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ON SOME COMPLETENESS PROPERTIES
FOR LATTICE ORDERED GROUPS

JAN JAKUBIK, Kosice

(Received March 29, 1993)

G. J. M. H. Buskes [2] investigated a series of completeness properties for an
archimedean Riesz space E. Each of these properties can be applied also in a more
general setting, i.e., for the case when E is a lattice ordered group. If « is one of the
properties under consideration, then we denote by G, the class of all lattice ordered
groups G which have the property a.

The notion of radical class of lattice ordered groups was introduced in [8]; cf. also
(4], [5], [12], [13], [16]. The relations between this notion and the classes G, will be
dealt with in the present paper. We are mainly interested in the question whether
Go (or some reasonably large subclass of G, ) is a radical class.

This question is related to the problem of existence of a-kernels. For some prop-
erties defined by means of sequences similar considerations were established in [10]
and [11].

1. PRELIMINARIES

The standard notation for lattice ordered groups will be applied (cf. [3] and [6]).
The group operation will be written additively.

We denote by G the class of all lattice ordered groups. For G € G let ¢(G) be the
system of all convex ¢-subgroups of Gj; this system is partially ordered by inclusion.

The lattice operations in ¢(G) will be denoted by A and \/. In fact, A coincides
with the set-theoretical intersection. Let {A;}:e; be a nonempty subset of ¢(G) and

let H = \/ H;. It is well-known that H is the set of all g¢ € G having the property
i€l

that there is a finite subset {i(1),4(2),...,i(n)} of I such that there exist elements

hi € Hiqy, ..., hn € Hyny with g = hy + ho + ... + h,.
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A nonempty subclass X of G is said to be a radical class if it is closed with respect
to

a) convex {-subgroups, and
b) joins of convex ¢-subgroups.

A nonempty subset A of GT is called disjoint if a; A a; = 0 whenever a; and a;
are distinct elements of A. We writea L bif aAb=0.

Let G be a lattice ordered group. We shall consider the following conditions for
G (cf. [2]):

(a(1)) (G is boundedly laterally complete): each order bounded disjoint subset of G
has a supremum.

(a(2)) (G is a disjoint order complete): for every disjoint sequence (f,) in G such
that f, — 0 in order, the element sup{f,} exists.

(a(3)) (G is order complete): whenever (f,) and (g,) are sequences in G with f, <
gm for all m,n such that inf(g, — f,) = 0, then there exists h € G such that
fn < h < g, forall n.

(a(4)) (G has the o-interpolation property): whenever (f,) and (g,) are sequences
in G such that f, < g, for all m, n, there exists h € G such that f,, < h < g,
for all n.

(a(5)) (G is uniformly complete): cf. Section 4 for a thorough definition.

(a(6)) (G is an A-group): for every disjoint set {f,} in G which is order bounded
there exists an element g € G such that g — fy L fy for all \.

Fori € {1,2,...,6} we denote by G, ;) the class of all lattice ordered groups which
satisfy the condition «(7).

In Sections 1-3 it will be proved that if i € {1,2,4}, then G,(;) is a radical class.
The questions whether G, (3), Ga(s) and Gq(s) are radical classes remain open; some
partial results in these directions will be established in Sections 3, 4 and 5. E.g., it
will be shown that the class of all abelian lattice ordered groups belonging to G, 3)
and the class of all abelian projectable lattice ordered groups belonging to G, ) are
radical classes.

2. THE CONDITIONS (a(1)) AND (a(2))

The following lemma is easy to verify; the proof will be omitted. In what follows,
G is a lattice ordered group.

2.1. Lemma. Leti€ {1,2,3,4}. Assume that G € G,(;y and H € ¢(G). Then
H e Qa(i).
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Let a be any property of lattice ordered groups. We denote by S, the system of
all elements of ¢(G) which have the property a. If a convex ¢-subgroup H of G is a
largest clement of S,, then H is said to be the a-kernel of G.

