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(Received December 23, 1992) 

1. INTRODUCTION 

In this paper we are concerned with the oscillatory behavior of forced neutral 
differential equations of the form 

(1.1; 5) ^(x(t)+px[t + 6a])-q(t)f(x[g(t)])=e(t), 

(1.2; S) ±(x(t)+px[t + 6a])+q(t)f(x[g(t)])=e(t), 

and 

(1.3; 5) ^(x(t)+px[t + 6a])+q(t)f(x[g(t)])=e(t), 

where 6 = ± 1 , p and a are nonnegative real constants. The functions e, g, q: 
[t0,oo) -» R, t0 ^ 0 and / : R -> R are continuous; q(t) ^ 0 and is not identically 
zero on any ray of the form [t*, oo), t* ^ t0. The function g is such that lim g(t) = oo 

t—yoo 

and / satisfies the condition xf(x) > 0 for x 7- 0. 
By a solution of the equation (1.i;o"),i = 1,2,3, we mean a function x: [Tx, oo) —> 

R such that x(t) +px[t + 6a] is continuously differentiable and satisfies ( l i ; 6) for all 
t ^ Tx. A solution x(t) of (l.i; 6) is called oscillatory if it has arbitrarily large zeros. 
Otherwise it is called nonoscillatory. Equation (l.i;6) is said to be oscillatory if all 
of its solutions are oscillatory 

Now we list two assumptions which are needed below: 
There exists a function 77 € Cl[t0, oo), i = 1, 2 such that 

d{ 

(1.4; i) dtr^ri^ = e ^ ' ^ iS o s c i l l a t o r v ' 

* The research was started during the summer of 1992 while this author was visiting the 
University of Saskatchewan as a visiting Professor of Mathematics. 
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(1.5) rj is periodic of period o i.e, n(t ± o) = rj(t) for all t and o. 

The oscillatory behavior of neutral equations of the type (l.i;6) with e(t) = 0 has 
been extensively studied by many authors, see, for example [1], [2], [5], [6], [11] and 
[12], and the reference cited therein. When p = 0 Kartsatos ([7], [8]) obteined some 
criteria for (1.3;6), however, for the case when py-0 , very little is known. Therefore 
the purpose of this paper is to establish some oscillation criteria for (l.i;<$), i = 1, 
2 ,3 . 

2. OSCILLATION OF EQUATIONS (l.i',6), i = 1, 2. 

In this section we establish some sufficient conditions under which equations 
(l.z; (J), i = 1, 2 are oscillatory. 

Theorem 2 .1 . Let condition (1.4; 1) hold. If 

(2.1) limsupr7(£) = oo and liminf rj(t) = — oo, 
t->oo £ ->°° 

then all bounded solutions of Eq. (1.1; 6) are oscillatory. 

P r o o f . Let x(t) be a bounded and nonoscillatory solution of Eq. (1.1;6) and 
assume that there exists a to ^ 0 such that 

rr(*) > 0, x[t + 6o]> 0 and x[G(c)] > 0 for t^ t0. 

Define 
y(r) = x(t) + px[i + 6o] and *(*) = y(£) - rj(t). 

Then Eq. (1.1;5) takes the form 

z'(t) = q(t)f{x[g(t)]) > 0 for t> t0, (' = ^ ) . 

It follows that z(£) is an increasing function on [£0,oo). We show that z(t) > 0 for 
t ^ T for some 71 ^ i0. If not, then z(t) < 0 for t ^ ^i, for some ^ ^ ^0. Hence 

y(t) - i](t) < 0, that is, y(t) < rj(t) for t ^ t u 

which is a contradiction, since rj(t) is oscillatory and y(t) is positive. Thus, we have 

(2.2) z(t) > 0 and z'(t) > 0 for t^ T. 

Taking limit superior y(t) > rj(t) we have 

limsupu(£) > lim sup rj(t) = oo, 
t—><x> t—>-oo 

which contradicts the fact that y(t) is bounded. This completes the proof of the 
Theorem. • 
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Our next result is for Eq. (1.2;o*). 

Theorem 2.2. Assume that conditions (1.4; 1) and (2.1) are satisfied. Then 
Eq. (1.2; 6) is oscillatory. 

