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Czechoslovak Mathematical Journal, 44 (119) 1994, Praha 

ON ABELIAN GROUPS BY WHICH BALANCED EXTENSIONS 

OF A RATIONAL GROUP SPLIT II 

LADISLAV BlCAN, Praha, and LASZLO FUCHS, New Orleans 

(Received November 16, 1992) 

Let I? be a proper subgroup of the additive group Q of the rational numbers that 
contains Z, and let t denote its type. In an earlier paper [BF] we proposed the 
problem of finding all torsion-free abelian groups A—which we called R-groups— 
such that 

B e x t ^ i t ) = 0 . 

Here Bextl(A, R) stands for the group of all balanced extensions of R by A. In 
[BF] those R-groups A were described whose elements had types $J t. This paper is 
a continuation of [BF] and is devoted to the discussion of the general case: here no 
assumption is made concerning the types of elements in A. 

It should be pointed out rightaway that in view of the recent results contained 
in Fuchs-Magidor [FM], the main theorems in [BF] can be stated more generally, 
without putting the restriction that the P-groups with elements of types ^ t have 
cardinality ^ N^. In particular, Lemma 6.2 and Theorem 7.1 hold for all cardinals K 
whenever V = L is assumed. In other words, V = L implies that a torsion-free group 
of arbitrary cardinality whose non-zero elements have types $J t is an R-group if and 
only if the group A (see below) is a Butler group. 

In the present paper, the subgroup A**(t) generated by all the elements in A whose 
types are either > t or are incomparable with t plays an important role. Assuming 
V = L, completely satisfactory results will be obtained for arbitrary .R-groups A in 
case there is a separative chain from A**(t) to A, e.g., if A**(t) is countable or is a 
balanced subgroup in A. More specific results can be stated on groups in which the 
types of elements are comparable with t, in particular, if all their types are ^ t. 
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1. MAIN LEMMAS 

All groups in this paper are torsion-free abelian groups. As customary, \(a)^(a) 
will denote the characteristic and the type of an element a in a given group G. We 
shall also use the notation n = {primes p \ pR = R} and n' = {primes p \ pR ^ R}. 

Let A = A 0 RQ be the localization of A at the collection of primes 7r'; here It^o 
denotes the group of all rational numbers whose denominators are divisible only by 
primes in n. Lemma 1.6 in [BF] states: 

1.1. Lemma. A torsion-free group A is an R-group if and only if A = A® RQ is 

an R-group. 

We shall write A**(t) for the subgroup of A which is generated by all the elements 
in A whose types are either > t or are incomparable with t. Note that always 
A**(t)®Ro = (A®Ro)**(t). 

The following example shows that A = A**(t) is not sufficient to ensure that A is 
an I?-group. 

1.2. Example. Assume that R{ (i = 1,2,3) are rational groups of types t; > t, 
where ti n t2 = t i n t3 = t2 n t3 = t. Let C = RiXi 0 R2x2 © R3X3, and let 
B be the pure subgroup of C generated by the element x = xi 4- x2 4- x3. Thus 
t(H) = t. Then the group A = C/B satisfies A = A**(t). It is readily checked that 
0 — r £ ? - > C — r A - 4 0 i s a balanced-projective resolution of A which is not splitting. 
Hence A is not an H-group. 

The following lemma is most useful. 

1.3. Lemma. In any R-group A with A = A, A**(t) is a pure subgroup. 

P r o o f . Suppose that A = A is a torsion-free group, and a £ A**(t) is an 
element in the purification of A**(t) in A. Then necessarily t(a) ^ t. Evidently, 
a can be chosen such that we can find a prime p and an element r G R with p 
not dividing either o o r r . Since A/pA is an elementary j9-group, we have A/pA = 
(a + pA) 0 A'/pA for some subgroup A' of A of index p that contains A**(t). Define 

G = (R®A',r/p + a). 

v. This group fits into the exact sequence 0 - ) i ? 4 G 4 / 4 - > 0 where <D acts 
as the identity on A' and maps the additional generator of G onto a. Note that 
G**(t) = A**(t), while the elements of A' not in A**(t) retain their types in G. 
The generator r/p 4- a has the same type as a. Hence it follows that, under <p, each 
element of A has a preimage of the same type, so the sequence is balanced. By 
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way of contradiction, suppose that it splits, say, G = R © C for some subgroup G 
of G. As A**(t) is generated by elements of types > t and of types incomparable 
with t, we have Hom(A**(t),R) = 0. This shows that G**(t) is fully invariant in G, 
consequently, G**(t) = G**(t) HI?© G**(t) 0 G. Hence G**(t) ^ G follows. But 

then also a € C, whence r/p + a G G implies r/p G -R, a contradiction. We conclude 
that .4 can not be an R-group. D 

We can now prove another relevant property. Note that by the preceding lemma 
the factor group A/A**(t) is torsion-free whenever A = A. 