The above lemma implies that for i € {1,2,3,4} the a(i)-kernel exists for each
G € G iff G,(;) is a radical class.

2.2. Lemma. Whenever ay,as,...,a, are elements of Gt there exists a system
S(ay,az,...,a,) of mappings

Yii[0,a1 +...+an] = [0,a;] (1=1,2,...,n)

such that
(i) each v; is isotone;
(ii) for each x € [0,ay + ...+ a,] the relation £ = 1 (x) + ... + Y, () is valid.

Proof. We proceed by induction with respect to n. For n = 1 we put S(a;) =
{91}, where 7, is the identity on [0, a4].

Let n > 1 and assume that the assertion is valid for n — 1. We put ¢;(z) = a; Az
for each © € [0,a1 + ...+ an]. Next, let us consider the pairs

(1) (.’L’, _-’E+a1 +~--+an)) (alaa’2)3

where ay = az + ...+ an.

We apply the facts demonstrated in the proof of Theorem 1.2.16, [1] (Riesz theo-
rem) concerning the case m = n = 2 (instead of the pairs (a1, az), (b1, b2) from the
mentioned proof we take now the pairs (1)). In our case we get

(2) 0< —1(z) +z < aj.

By the induction hypothesis there exists a system S(az, ...,a,) = {¢!} (¢ =2,...,n),
where ¥} is a mapping of [0,az + ... + a,] into [0,a;] (¢ = 2,...,n) such that the
conditions (i) and (ii) above are satisfied for the elements which are now under
consideration.

Hence all ¢} are isotone and

(3) t=yyt)+...+¢,(t) foreach te[0,a2+...+an)

Denote ;(t) = ¥;(—1(t)+t) for each t € [0,a1+...+an] and i = 2,3,...,n. Hence
(ii) holds.

It remains to verify that all v; are isotone. For ¢ = 1 this is obvious. Let z,y €
[0,a; + ...+ an], x > y. Since all ¢! are isotone we have to show that

- (y) +y < —¥1(z) + 7,
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i.e., that
(4) —(aAy)+y< —(a1Az) +

An easy computation shows that the interval [a; Ay, y] is transposed to a subinterval
of the interval [a; A z,z]. Thus the relation (4) is valid, completing the proof. O

2.3. Lemma. Let {Gi}icsr be a nonempty subset of c(G) such that G; € Go(1)

for each i € I. Then \/ G; belongs to G,(1).
i€l

Proof. Put \/ G; = H. Let A be an order bounded disjoint subset of H. Thus

iel
there is h € H such that 0 < a < h is valid for each a € A.

There exist i(1),7(2),...,i(n) in I such that h € G;1) + Gy2) + ... 4+ Gi(n). Thus
there are g1 € Gi1),...,9n € Gim) With h = g1 + g2 + ... 4+ go. Hence h <
lg1] + lg2| + - .. + |gnl-

Now let us apply Lemma 2.2, where the elements a; from 2.2 are replaced by |g;|
(j =1,2,...,n), and let ¥; have analogous meaning as in 2.2. For each a € A we
have a < |g1]| + ... + |gn]. Put ¥;(a) = a;. Thus

(1) a=a; +ax+...+an, Osaj<|gj|€Gj (j:l,?,...,n).

Let j € {1,2,...,n} be fixed. Since A is disjoint, the set {a;}.c4 is disjoint as well.

Because G; belongs to G,(1) we conclude that \/ a; = b; does exist in G;.
a€A
Put b = by + by + ...+ b,. Then clearly b € H and a < b for each a € A. Let

z € G be such that a < z for each a € A. Denote x A h = y. Hence a < y for each
a€ A Wesety; =9;(y) for j =1,2,...,n. Then a; < y; for each a € A and hence
b; < y;. Because of y =y, + y2 + ... + y» we obtain that b <y. Hence b < z. This
shows that b = sup A, completing the proof. 0O

Now, Lemmas 2.1 and 2.3 yield

2.4. Theorem. §,(1) Is a radical class.

A radical class which is closed with respect to homomorphic images is said to be
a torsion class [15]. Now we shall deal with the question whether G,(;) is a torsion
class.