P r o o f . Let x(t) be a nonoscillatory solution of Eq. (1.2;S). We may (and we 
do) that x(t) is eventually positive. There exists a to ^ 0 such that x(t) > 0 and 
:r[G(£)] > 0 for t ^ t0. With functions y(t) and z(t) defined as before we have 

z'(t) = -q(t)f{x[g(t)]) < 0 for t ^ t0. 

This implies that z(t) is eventually of one sign. As in the proof of Theorem 2.1, we 
have z(t) > 0. Thus 

(2.3) z(t) > 0 and z'(t) < 0 for t ^ T. 

Since z(t) + n(t) = y(t) > 0, we have z(t) ^ -r](t). From which it follows that 

\imsupz(t) ^ limsup ( - r](t)) = - l iminf r](t) = oo, 
t-)-oo t-+oo t->oo 

which contradicts the fact that z(t) is bounded above. Thus the proof of the Theorem 
is complete. • 

For illustration purposes we provide the following examples. 

E x a m p l e 2.1. Consider the forced neutral differential equation 

(2.4; 5) ± (x(t) + px[t + 6a}) - ^ ^ - 2 ^ ^WT sgn x[g(t)} 

= tcost + sin£, t > 0, 

where 6 = ± 1 , p and a are nonnegative real numbers, a is a positive constant, g\ 
[to, oo) —> R is continuous and lim g(t) = oo. If we choose rj(t) = t sint, then all the 

t—i>oo 

hypotheses of Theorem 2.1 are satisfied and hence every bounded solution of (2.4; S) 
is oscillatory It is easy to verify that the corresponding unforced equation 

(2.5;*) ^(x(t)+px[t + 6a}) = i i ± ^ ! l | ^ ! | a : [ 5 ( t ) ] r sgnx[g(t)) 

has a bounded nonoscillatory solution x(t) = 1 — e~*. 
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E x a m p l e 2.2. Consider the forced neutral differential equation 

(2.6; 6) ^-(X(t)+px[t + 6a)) + (I + pe-^e^^x^tW sgnx[g(t)) 

= et(smt + cost), t ^ 0, 

where 6 = ± 1 , a, a are nonnegative constants, a > 0; g: [to,oo) -> R is continuous 
and g(t) —•> oo as t -> oo. Here, we choose rj(t) = e 'sint and find that all the 
conditions of Theorem 2.2 are fulfilled. Thus (2.6; 6) is oscillatory. We also note that 
the corresponding unforced equation 

(2.7; 6) ^(x(t)+px[t + 6a]) + ( l + p e - ^ ) e ^ W - ' | x b ( t ) ] | t t 8 g n x b ( t ) ] 

= 0, t > 0 

has a nonoscillatory solution x(t) = e - t . 

R e m a r k 2.1. From these examples it is evident that the presence of a forcing 
term can generate oscillations in an otherwise nonoscillatory equation. 

The following theorem is concerned with the oscillatory behavior of the superlinear 
equations (1.1; 6) i.e., the equation when the function / satisfies the condition 

±oo 

(2.8) f'(x) ^ 0 for x ^ 0 and / -TT^T < OO, E > 0. 

J f\u) 

For convenience we introduce the following notation: 

A(g,p) = {te [t0, oo): g(t) > t + f5 > to}, 
where 0 is a nonnegative constant. 

Theorem 2.3. Suppose that conditions (1.4; 1), (1.5) and (2.8) are satisfied. If, 
in addition 

(2.9) j q{s) = 00 

holds, then, 
(i) equation (1.1; —1) is oscillatory provided 0 ^ p < 1 and 0 = 0; 
(ii) equation (1.1; 1) is oscillatory provided p > 1 and /3 = a. 

P r o o f . Let x(t) be a nonoscillatory solution of Eq. (1.1; 6) which is such that 

x(t) > 0, x[t + 6a) > 0 and x[g(t)) > 0 for t> t0 ^ 0. 
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With y(t) and z(t) as defined in the proof of Theorem 2.1 we obtain (2.2). We 
consider two cases. 
Case 1: S = - 1 and 0 ̂  p < 1. 

From the definition of z(t) we have 

x(t) = z(t) + r)(t) - p(z[t -a}+ r)[t -a}- px[t - 2a]). 