1.4. Lemma. If A = A is an R-group, then all non-zero elements of the factor 

group A/A**(t) have types ^ t. 

P r o o f . If not, then there exists a pure subgroup B of A that contains A**(t), 
but not as a summand, and B/A**(t) is of rank 1 but not of type < t. There is 
an element a G B\ A**(t) such that for some prime p G 7r',p does not divide a but 
divides the coset a + A**(t); note that a has type ^ t. 

Define the subgroup A' and the group G in the same way as it was done in the 
proof of (1.3). As above, it follows that A**(t) = G**(t), and the additional generator 
r/p + a has the same type as a. If G = R © C for some subgroup G of G, then as 
above we obtain G**(t) ^ G. Hence G/G**(t) = (R + G**(t))/G**(t) © G/G**(t). 
Type consideration shows that in this factor group, B/G**(t) is fully invariant, so it 
is contained in the second summand, i.e. B ^ G. The proof can now be completed 
by arguing similarly as above that r/p + a G G implies r/p G R, a contradiction. 

D 

1.5. Lemma. If A = A is an R-group, then the factor group A/A**(t) is again 
an R-group. 

P r o o f . The (pure) exact sequence 0 -> A**(t) -> A -> A/A**(t) -> 0 induces 
the exact sequence Hom(A.**(t),H) -> Ext1(A/A**(t),R) -> E x t 1 ^ , ^ ) . Here Horn 
vanishes, since A**(t) is generated by elements of types larger than or incomparable 
with t. Consequently, the map between the two Ext groups is monic It follows that 
its restriction Bext1(A/>l**(t),i7) -•> Bextl(A,R) = 0 is likewise monic [DHR, 4.1]. 
But this means that A/A**(t) too is an .R-group, as asserted. D 
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2. T H E GROUPS A**(t) AND A/A**(t) 

The last two lemmas imply that for an arbitrary I?-group A satisfying A = A, 

the factor group A/A**(t) is an I?-group with elements of types ^ t. The structure 
of these groups was investigated in [BF], and from the results proved there we can 
conclude 

2.1. Theorem. Let A be an R-group. Under the hypothesis V = L, the localiza
tion of the factor group A/A**(t) at the primes in n' is a Butler group with element 
of types ^ t. 

We turn our attention to the subgroup A**(t). In a simplified form, we focus 
on torsion-free groups A such that A = A**(t). Consider a balanced-projective 
resolution 0—>I?->C->A—•> 0 of .A, where C is completely decomposable. It is 
readily seen that in a fixed direct decomposition of C, the direct sum of the rank one 
summands of types > t and of types incomparable with t maps surjectively upon 
A. Hence we may as well assume that all the rank one summands of C have either 
types > t or types incomparable with t. 

The following result contains a characterization of i?-groups A = A**(t) in terms 
of their balanced-projective resolutions. 

2.2. Theorem. Let A be a torsion-free group such that A = A**(t). Then 
A is an R-group if and only if Hom(B,R) = 0 holds for some balanced-projective 
resolution 0 - > H - > C - > A — > 0 of A where C is completely decomposable with 
rank 1 summands of types larger than or incomparable with t. 

P r o o f . To start with, observe that the analogue of the well-known Schanuel's 
lemma, applied to balanced-projective resolutions, implies that the stated condition 
does not depend on the chosen resolution. In fact, if 0 -> B' -> C -> A -> 0 is 
another balanced-projective resolution of A of the stated kind, then B 0 C = B' 0 C 

and hence Hom(B,R) S Uom(B',R) follows. 

For the proof, note that the given balanced-exact sequence implies the exact
ness of the induced sequence 0 = Hom(C, R) -> E.om(B,R) -> Bext1(A,H) -> 
Bext1 (C,R) = 0. Hence the claim is evident. • 

(1.2) exhibits a typical example where Hom(B,R) ^ 0. 
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3 . i?-GROUPS A WITH SEPARATIVE CHAINS FROM A** (t) 

In view of the last results our main concern is to find out whether or not the. 
subgroup A**(t) of an .R-group A is an .R-group, and how the group A is put together 
from A**(t) and A/A**(t). Under an additional hypothesis on A**(t) (which is 
satisfied in several special cases) more complete results can be established. 

