € ext R(y) = S! | Pl
and [[ve(y) = we(y)|lw < § forall y € K.

Now let ¢, = % and set v,, = v,, w,, = w,. Let y, € I for which we have
yn = (powy)(y»). Existence of such points is guarantecd by Proposition 3.1 and
Schauder’s fixed point theorem. Since K C C(T, H) is compact (see the proof of
Theorem 3.1), by passing to a subsequence if necessary, we may assume that y,, = y

in C(T, H). Then we have
( — gn(t) + 2(t), z(t) — yn(t)) < (wn(yn)(t) — f(t),a(t) — yn(t)) a.c.

= 5 1 (®) = 2O < [ (w0a(a)(6) = £5).2(5) = () ds
0
S/(; (wn(yn)(s = vn(Yn)(s), 2(s) — yn(s )) ds

+/(wWMﬂ—ﬂﬂw@—%@N®~
0

By construction we have that w,(y,) — vn(yn) e o i L?(H) and since

sup [|wn (Yn) = va(yn)ll 201y < 2[[¢]l2 < 400, we have that w, (yn) — va(yn) 5 0in
n>1

L?(H). So we get

/o (Wi (yn) () — va(yn)(s),2(s) — yu(s)) ds = 0 as n — oco.

On the other hand

/nwﬁl — FOI - ll2(s) = ya(s)]l ds
T+ KO =3 (@)1) - s) = ()] ds
<yt /k@mu yn(s)|I? ds.

So we get

lim /0. (Vn(yn)(8) = f(5),2(s) —yn(s)) ds < /0’ k(s)||z(s) = y(s)||* ds.

n—00

Therefore in the limit as n — oo, we get
¢
o) = 9O <2 [ ks)la(s) - y(s) I ds.
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Invoking Gronwall’s inequality, we get that + = y. Hence y, — = in C(T, H).
Clearly y, € S.(20) and so we have that S, (;L‘O)C(T'H) = S(xo). O

Remark. It is well-known that if instead the orientor field F'(r,x) satisfies
hypothesis H(F'), then the density part of Theorem 4.1 is no longer true. There
is a simple two dimensional counterexample due to Plis [22] illustrating this. So if
instead we assume hypothesis H(F'), then we only have the following weaker version
of Theorem 4.1:

Theorem 4.2. If hypotheses H(yp), H(F) and Hy hold, then Sc.(zo) is a
nonempty, Gs-subset of S(xo).

5. A SPECIAL CASE

Let I{(t) be a moving sct in H which satisfics the following hypothesis:
H(K): K: T — Pi.(H) and there exists v € L3 such that for all 0 < t < t' we have

h(K ('), K(t)) < /tlt v(s)ds.

Let @(t, ) = d5c(y)(2), where djc(4)(¢) is the indicator function of the set I(t); i.e.
dy(r) = 0if 2 € K(t) and 0y (y)(z) = +oo if 2 € I'(t). Then it is easy to sec
that hypothesis H(y) is satisfied with g.(t) = V(¢) = fol v(s)ds, g-(t) = v(t), B =2,
a =0 and I, = 1. Recalling dp(t,x) = 9y (y)(x) = Ni(ry(x), the normal cone to
the set \'(t) at «, Cauchy problems (1) and (2) take the following forimn:

(5) { —@(t) € Ny (¢(t)) +ext F(t,2(8)) ae., }
.'L'(O) = 29

and

(©) { ~#(t) € Ny (x(t)) + F(t,2(t)) a,e.,}

Problems of this form arise in theoretical mechanics in the study of clastoplastic
systems (sec Moreau [17]). When K (1) = I (i.c. the set is time independent), then
the resulting cvolution inclusion is called “Differential Variational Inequality” and
describes dynamical models of resource allocation in mathematical economics (see
Aubin-Cellina 2], Henry [12], Papagcorgiou [20]).
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If by Se(xo) (resp. S(zo)), we denote the solution set (5) (resp. of (G)), then from
Theorem 4.1, we get:

Theorem 5.1. If hypotheses H(K') and H(F); hold and xy € K'(0), then S (o)
is a dense Gs-subsct of S(zg).

6. AN APPLICATION TO CONTROL SYSTEMS

In this section using Theorem 4.1, we obtain a “bang-bang” property for a class
of nonlinear parabolic optimal control systems.
So let Z C RY be a bounded domain with boundary ' =9Z and p > 2, 8 > 0.

dr

ot

Mz

o (alt, )| S22 52) + Pafa]p~* =
k 1

1) = f(t,z,2(t,2)) + (b(t, 2),u(t, z)) a.c.,
= 0’

z(0, z) = zo(2), ‘El'rxl‘

u(t,z) € U(t, z) a.e., u(-,-) is measurable.

In addition to (7), we also consider the following system in which admissible are
only the “extremal” (“bang-bang”) controls.

N
5 _kg .(“(' ”)|a‘k [P~ za%) + falz|P—? =

®) = f(t,z,z(t,2)) + (b(t, 2),u(t, 2)) ac.,
x(0,2) = zo(2), :L'|Tx1, =0,
u(t,z) € ext U(t, z) a.e., u(-,-) is measurable.