In view of the fact that r) is periodic and z is increasing, it is possible to choose t\ 
such that 

(2.10) x(t) > (1 -p){z(t) +T)(t)), t>t\> *0. 

There exists a T ) t i such that 

(2.11) x(t) >(l- p){z(t) + r)(T)) = £\(t), t > T. 

Clearly 

and 

1 -p 

6(ť) = ( l - p ) ( z ( ť ) + í7(<)) 
џ{l-p)(z(T)+r,(T)) 

> 0 foг t >- T. 

Case 2: 6 = 1 and p > 1. 

Once again, from the definition of z(t), we have 

x(t) = -(z[t -a]+ r)[t -a]- x[t - a]) 

= - (z[t -a]+ r)[t -a]- -(z[t - 2a] + r)[t - 2a] - x[t - 2a])Y 

Using (1.5) and (2.2), as was done before, we choose a sufficiently large t{ ^ to such 
that 

(2.12) X(t)>^fi(z[t-a] + r)[t-a]), t>t\. 

There exists T\ ^ t\ such that 

(2.13) x(t)Z^(z[t-a] + r)[T\-a]) = Z2(t-a), t>T\. 
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As in the case 1, we have 

z'(t) = JLr&(t) a nd 6 W > 0 , t^Tx. P~ 1 

In view of (2.11) and (2.13), Eq. (1.1;S) reduces to 

(2.14) £i(t)>l<l(t)f(Zi[g(t)-(3]) ^ F ^ m a x l F , ^ } , i = l,2, 

where 

1 - p , /3 = 0, if i = 1; 

(2-15) 7 = < P-l 

p2 -, ß = a, if i = 2. 

Divide (2.14) by /(&(*)) and then integrate over D = A^) U [T*,t]. Since & is 
nondecreasing, we have £i[g(t) — ft] ̂  £i(t), i = 1, 2, on the set I). Hence 

/?(S))d>>7/'(s ,d*-
T 

Now Letting M o o we get 

oo 

/< . («)<-.> 7 / - ^ < 00, 

D Zi(T*) 

which contradicts (2.9). This completes the proof of the Theorem. • 

In the following theorem we deal with the case when (1.1; 6) is almost linear i.e., 
when / satisfies the condition 

(2.16) ^-^M for x 7-0. 
x 

Theorem 2.4. Suppose that g(t) ^ t + /? and that g'(t) ^ 0 for t ^ t0. Further­
more, let conditions (1.4; 1), (1.5) and (2.16) hold. If 

g(t)-P 

f 7* 
(2.17) liminf / q(s) ds > —, /?, 7* are positive constants, 

t-+oo J e 
t 

then 
(i) equation (1.1; — 1) is oscillatory provided 0 < p < 1, 7* = M(I -P) > ^ ~ 0; 

2 
(ii) equation (1.1; 1) is oscillatory provided p > 1, 7* = M / [ _ ), (3 = a. 
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P r o o f . Suppose that Eq. (1.2;6) has a nonoscillatory solution x(t) which is 
eventually positive i.e., there exists a t0 such that 

x(t) > 0, x[t + 6a]> 0 and x[g(t)] > 0 for t^ t0. 

With y and z as defined in the proof of Theorem 2.1. we obtain (2.2) and then 

(2.18) z'(t) = q(t)f(x[g(t)]) for t > t0. 

Use (2.16) in (2.18) to get 

(2.19) z'(t) ^ Mq(t)x[g(t)] for t ^ t0. 

Now we consider two cases: (1) 6 = - 1 and 0 ^ p < 1; (2) 6 = 1 and p > 1. 
Proceeding as in the proof of Theorem 2.3 we get (2.11) and (2.13) respectively. 
Next we use (2.11) and (2.13) in (2.19) and obtain 

(2.20) £ ( 0 ̂  6q(t)£i[g(t) - 0\ for some T* ^ t0. 

where 
r M ( l - p ) , 0 = 0, i f i = l ; 

0 = < p-1 
| M - ^ - , /3 = <T ifi = 2. 

However, condition (2.17 implies that inequality (2.20) has no eventually positive so­
lution (see analogous result in [10])), which is a contradiction. The proof of Theorem 
is now complete. • 

R e m a r k 2.2. 1. Theorems 2.3 and 2.4 are applicable to equations of the type 
(1.1; 6) where the argument g is of either advanced or of mixed type. 