Let M be an infinite set and let F' be the set of all integer valued functions defined
on M. The operation + in F has the natural meaning and the partial order on F'is
defined componentwise. Then F' € G,(1).

Let H be the system of all f € F such that the set {x € M: f(x) # 0} is finite.
Then H is an f-ideal in F. Denote G = F/H.
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Now let f; be the element of F with f;(z) = 1 for each £ € M. The interval
B = [0, f1] of F is a Boolean algebra. Put A = BN H. Hence A is an ideal of the
Boolean algebra B.

Consider the quotient Boolean algebra B/A. The following lemma is easy to
verify.

2.5. Lemma. Let f,g € B. Then f and g belong to the same element of B/A
if and only if they belong to the same element of F/H.

As a consequence of 2.5 we obtain

2.6. Lemma. For each element A of B/A let ¢(A) = a + H, where a € A.
Then ¢ is an isomorphism of B/A onto the interval [H, fi + H| of F/H.

Now, Theorem 21.8 of [17] implies that the Boolean algebra B is not complete.
Thus according to 20.1, [17] there exists a subset {A;}ic; of B/A such that (i)
A; # A for each i € I, (ii) A1) A Aj2) = A whenever i(1) and i(2) are distinct
elements of I, and (iii) the join \/ A; does not exist in B/A. Hence by applying the
isomorphism ¢ we infer that {(,o(efii)}ie, is a disjoint subset of [H, fi + H] such that
the join of this subset does not exist in the interval [H, f; + H]. But then the join of
this subset does not exist in F//H and hence F'//H fails to belong to the class G, (1).

Therefore we have

2.7. Proposition. G, (1) fails to be a torsion class.

The condition (1) can be weakened as follows:

(a(lo)) (G is o-laterally complete): each countable order bounded disjoint subset
of G has a supremum.

By the same method as in the proof of 2.3 we obtain that Lemma 2.3 remains valid
if a(1) is replaced by a(lo). A similar situation occurs for Lemma 2.1. Therefore
we can replace a(1) by a(lo) in 2.4 as well.

Next, let us consider the condition («a(2)). We can denote by 2.3’ the assertion
which we obtain from 2.3 if (1) is replaced by a(2). To prove 2.3’ we have to work
(instead of A as in 2.3) with a disjoint sequence (f,,) in G¥. We apply the same
procedure as in the proof of 2.3 with the distinction that instead of (1) we write

(1’) fm=am1 +amo+ ...+ Qmn
with the obvious further modifications of notation. It suffices to observe that when-
ever f, — 0in order, then for each j € {1,2,...,n} the relation a,,; — 0 in order is

valid. Therefore we obtain
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2.8. Theorem. G,(y) is a radical class.

For investigating the question whether G,(14) (or G, (2)) is a torsion class the above
consideration which was applied for G,(;) does not suffice.

2.9. Example. Let F and H be as above. There exists a system {M,},en
of infinite subsets of M such that M,y N M, ) = @ whenever n(1) and n(2) are
distinct positive integers. For each n € Nlet f, € F be such that f,(z) = 1 whenever
z € M,, and f,(z) = 0 otherwise. Then {f, + H }.en is a disjoint subset of F/H.

Next, for n € N let g, € F be such that g,(z) = 1if z € |J M;, and g,(z) =0

i2n
otherwise. Hence g, + H > gn4+1+H > H is valid in F//H for each n € N. Moreover,

A (gn+ H) = H. Also, g, + H > f, + H for eachn € N. Thus f, + H — H is
neN
order.