A pure subgroup B of a torsion-free group G is called separative if for each g G G 

there is a countable subset {bn \ n < u} in B such that {x(g+&n) | n < u;} is a cofinal 
subset of {x(g + b) \ b G B}. A separative chain from B to G is a continuous well-
ordered ascending chain B = Go < G\ < ... < Gu < ... of separative subgroups 
with union G where all the factor groups Gujr\/Gv are countable. If B = 0, we 
simply talk of a separative chain in G. 

Note that—assuming V = L—such a separative chain exists from any countable 
subgroup B of A to the group A itself. In fact, by [DHR], a countable subgroup B 
can be embedded in a balanced subgroup C of A which has cardinality < Ni. By 
[FM], under the assumption of V = L, the group A/C admits a separative chain; 
evidently, this lifts to a separative chain from C to A. Since countable subgroups are 
separative, this chain can be refined by including B in it, so as to get a separative 
chain from 5 up to .4. 

3 .1 . Lemma. Let A = A be an R-group such that there is a separative chain 
from A**(t) to A. Then every subgroup in this separative chain, including A**(t) 
itself, is an R-group. 

P r o o f . Considering that the elements of A not in A**(t) are all of types ^ t, 
we can argue as in [BF, 3.3-3.5]. We conclude that all members of this separative 
chain are .R-groups. In particular, A**(t) is an .R-group. • 

By a regular subgroup of a torsion-free group A we mean a subgroup K such that 
each element x G K has the same type in K as in A; see Bican [B]. A pure subgroup 
B of a torsion-free group A is said to be prebalanced in A if for every rank 1 pure 
subgroup C/B of A/B there is a finite rank Butler group G such that C = B + G; 
cf. [FV]. 

3.2. Lemma. Let A be a torsion-free group, and C a separative subgroup of 
corank 1 in A. If C is not prebalanced in A, then there is a regular subgroup K of A 
containing C such that either A/K ~ Z(p°°) for some prime p, or A/K ~ (BZ(pn) 
for infinitely many different primes pn. 

P r o o f . Set B = C -f (6)+ with some b G A \ C. By separativeness, there 
is a countable set xi, X2, . . . , x m , . . . of elements of A not in B such that for every 
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x G A \ B we can find an index m satisfying both xm G x + B and \(x) ^ x(xm)-
If C is not prebalanced in A, then for each m,Cm = B + (xi)+ + . . . + (a;m)^ is a 
proper subgroup of A and A/Cm is an infinite torsion group, say A/Cm ~ (&Z(pn

u) 
for different primes p n where each exponent kn is either a positive integer or oo. 

If some kn is oo, then it suffices to imbed Cm in a subgroup K such that .4/If ~ 
Z(p°°), and we are done. 

If all the kn are finite, then for every m we pick a prime pm such that the primes 
Pi. • • • -Pm. • • • a r e all distinct and there is a subgroup Km ^ Cm with A/Km ~ 
Z(pm). Setting K = f\Km, it remains to show that K is regular in A. 

m 

Given x G K \ C, clearly, xm G x + B and \(x) ^ x(xm) for an integer m. 
Then (xm)^ ^ f| # n = K' implies (a;), ^ K'. Manifestly, A/K ^ A/IG ® . . . 0 

A/Km-i © A/Kl. This shows that the p-height of a; in K' is the same as in A for all 
primes p with possible exception of the primes p i , . . . ,pm_i where the heights might 
increase by 1. Consequently, the characteristics of x in K and in A can differ only 
at a finite set of primes where both are finite. • 

We shall now concentrate on i?-groups A with pA = A for all p G n. 

3.3. Lemma. Let A be an R-group such that pA = A for allp G it, and suppose 

that A**(t) is a separative subgroup in A. If A**(t) is not prebalanced in A, then 

there is a pure subgroup B of A which contains j4**(t) with B/A**(t) of rank one 

such that B is not an R-group. 

P r o o f . Evidently, A/A**(t) has a rank one pure subgroup B/A**(t) such that 
A**(t) is not prebalanced in B. Hence the preceding lemma yields the existence of 
a regular subgroup K of B that contains A**(t) and B/K is as stated there. In the 
first alternative of (3.2), p G 7r', since for every p G 7r all pure subgroups of A are 

p-divisible. We infer that—no matter what B/K is like—there is a group R* of type 
> t such that R < R* < Q and there is an isomorphism Q: B/K = R*/R. (1.4) 
implies that B/A**(t) can be embedded in R*. 