2. The results of this section can be extended to more general equations of the 
form considered in [6]. 

The following examples are illustrative. 

E x a m p l e 2.3. Consider the neutral superlinear differential equation 

(2.21; <J) -r-(x(t) + px[t + 2K6]) - -\x[t + s'mt + /3]\X sgnx[t + s'mt + (3] 

= cost, t ^ 2TI and A > 1, 

where S = ± 1 , p and /3 are nonnegative constants. We let rj(t) = sine. For (5 = 0 or 
2TC we note that 

(2m+l)K 

/ q(s)ds = ds = ^ / - d s =oo . 

A(g,0) m = = 1 27-m 
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We apply Theorem 2.3 to (2.21; S) and conclude that 
(i) equation (2.21; -1 ) is oscillatory provided 0 ^ p < 1 and (3 = 0; 
(ii) equation (2.21; 1) is oscillatory provided p > 1 and 0 = 2K. 

E x a m p l e 2.4. Consider the neutral linear differential equation 

(2.22; S) — (x(t) + px[t + 2KS}) - px \t -f- -^-1 = cos t, t^O 

where S = ± 1 , p is a nonnegative constant and a G {1,2,5,9, . . .} . Here we take 
rj(t) = sinf and apply Theorem 2.4 to (2.22; S) to conclude that 

(i) equation (2.22; -1 ) is oscillatory if 

0 ^ p < l and p ( l - p ) y > - , a G {1,5,9, . . .}; 

(ii) equation (2.22; 1) is oscillatory if 

'>'• (~)(Y^)>h «<»••-•>• 
We note that (2.22; S) has a oscillatory solution x(t) = s'mt. 

3. OSCILLATION OF EQUATION (1.3;S) 

In this section we establish some oscillation criteria for second order neutral equa­
tion (1.3; S). 

Theorem 3.1. Let condition (1.4; 2) hold. If 

(3.1) limsup = co and liminf = — oo 
t-*oo t t->oc t 

then (1.3; S) is oscillatory. 

P r o o f . To the contrary, suppose that (1.3; S) has a nonoscillatory solution x(t) 
which is such that 

x(t) > 0, x[t + 6cr]>0 and x[g(t)} > 0 for t ^ £0-

With y and z, as defined in Theorem 2.1, we have 

(3.2) z"(t) = ~q(t)f(x[g(t)}) ^ 0 for ^ t0, 
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and as shown in the proof of Theorem 2.1 we have z(t) > 0 for t ^ t0. Hence, by 
Kiguradze's lemma [9], there exists a ti ^ t0 such that z'(t) > 0 for t ^ £i. Thus we 
have 

(3.3) z(t) > 0, zf(t) > 0 and z"(t) ̂ 0 for t^ t0. 

From (3.2) it is easy to verify that there exist a constant M > 0 and t2 ^ £i such 
that 

(3.4) z(t) < Mt for t ^ t2. 

Now, 
*(£) + 7](t) = y(t) = x(t) + p:r[£ + <kr] > 0 for t > T2 

or 

— - > — for £ ^ t2-

Taking limit superior on both sides of the above inequality, we get 

lim sup ^ lim sup ( ) = — lim inf - = oo, 
t->oo t t-yoo ^ t / t—voo t 

which contradicts (3.4). The proof is now complete. • 

Now we study the oscillatory behavior of (1.3; 6) via comparison with a second 
order functional differential equation whose oscillatory character is known and which 
has been studied extensively in literature. 

Theorem 3.2. In addition to (1.4; 2) and (1.5), assume that f'(x) ^ 0 for i / 0. 
If the equation 

(3.5) V"{t)+fq{t)f{v\s'{t)])=0, 

is oscillatory, where g*(t) = min{t,g(t) — (3} and is nondecreasing for t ^ t0 (y, f3 
are constants, defined below), then 

(i) equation (1.3; — l j is oscillatory provided 0 ^ p < 1, j = 1 - p and /3 = 0; 
(ii) equation (1.3; 1) is oscillatory provided p > 1, 7 = £ - ^ and 0 = <r. 