Let f € F such that f, + H < f+ H for each n € N. Put X,, = {z € M,:
fa(z) < f(x)}. Hence the set X, must be infinite. For each n € N we choose an
element z, € X, and put Y = {zp}nen. Let f' € F be such that f'(z) = 0 if
z € Y and f'(z) = f(z) otherwise. Then f, + H < f' + H for each n € N, and
f'+ H < f+ H. Hence the set {f, + H} does not possess a supremum in F/H.

This example implies that the following result is valid (in fact, it also gives an
alternative proof of 2.7):

2.10. Proposition. Neither G,(15) nor Go(2) is a torsion class.

3. THE CONDITIONS (a(3)) AND (a(4))

Let us first consider the following condition which we obtain by modifying (a(3)):

(o’ (3)) Whenever (f,) and (g,) are bounded sequences in G with f, < g, for all
m,n and such that inf(g, — fn) = 0, then there exists h € G such that f, < h < g,
for all n.

3.1. Lemma. The conditions («(3)) and (o’'(3)) are equivalent.

Proof. It is obvious that (a(3)) = (/(3)). Assume that (o/(3)) is valid and
let (f») and (g») be as in (a(3)). Denote

f:z:(fnvfl)—flv ggz(gn/\gl)_fl
for each n € N. Then f], < g/, for all m, n. Next we have
g — fl. < gn— fn foreachneN,

whence inf(g/, — f.) = 0. Thus there is #’ € G such that f}, < k' < g, for all n. Put
h=h"+ fi. Then f, < foV fi <h < gn A g1 < gn for each n. O
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3.2. Lemma. Let G be abelian. Let us apply the same assumptions and
notation as in 2.2. Let z,y € [0,a1 + ...+ an], z = y. Then z —y > ¥;(z) — Yi(y)
fori=1,2,...,n.

Proof. By induction on n. For n = 1 the assertion obviously holds. Let n > 1.
Denote ab(z) = —1(y) +y. Next let z = 9;(z) Vy. The intervals [a A y,y] and
[a A z, 2] are transposed, whence

(1) —y+(any)=—-z+(aNnz).
Thus we have
ay(z) = (z — 2) + (2 = 1(2)) = (z — 2) + a3(y),
dh(z) — aj(y) =x -z <z —y.
Now, by the induction hypothesis and by the definition of 1., ..., %, we infer that
Yi(x) —Yi(y) <z —yfori=2,...,n. Clearly ¢y (z) —¢1(y) <z —y. O
3.3. Lemma. Let {G;}ic; be a nonempty subset of ¢(G) such that G; € Gy (3)

for each i € I. Then \/ G; belongs to G (s)).
i€l
Proof. Put \/ G; = H. Assume that (f,) and (g,) are bounded sequences in
iel

H* with f, < gm for all n,m and such that inf(g, — f.) = 0. Hence thereis h € H*
such that g,, < h for each m.

We proceed by applying an analogous argument as in the proof of 2.3. There
exist indices i(1),...,i(k) in I and elements g1 € Gjx),...,9x € Gj) such that
h=g¢1+g>+ ...+ gr. Hence

(1) h <lgi| + g2 + ... + |gk|-

Thus in view of 2.2 for each positive integer n there are elements an; € Gy(j) (j =
1,2,...,k) with

(2) fo=an + ...+ ank;

similarly, for each positive integer m there are b,,; € G;(;) (j = 1,2,...,k) such that
(3) gm =bm1 + ... + b,

and, moreover, an; < bm; for each j € {1,...,k} and for each m,n.

Next, according to 3.2 the relation gn; — fnj < gn — fn is valid for each j €
{1,2,...,k} and each n. Hence inf(gn; — fn;) = 0 holds for j = 1,2,..., k. Because
of Gi(j) € Gar(3) we infer that there is h; € G;(;) such that f,; < h; < gn; for all
n. Denote hy + ... + hy = h. Then (2) and (3) yield that f, < h < g, for all n.
Therefore H belongs to G,/ (s)- O
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We denote by G, the class of all abelian lattice ordered groups. Then G, is a
radical class. This can be easily proved directly, but it is also a particular case of a
more general result proved in [7].