We now form the following diagram where a is the natural map, S is the natural 
map B/A**(t) —> B/K followed by D, while G and H are obtained successively via 
pullbacks: 
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- • 0 

A**(t) 

I' 
0 • R • H • B 

i i i-
0 > R • G > B/A**(t) > 0 

II 1 I' 
0 • R • R* —^—• R*/R • 0 . 

It is important to choose 7 in such a way that the middle row fails to split. Such 
a choice is possible, since Uom(B/A**(t),R*) is countable, while the automorphism 
group of the infinite torsion group R* /R has the power of the continuum. 

If J is a rank one pure subgroup of B, then by the regularity of K = Ker Sa in 
B the group 6aJ is finite, and so [BF, 4.2, 4.3] guarantees the balancedness of the 
top row. To complete the proof, we must show that the top row does not split. By 
way of contradiction, assume it does, i.e. some <p: B -» R* satisfies y<p = 6a. But 
7<p/? = Sap = 0 (for the inclusion map ft: A**(t) —• B) implies that ip maps /3_4**(t) 
into R. Thus <D/L4**(t) = 0. Therefore, ip induces a map tp: B/A**(t) -> R* such 
that (p = ipa. We conclude that 7^0 = 7<D = 5a whence yip = (5, a being an 
epimorphism. This shows that the middle row splits, contradicting the choice of the 
homomorphism 7. • 

3.4. Lemma. Let A be an R-group satisfying A = A. If there is a separative 
chain from A**(t) to A, then A**(t) is a prebalanced subgroup. 

P r o o f . This is an immediate consequence of (3.1) and (3.3). 

We have arrived at one of the main results in this paper. 

D 

3.5. Theorem. (V = L) Let A be a group such that A = A and there is a 
separative chain from A**(t) to A. A is an R-group if and only if 

(a) A**(t) is an R-group; 
(b) A**(t) is prebalanced in A; 
(c) A/A**(t) is a Butler group with elements of types < t only. 

P r o o f . Suppose A is as stated and is an .R-group. (a) and (b) follow from (3.1) 
and (3.4), respectively, while (c) is a consequence of (1.4), (1.5), and [BF, 7.1]. 

655 



Conversely, assume that A satisfies (a)-(c). Condition (c) ensures the existence 
of a continuous well-ordered ascending chain 0 = Ao/A**(t) < A\/A**(t) < . . . < 
Au/A**(t) < . . . with rank 1 quotients Au+\/Au and with union A/A**(t) such that, 
for each v, Au+\ = Au + Gu where Gu is a finite rank Butler group, (b) implies that 
all the subgroups in the chain AQ = A**(t) < A\ < ... < Au < ... with union A are 
prebalanced in A. 

Let 0 ->P—->G^-» -4—»0bea balanced-exact sequence. We want to define a 
map xp: G —•» R which is the identity on R. Setting Gu = (p~1(Au), we obtain a 
chain A**(t) = Go < G\ < ... < Gu < ... with union G where the subgroups Gu 

are prebalanced in G. Therefore, for each v, we can write Gu+\ = Gu + J\ + ... + J^ 

for a finite number of rank one subgroups J{ of G which are evidently all of types 
^ t. [BF, 2.1] guarantees that Gu is t-cobalanced in Gu+\. Condition (a) implies 
that there is a map xpo: Go —>• I? which is the identity on R. In view of the t-
cobalancedness of the group Gu in Gu+\, we can extend ^po: Go -> R successively 
by a straightforward induction to a map xpu: Gu —» R. The union of all these maps 
yields a desired homomorphism xp: G —> R. Hence A is an P-group, indeed. • 

Let us point out that pure subgroups of P-groups need not be P-groups, not even 
in the finite rank case. The following example is a finite rank Butler group which is 
not an It-group, but it is a subgroup of a completely decomposable group (which is 
trivially an P-group). 

3.6. Example . Let t i and t2 be incomparable types (both > t) such that 
t i n t2 = t. Assume that all of t, t i , t2 are 0 at the prime p. Let Ri be subgroups of 
Q which are of rank 1 and of type t{, and let az 6 Pz, a E P be elements not divisible 
by p. Then R is a subgroup of the group 

G = (R 0 Pi 0 P2, (a + a\ + a2)/p), 

but P is not a summand of G. In fact, the argument used in (1.2) shows that a 
complementary summand would contain the fully invariant subgroup Pi 0 P2 of G, 
and then the additional generator (a + Oi +a2)/p could not belong to the direct sum. 
It is readily seen that G is a balanced extension of P by A = (Pi 0 P2, (a\ + a2)/p). 
Therefore, G G Bext1(A,R), but G is not splitting. 