P r o o f . To the contrary, suppose that (1.3; 6) has a nonoscillatory solution x(t) 
which is such that 

x(t) > 0, x[t + Scr] > 0 and x[g(t)} > 0 for t ^ t0. 
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With y and z, as defined in Theorems 2.1 and 3.1, we have (3.2) i.e., 

zft(t) = -q(t)f(x[g(t)}) ^ 0 for t>t2. 

Since z(t) is an increasing function and r)(t) is periodic of period <r, we proceed as in 
the proof for the two cases considered in Theorem 2.3 and obtain (2.11) and (2.13). 
Using (2.11) and (2.13) in equation (3.2) we get 

i'l(t) + iq(t)f{ii[g(t) -P})^0 for t>T*> *2, 

or 

where 

£'(*) + 79W/(fi[í/*(í)]) O -or t ž T* > í2, 

1 - p, 0 = 0, if i = 1; 

p - 1 

p2 
/? = <т, if ѓ = 2. 

As shown by Foster and Grimmer [1] the equation 

Zi(t)+yq(t)f{Zi[g*(t)}) = 0 iovt>T*>t2, i = 1,2, 

has a positive nonoscillatory solution, which is a contradiction. Thus the proof of 
the Theorem is complete. D 

The following examples are illustrative 

E x a m p l e 3.L Consider the forced second order neutral differential equation 

_ A 

(3.6;*) ^ { x { t ) + P 4 t + Sa]) + i^(^ + ¥ ^ ^ ) 

x(\x[g(t)]\x) x sgnx[g(t)] = ce'cosf, A > 0, t > K, 

where 6 = ± 1 , c, p and a are non-negative constants, g: [to, oo) —•> (0, oo) is contin­
uous with lim g(t) = oo. If c = 2 we take rj(t) = e^sin^. Thus, all the conditions 

t—y<x) 

of Theorem 3.1 are satisfied and hence (3.6; J) is oscillatory We note that if c = 0, 
(3.6; S) has a non-oscillatory solution x(t) = y/t. 

E x a m p l e 3.2. Consider the forced second order neutral differential equation 

(3.7;*) 
d2 

— (x(t) +px[t + 2Ti6})+q(t)(\x[g(t)}\x)sgnx[g(t)} = - s ine , t > 0, A > 0, 

where 5 = ± 1 , p is a non-negative constant, a, g: [to,oo) —J> R are continuous, q(t) ^ 
0 and not identically zero on any ray of the form [ r , oo), t* ^ t0 and lim g(t) = oo. 

t—>-oo 
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We choose rj(t) = sin£ and apply Theorem 3.2 to conclude that (3.7; 5) is oscillatory 
if the second order equation 

(*) y"(t) + iq(t) {\y[h(t))\x) sgny[h(t)} = 0, t > 0, A > 0 

is oscillatory. Here we have h(t) = min{t,g(t) — /3}, and h'(t) > 0 for t > 0, and 

1 - p , /3 = 0, if 5 = —1, ( K p < l ; 

7 = < P-1 
p2 

/3 = 2к, ifй = l, p > l . 

According to results in [4] (specialized to (*), for example, Theorem 5) (3.7; 6) is 
oscillatory if p € (0,1) U (1, oo) and one of the following conditions is satisfied 

(i) A > 1 and / °° h(s)q(s) ds = oo; 
(ii) A = 1 and there exists a differentiable function Q: (to,oo) —> (0,oo) such that 

(e'(s))2 

to 

(hi) 0 < A < 1 and / °° (h(s))Xq(s)ds = oo. 

From example 3.1 it is clear that the forcing term can generate oscillations, while, 
in example 3.2 we note that the periodic forcing term can preserve oscillations. 

R e m a r k 3.1. 1. It is easy to verify that all of our results remain valid when 
p = 0. Moreover, the conclusions of Theorems 2.3, 2.4 and 3.2 remain valid even 
when e(t) = 0. 

2. Theorems 2.1, 2.2 as well as other results of section 3 are applicable to equations 
of the type (l.i;o*), i = 1, 2, 3 for any type of deviating argument a, retarded, 
advanced or of mixed type. 

3. The forcing term considered in this paper need not be "small" as is the case in 
[7], [8] and the references cited therein. 

4. The results of this paper are extendable to higher order neutral differential 
equations of the form 

— (x(t)+px[t + 6a])±q(t)f(x[g(t)]) = e(t), n > 3. 
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