3.4. Theorem. 90(3) N G, is a radical class.

Proof. Thisis a consequence of 2.1, 3.1, 3.3 and of the above mentioned result
concerning G,. O

The method of proving the following result is analogous to that which was used
in proving 3.4 (with the distinction that we need not apply 3.2); the detailed proof
will be omitted.

3.5. Theorem. G, is a radical class.

The question whether G,(3) N Ga (or Gy (4)) is a torsion class remains open.

4. UNIFORM COMPLETENESS

First we recall the basic definitions concerning uniform completeness of Riesz
spaces (cf., e.g., [14]).
Let L be a Riesz space.

4.1. Definition. Given an element e > 0 in L, we say that a sequence (f,) in
L converges e-uniformly to the element f € L whenever, for every real € > 0, there
exists a positive integer ng(e) such that |f — f,| < ee holds for all n > ng(e).

4.2. Definition. Let e € L, e > 0. A sequence (f,) in L is called an e-uniform
Cauchy sequence whenever, for every real € > 0, there exists a positive integer n, (<)
such that |fm — fn| < e holds for all m,n > ny(e).

Again, let e € L, e > 0. It is easy to verify that the condition expressed in 4.1
is equivalent to the following one (for a given sequence (f,) in L and an element
feL):

(i) For every positive integer k there exists a positive integer ng(k) such that
k|f — fa| < e holds for all n > ng(k).

Analogously, the following condition is equivalent to that from 4.2:

(ii) For every positive integer k there exists a positive integer n)(e) such that
k|fm — fal < e holds for m,n > n, (k).

Moreover, the conditions (i) and (ii) can be applied also in the case when L is a
lattice ordered group. Thus if (i) holds, then we say that (f,) converges e-uniformly
to the element f. If (ii) is valid, then (f,) is called an e-uniform Cauchy sequence.

Next, analogously to the definition 42.1 in [14] we introduce
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4.3. Definition. A lattice ordered group G is said to be uniformly complete
whenever, for every e € GT, each e-uniform Cauchy sequence has an e-uniform limit.

4.4. Lemma. Let H be a convex {-subgroup of a lattice ordered group G. Let
0<e€ H, f € G and let (f,) be a sequence in H. Suppose that (f,) converges
e-uniformly to the element f (in G). Then f € H.

Proof. Under the notation as in (i) above let n > ng(1). Then [f — fu| < e,
hence —e < f — f. < e. Since H is convex in G we infer that f belongs to H. a

4.5. Corollary. The class G, (s) is closed with respect to convex {-subgroups.

Let us consider the following condition for a lattice ordered group G:

(iii) Whenever 0 < e € G and (g,) is an e-uniform Cauchy sequence in G with
0 < gn < 2e for all n, then there exists g € G such that (g,) converges e-uniformly
to the element g.

4.6. Lemma. Let G be a lattice ordered group satisfying the condition (iii).
Then G is uniformly complete.

Proof. Let (f,) be an e-uniform Cauchy sequence in G. Denote n;(1) = t. Let
m > t. Thus

_egfm_ftge-

Put g, = fm — ft + e. Hence
0< gm < 2e.

Next, let j be a positivie integer, j > t. Then
9m — gj = fm — [

Thus (g») is an e-uniform Cauchy sequence. Since G satisfies the condition (iii) there
is g € G such that (g,) converges e-uniformly to the element g. Put f =g — e + f;.
Then (f,) converges e-uniformly to the element f. 0O

Let us consider the following condition for a lattice ordered group G:

(A) If H € ¢(G),0 < e € G and if (f,) is a sequence in H such that (f,) is
e-uniform Cauchy (in G), then there is 0 < e; € H such that (f,) is e;-uniform
Cauchy in H.