Let {x\,x2,... ,xn} be a maximal independent set in a torsion-free group G of 
finite rank n. By the inner type IT(G) of G we mean the type t(x\) f l . . . D t (x n) . 
It is not difficult to see that IT(G) does not depend on the particular choice of the 
maximal independent system: it is an invariant of G; see e.g. Mutzbauer [M]. For 
the group A in (3.6) we have IT(A) = t. 
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We can easily characterize the 12-groups A of rank 2. As we know, it is enough to 
consider those satisfying pA = A for all p <E 7r. 

Manifestly, if A is decomposable, then it is a direct sum of two rank 1 groups, and 
as such it is an R-group. 

For indecomposable groups of rank 2, we have 

3.7. Lemma. Let A be an indecomposable torsion-free group of rank 2 such that 

pA = A for all p € re. It is an R-group if and only if 

(i) in case the rank of A**(t) is ^ 1: A is a Butler group; 

(ii) in case A = A**(t): A satisfies IT(A) > t. 

P r o o f . If A** (t) = 0 , then we are in the situation of [BF, 4.5], and the claim in 
(i) follows. If A**(t) has rank one, then by (3.5) A is a prebalanced extension rank 
one group by a rank one group, so it is a Butler group. 

Next suppose that A = A**(t). Choose a balanced-projective resolution 0 —> B —> 
C ---> A -> 0 of A such that C = 0£G/Ci, where rk Ct = 1, and {(DC, \ i £ 1} 

is precisely the list of all pure rank one subgroups of A of types > t. The index 
set I is countable, so B = Ker<D is a countable Butler group, generated by certain 
rank one pure subgroups of C. By the choice of the resolution, a rank one pure 
subgroup X cannot be equal to any of the C t, therefore t(X) = IT(A). Consequently, 
B is an IT(A)-homogeneous countable Butler group, and as such it is completely 
decomposable (see Bican [B]). We conclude that Horn (B,R) = 0 if and only if 
IT(A) > t. Hence, by (2.2), A is an H-group exactly if IT (A) > t. D 

4. R-GROUPS WITH TYPES COMPARABLE WITH t 

We can get more information about I?-groups in case the types of their elements 
are comparable with t. 

We shall require a couple of lemmas. The following one generalizes a result which 
leads to Baer's famous ubiquitous lemma. 

4 .1 . Lemma. Let B be a pure subgroup of the torsion-free group A such that 
some a E A\B satisfies t(a) =t(a + b) for all b € B. Then the set {\(a + b) \ b e B} 
is directed upward. 

P r o o f . Given any bi, b2 6 B, there are relatively prime integers m, n such that 
\(m(a + h)) = \(n(a + b2)). If the integers u, v satisfy mu + nv = 1, then the 
element c = u(m(a + bi)) + v(n(a + b2)) = a + (muh 4- nvb2) € a + B obviously 
satisfies \(c) ^ \(m(a + bi)) ^ \(a + h) U \(a + b2). • 
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4.2. Lemma. Let A be a torsion-free group such that the types of elements of A 

are all comparable with t. Then 

(a) for any a G A \ A*(t)*, t(a + b) = t(a) for all b G ,4*(t)*; 
(b) the exact sequence 

0 -r A*(t)+ -> A -> A/,4*(t)* -> 0 

is balanced-exact if and only ift(a) = t(a + _4*(t)*) for every a G / 4 \ A*(t)*. 

P r o o f . (a) By hypothesis, t(a) ^ t ^ t(b) holds whence t(a) ^ t(a + b) is 
immediate. The case t < t(a + b) is impossible, since then a + b G A*(t) and 
o G i* ( t ) , a contradiction. Thus t(a + b) ^ t. This together with t ^ t(b) gives 
t(a + b) ^ t(a). 

Claim (b) is an immediate consequence of (a). D 

4.3. Lemma. Let A be a torsion-free group the types of whose elements are 
comparable with t. Then the subgroup B = A*(t)+ is separative in A. 