We will need the following hypotheses on the data of (7):
H(f): f:TxZxR— Ris a function s.t.
(1) (t,2) = f(t,z,x) is measurable,
2) |f(t,z,z) — f(t,2,9)| < k(t,2)|lz — y| a.e. with k(-,-) € LY(T x Z),
(3) |f(t,z,2)] < alt,z) + B(t,2)|z| ae with « € L*(T x Z), B €
L>(T,L*(Z)).
H(a): a:T x Z — Ris afunction s.t. 0 < my < a(t,z) < my, |a(t,z) —a(s, 2)] <
17(2)|t — s| a.e. with (-) € L>(2).
H(): be L=(T x Z,RY).
HU): U:T x Z — Pi.(R") is a measurable multifunction s.t. |U(¢t, z)| = sup{|lu||:
w€e U(t,z)} <O(t) ac. with () € L*(Z).
In the partial differential equation (b(t, z),u(t, ;)) denotes the inuer product in R
of the vectors b(t, z) and u(t, ).
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As before by S(xg) (resp. Se(ro)) we denote the set of admissible state trajectories
of (7) (vesp. of (8)). We have that Se(xo) C S(xo) C C(T,L*(2)).

Theorem 6.1. If hypotheses H(f), H(a), H(b), H(U) hold and zo(-) € W, *(Z),
then Se(zo) is a dense Gg-subset of S(xo).

Proof. Let H = L?(Z) and define ¢: T x H - R = RU {+00} by
z Jpat, 2=+ L [, lalrdz ifz € WyP(2),
p(t,x) = -
+00 otherwise.
Clearly ¢(t,-) € I'o(H) and note that
{z € H: |lz|l3 + o(t,x) <A}

is bounded in Wy?(Z). Since WyP(Z) embeds into L2(Z) compactly (Sobolev’s
embedding thcorem), we see that o(t,-) is of compact type. Furthermore using

N P
hypothesis H(a) and recalling that ( Iz 2| é?fk |P dz) is an ecuivalent norm on
k=1

Wy"(Z), we get that o(t, z) satisfies hypothesis H (). Then as in Barbu [5], we can
check that

2 0z
0z

=2 + BaleP? = L5 ()

with x € D, = {y € Wy?(2): LE(y) € L*(Z) = H}.

Also let U(t) = {v € L3(Z, R’) v(z) € U(t,2) a.c.}. Because of hypothesis H(U),
U:T - Pwkc(Ll(Z, R!)) is measurable and |U(t)| = sup{||v|lz: v € U(t)} < 6(t)
a.c. with §(-) € L2. From Benamara [6] we know that extU(t) = {v € L2(Z, R!):
v(z) € extU(t, 2) a.e.}.

Let f: T x H — H be the Nemitsky operator corresponding to f(t,z,x) (i.c.
ft2)() = f(t,,z())). It is well-known that f(t,-) is continuous, while if I €
H, then (f(t,z),h)L:(Z) = [, f(t,z,2(z))h(z)dz. So by Fubini’s theorcin, t —
(f(t,:v), h)L2(Z) is measurable = ¢t — f(t,z) is weakly measurable and since L2(Z)
is separable, by the Pettis measurability theorem (see for example Diestel-Uhl [10],
p. 40), we get that t — f(¢, ) is measurable from T into L*(Z) = H. Then define
F:Tx H — Py.(H) by

F(t,2) = f(t,a)+ (J (b)), u())

wel(t)



where b(t)(-) = b(t,-) € L=(Z,R). As for f(t,x), via the Pettis measurability
thecorem, we can check that ¢ — l;(t) is measurable from T into L?(Z,R'). So
(t,u) = w(t)u = (I;(t)(),u()) from T x L?(Z,R') into H is clearly measurable in
t, continuous in u, hence jointly measurable. Since U () is measurable, we can find
Gin: T — L*(Z,RY)n > 1 measurable maps s.t. U(t) = {n(t) }n>1 (sce Wagner [24],
Theorem 4.2). Then for any h € H we have

o(h,F(t,z)) = ( f‘(t,x),h)mz) + sup (w(t)an(t), 1) 2z,

=t — o(h, F(t,z)) is measurable.

But note that GrF(-,2) = () {z € H: (hm,2) < o(hm,F(t,x))}, where

m21

{lm}m>1 is dense in H. So Gr F(-,z) € B(T) x B(H) = t — F(t,2) is mcasurable
(sec Wagner [24]). Also note that because of hypothesis H(f)

h(F(t,2), F(t,y)) < kDlle —yll2
with k(t) = k(t,-). Finally we also have
|F(t,z)] < &(t) + B(t)l|z]| ae.

with a(t) = ||a(t, -)||L2(Z),B(t) = |18t )2z € L%. So we have satisfied hypoth-
esis H(F);. Using Aumann’s sclection theorem (see Wagner [24], Theorem 5.10),
we can easily check that (7) is equivalent to the following evolution inclusion (de-
parametrized (control-free) system):

{ —&(t) € Op(t, z(t)) + F(t,z(t)) ae., }

LE(O) = .’f,‘() = CII()()
Similarly the equivalent evolution inclusion formulation of (8) is the following:
—i(t) € dp(t, z(t)) +ext F(t,2(t)) a.e., }
z(0) = 2o = wo(").

Applying Theorem 4.1, we get that S.(x¢) is a dense G-subset of S(xg). O

Remark. If for almost all (¢,z), U(t, z) has a finite set of extremne points, then
Theorem 6.1 above tells us that we can approximate any trajectory of (7) in the
C(T,L?*(Z))-norm, with states generated by admissible controls that take only a
finite number of values.
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