It is easy to verify that if G fails to be archimedean, then it does not satisfy the
condition (A). It is an open question whether each archimedean lattice ordered group
must satisfy the condition (A).
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4.7. Lemma. Let G be an abelian lattice ordered group satisfying the condition
(A). Let G; and G2 be convex ¢-subgroups of G such that G = G| V G,. Assume
that both G, and G2 are uniformly complete. Then G is uniformly complete as well.

Proof. In view of 4.6 it suffices to verify that G satisfies the condition (iii). Let
e and (g,) be as in (iii).

Since G is abelian we have G = G; + G3. Hence there are a; € GT and a, € G;’
such that 2e = a; + a3. For each g, let us denote

gnl = gnNa1, Gn2 =Ggn — Ggni-

Then we have (cf. [6], p. 77, the property O)

Igml - gnll < |gm _gn|~

Then (g,1) is a sequence in G; and in view of (A) there is e; € G} such that (gn;)
is ej-uniformly Cauchy (in G). Hence there is g' € G| such that (g,,) converges
e1-uniformly to the element g'.

Next, we have gn2 € [0, az] for each positive integer n (cf. the proof of 2.2), hence
(gn2) is a sequence in G5. Let m,n be positive integers. Then

|gm2 — gn‘Zl = [(gm — gm1) — (gn — gnl)l = |(gm ~gn) + (gn1 — gm1)] <

< |gm - gnl + |gm1 - gnli < 2|gn - gn|~

Hence (gn2) is e-uniform Cauchy in G. In view of (A) and since G, is uniformly
complete, there are g?> € Gy and ez € G such that (g,2) converges es-uniformly to
the element g2.

Put g = g + ¢g2. The above results yield that (g,) converges (e, + e3)-uniformly
to the element g, completing the proof. O

By obvious induction we can verify that 4.7 remains valid when the two-element
system {G1,G2} is replaced by a finite system {G1,G2,...,Gn} € ¢(G) such that
V  Gi =G and all G; are uniformly complete.
1=1,2,...,n
4.8. Lemma. Let G be an abelian lattice ordered group satisfying the condition
c
(A). Let G; € c¢(G), i € I such that G = \/ G; and all G; are uniformly complete.

Then G is uniformly complete.

Proof. Again, according to 4.6 it suffices to show that G satisfies the condition
(iii). Let e and (g, ) be as in (iii). There exist i(1),4(2),...,¢(n) in I such that e € H.
where H = G(1) V...V Gj(,)- Let t be as in the proof of 4.6. Then f,, € H for each
n > t. Now we can apply to H the above mentioned generalization of Lemma 4.7.

(]
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From 4.8 we obtain

4.9. Theorem. Let G be an abelian lattice ordered group satisfying the condi-
tion (A). Then the uniform complete kernel of G does exist.

Let G4 be the class of all abelian lattice ordered groups which satisfy the condi-
tion (A).

4.10. Lemma. G, is a radical class.

Proof. It is easy to verify that G4 is closed with respect to convex ¢-subgroups.
Let G be an abelian lattice ordered group and let G; (i = 1,2) be elements of ¢(G)
satisfying the condition (A). By a similar consideration as in the proofs of 4.6 and
4.7 we can show that G; V G, belongs to G4; the details will be omitted. Hence by
applying obvious induction and by the same method as in 4.8 we obtain that G4 is
closed with respect to joins of convex ¢-subgroups. Therefore G4 is a radical class.

]

4.11. Theorem. ga(s) N G4 is a radical class.

Proof. Thisis a consequence of 4.5, 4.9 and 4.10. O

The question whether G, (s) is a radical class remains open.

5. THE CONDITION «(6)

Let us recall the following notions and notation. Let G be a lattice ordered group.
If X C G, then we set

Xt ={g€G:|g|A|z| =0 for each z € X};

X+ is said to be a polar of G. If card X = 1, then X*+ is a principal polar.

G is called projectable if each its principal polar is a direct factor, i.e. if G =
X+ x X1+ whenever card X = 1.