P r o o f . Let C/B be a rank one pure subgroup of A/B. By (4.2), every c G C\B 

has the same type, so by (4.1) the set {x(c + b) \ b G B} is directed upward. Using 
this fact, the characteristic of c + B (which is always the supremum of characteristics 
of countably many elements in this coset) can easily be obtained as the union of an 
ascending chain of characteristics x( c + M f° r a suitable sequence b\,..., b{,... G B. 

We claim that {x(c + bi) \ i < UJ} is cofinal in {x(c + b) \ b G B}. In fact, given 
any b G B, by (4.2) the characteristics x( c + b) and x( c + bi) differ only at a finite 
number of primes where they are both finite. Hence choosing i large enough, we can 
make x( c + bi) a t least as large as x( c + b) at these primes. D 

4.4. Lemma. Let A be an R-group all of whose elements have types comparable 

with t. Then the subgroup A*(t) is an R-group. 

P r o o f . From (1.3) we know that A*(t) = A**(t) is a pure subgroup of the 
H-group A. We select a subgroup M of A which is maximally disjoint from B. 
Manifestly, M is pure in A. 

Let 0 —> R —•> H —•> A*(t) —•> 0 be a balanced-exact sequence. We can form the 
following commutative diagram with exact rows (the bottom sequence exists as Ext2 

vanishes for abelian groups): 

o •> R > HeM ^ e l ) A*(t)eM •> o 

0 •> R •> N —^—> A •> 0 
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where the right hand vertical map is the inclusion map. 
To verify the balancedness of the bottom row, pick an a G A. As A*(t) 0 M is 

an essential subgroup in A, without loss of generality we may assume a = b + x 
(b G A*(t),x G M). By hypothesis,/3/i = b for some h G H witht(/i) = t(b). Because 
of (4.2), t(x) = t(a - b) = t(a), thus for y = /j,(h + x) we have t(y) ^ t(h) fl t(x) = 
t(b) H t(x) = t(x) = t(a) = t(ay) ^ t(y) (note that ay = afi(h + x) = b + x = a). 
Therefore, the bottom row splits. This implies the splitting of the top row, hence 
A*(t) is an H-group, indeed. • 

We are ready to state the following theorem: 

4.5. Theorem. (V = L) Let A be a torsion-free group such that all elements of 

A have types comparable with t. Suppose there exists a separative chain from A*(t) 

to A. Then A is an R-group if and only if 

(i) the sequence 0 -> A*(t) -» A -» A/A*(t) -> 0 is balanced-exact, and 

(ii) both A*(t) and A/A*(t) are R-groups. 

P r o o f , (i) and (ii) imply that in the induced exact sequence 

Bextl(A/A*(t),R) -> Bext\A,R) -> B e x t 1 ^ * ^ ) , ^ ) 

the groups at both ends vanish. Consequently, A ought to be an i?-group. 
Conversely, assume that A is an I^-group. Claim (ii) is contained in (1.5) and 

(4.4). To verify (i), note that by (4.3), A*(t) is a separative subgroup of A, and 
therefore so is C whenever C/A*(t) is a rank one pure subgroup of A/A*(t) (count
able extensions of separative subgroups are again separative). By hypothesis, there 
exists a separative chain from A*(t) to A; it is readily seen that such a chain can be 
modified so as to include C (cf. proof of [BF, 7.1]). As in [BF, 3.5] we now conclude 
that C is an it-group. Hence (i) follows at once in view of (4.2). • 

Note that in the preceding theorem we can add that the factor group A/A*(t) 
must have elements of types ^ t. In fact, this is a consequence of (i). 

5 . R-GROUPS WITH NO ELEMENTS OF TYPES < t 

In case none of the elements of A is of type < t, a completely satisfactory result 
can be stated. 

5.1. Theorem. (V = L) A torsion-free group A = A with no elements of types 
< t is an R-group if and only if 

A = A**(t)®C 
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where 
(i) A**(t) is an R-group; 
(ii) C is a t-homogeneous completely decomposable group. 

P r o o f . Let A have the stated structure. Since completely decomposable groups 
are trivially .R-groups, (i) and (ii) imply that A itself is an .R-group. 

Conversely, assume A is an .R-group. Since its elements are either of types ^ t 
or incomparable with t, every element of A which is not in A**(t) must be of type 
exactly t. From (1.4) and (1.5) we conclude that the factor group A/A**(t) is a 
t-homogeneous H-group. In view of [BF] it is therefore a t-homogeneous completely 
decomposable group whenever V = L. By Baer's ubiquitous lemma, A**(t) is bal
anced in A, so A**(t) is a summand of A. Consequently, it is again an .R-group. 

• 
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