If we have a direct product decomposition G = A x B and g € G, then the
component of the element g in the direct factor A will be denoted by g(A).

5.1. Lemma. The class G4() is closed with respect to convex (-subgroups.

Proof. Let G € Gy) and H € ¢(G). Assume that {f,} is a disjoint subset of
H which is order bounded in H. Thus there is h € H such that h is an upper bound
of {fa}. Since G € G, there exists g € G* such that g — fyLfx for all \. Put
g'=gAh. Then g’ € H and ¢’ — faLfx for all \. Therefore H € Gy ). a
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5.2. Lemma. Let G be abelian and projectable, G; € ¢(G) (i = 1,2), a; € G7,
az € G. Then there are a} € G} such that a} La}, and a;, + ay < @} + a,.

Proof. Put (a3 —a2)t =1, (a1 — az)™ = ¢z and denote
A={a}*t, B={c}tt, C={cVe}
The projectability of G yields that
G=AxBxC.

We set a) = 2a1(A) + 2a:(C) and aj = 2a3(B). Then a;(A) and a;(C) belong to
the interval [0,a;], whence a] € G;. Similarly, a} € [0,a2] C G, and thus a} € C.
In virtue of the definitions of A, B and C the relations

a1(4) 2 a2(4), ai1(B) < a2(B), a1(C) =a2(C)

are valid. Since a; = a1(A) + a1(B) + a;(C) and similarly for az, we infer that
a; + a2 < ab + aj. O

5.3. Lemma. Assume that G is abelian and projectable. Let G; € c¢(G) N G,
(¢=1,2). Then G, VG; € Qa(ﬁ).

Proof. Put H =G;VGy; thus H=G; +G,. Let h € H and let {f\} be a
disjoint subset of H such that fy < h for each \. Then h € H¥. O

There exist a; € G} (i = 1,2) such that h = a; + az. Let a} and a}, be as in 5.2.
For each f, there exist elements fy; and fyo in G* such that

Hh=Ffa+he, fu<a, fHe<a.

Then fy;L fa2 for each A. Next, the system {fx;} is disjoint. Since G, satisfies the
condition «(6) there is g1 € G such that g; — fa1Lfy for each A. Analogously,
there is go € G2 such that go — fas L fae for each A. Let A, B and C be as in the
proof of 5.2.

Denote ¢; = g1 (A + C), g5 = g2(B). Since fy1 € A+ C and g1 > fa1, we obtain
that g1 (A + C) > fa1(A+ C) = fa, thus g — fa1 > 0. Next, since g; < g1 we
get g — faiLfa for each A. Similarly, gj — fa2L fao for each X\. Moreover, g Lg5.
Therefore 0 < fa1 + faz < g} + g5 and the element g = g} + g} satisfies the relations

g—H=(g1 +95) — (far + fae) = (g1 — ) + (92 — fr2) =
= (91 — fr1) V (95 — fr2),
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(G= AN =91 = fra) V(e = H)) A(fa V fa2) =
= ((g1 = HHr1) A ) V (g3 — fr2) A faz) = 0.

Hence H € Gys)-

By obvious induction we can generalize the assertion of 5.3 to the case of n convex
¢-subgroups of G. Next by the same method as in the proof of 4.8 we conclude that
the following result is valid:

5.4. Lemma. Assume that G is abelian and projectable. Let G; € ¢(G) N Gy6)
(t € I). Then V G; € Qa(s).
i€l
Let G, and G, be the class of all abelian or all projectable lattice ordered groups,
respectively. It has been already remarked above that G, is a radical class. Next, G,

is a radical class (cf. [9]). Therefore in virtue of 5.1 and 5.4 we arrive at the following
result:

5.5. Theorem. G, NG, NGy is a radical class.

Some open questions have been already proposed above. Let us add the following
ones:

Are G, N Ga(6) Or Gp N Go(e) radical classes?
IsG.NnG,N Ga(s) @ torsion class?
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