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Czechoslovak Mathematical Journal, 45 (120) 1995, Praha 

ON SOME COMPLETENESS PROPERTIES 

FOR LATTICE ORDERED GROUPS 

JAN JAKUBIK, Kosice 

(Received March 29, 1993) 

G. J. M. H. Buskes [2] investigated a series of completeness properties for an 
archimedean Riesz space E. Each of these properties can be applied also in a more 
general setting, i.e., for the case when E is a lattice ordered group. If a is one of the 
properties under consideration, then we denote by Ga the class of all lattice ordered 
groups G which have the property a. 

The notion of radical class of lattice ordered groups was introduced in [8]; cf. also 
[4], [5], [12], [13], [16]. The relations between this notion and the classes Ga will be 
dealt with in the present paper. We are mainly interested in the question whether 
Ga (or some reasonably large subclass of Ga) is a radical class. 

This question is related to the problem of existence of a-kernels. For some prop­
erties defined by means of sequences similar considerations were established in [10] 
and [11]. 

1. PRELIMINARIES 

The standard notation for lattice ordered groups will be applied (cf. [3] and [6]). 
The group operation will be written additively. 

We denote by G the class of all lattice ordered groups. For G e G let c(G) be the 
system of all convex ^-subgroups of G\ this system is partially ordered by inclusion. 

c c c 

The lattice operations in c(G) will be denoted by /\ and V- I n fact. A coincides 
with the set-theoretical intersection. Let {Ai}iei be a nonempty subset of c(G) and 

c 

let H = V H{. It is well-known that H is the set of all g e G having the property 
iei 

that there is a finite subset {i( l ) , i (2) , . . . ,i(n)} of I such that there exist elements 
hi e Hi(i),..., hn e Hi(n) with g = hi + h2 + . . . + hn. 
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A nonempty subclass X of G is said to be a radical class if it is closed with respect 
to 

a) convex ^-subgroups, and 
b) joins of convex ^-subgroups. 

A nonempty subset A of G+ is called disjoint if a\ A a 2 — 0 whenever a\ and a2 
are distinct elements of A. We write a_l_b i faAb -=0 . 

Let G be a lattice ordered group. We shall consider the following conditions for 
G (cf. [2]): 

(cY(l)) (G is boundedly laterally complete): each order bounded disjoint subset of G 
has a supremum. 

(a(2)) (G is a disjoint order complete): for every disjoint sequence (/n) in G such 
that fn —r 0 in order, the element sup{/n} exists, 

(a(3)) (G is order complete): whenever (fn) and (gn) are sequences in G with fn ^ 
gm for all m,n such that inf(gn — fn) = 0, then there exists h G G such that 
fn^h^gn for all n. 

(a(4)) (G has the O-interpolation property): whenever (fn) and (gn) are sequences 
in G such that fn ^ gn for all m, n, there exists h G G such that fn ^ h ^ gn 

for all n. 
(a(5)) (G is uniformly complete): cf. Section 4 for a thorough definition. 
(a(6)) (G is an A-group): for every disjoint set {f\} in G which is order bounded 

there exists an element g G G + such that g — f\-Lf\ for all A. 

For i G {1, 2 , . . . , 6} we denote by Ga(i) the class of all lattice ordered groups which 
satisfy the condition a(i). 

In Sections 1-3 it will be proved that if i G {1,2,4}, then Ga(i) is a radical class. 
The questions whether Ga(3),Ga(*>) and Ga(6) a r e radical classes remain open; some 
partial results in these directions will be established in Sections 3, 4 and 5. E.g., it 
will be shown that the class of all abelian lattice ordered groups belonging to Ga(3) 
and the class of all abelian projectable lattice ordered groups belonging to Ga(s) are 
radical classes. 

2. T H E CONDITIONS (a ( l ) ) AND ( Q ( 2 ) ) 

The following lemma is easy to verify; the proof will be omitted. In what follows, 
G is a lattice ordered group. 

2 .1 . Lemma. Let i G {1,2,3,4}. Assume that G G Ga(i) and H G c(G). Then 

II € Ga(i). 
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Let a be any property of lattice ordered groups. We denote by Sa the system of 
all elements of c(G) which have the property a. If a convex ^-subgroup H of G is a 
largest element of Sa, then H is said to be the a-kernel of G. 

The above lemma implies that for i G {1,2,3,4} the a(i)-kernel exists for each 
G G G iff Ga(i) is a radical class. 

2.2. Lemma. Whenever ai, a2,..., an are elements ofG+ there exists a system 
S(ai, a2 , . . •, an) of mappings 

ipi: [0, ai + . . . + an] -> [0, a{] (i = 1, 2 , . . . , n) 

such that 
(i) each ipi is isotone; 
(ii) for each xG [0, ai + . . . + an] the relation x = ipi(x) + . . . + il)n(x) is valid. 

P r o o f . We proceed by induction with respect to n. For n = 1 we put 5(ai) = 
{ipi}, where ipi is the identity on [0,ai]. 

Let n > 1 and assume that the assertion is valid for n — 1. We put ipi(x) = ai Ax 
for each x G [0, ai + . . . + an] . Next, let us consider the pairs 

(1) (x,-x + ai +... + an), (ai ,a2) , 

where a2 = a2 + . . . + an . 
We apply the facts demonstrated in the proof of Theorem 1.2.16, [1] (Riesz theo­

rem) concerning the case m = n = 2 (instead of the pairs (ai,a2), (bi,b2) from the 
mentioned proof we take now the pairs (1)). In our case we get 

(2) 0^-^i(x)+x^a'2. 

By the induction hypothesis there exists a system 5 (a2 , . . . , an) = {^} (i = 2 , . . . , n), 
where ip'{ is a mapping of [0, a2 + . . . + an] into [0, a;] (i = 2 , . . . , n) such that the 
conditions (i) and (ii) above are satisfied for the elements which are now under 
consideration. 

Hence all \\)\ are isotone and 

(3) t = iP2(t) + ... + ipn(t) for each t G [0,a2 + . . . + an]. 

Denote ipi(t) = ^i(—ipi(t) + t) for each t G [0,ai + .. . + an] and i = 2 , 3 , . . . ,n. Hence 
(ii) holds. 

It remains to verify that all ipi are isotone. For i = 1 this is obvious. Let x, y G 
[0, ax + . . . + an] , x ^ y. Since all i\)\ are isotone we have to show that 

-^i(y) + y ^ - ^ i W + x, 
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i.e., that 

(4) -(ax A y) + y ^ -(ax A x) + x. 

An easy computation shows that the interval [a\ An, y] is transposed to a subinterval 
of the interval [ai A x,rc]. Thus the relation (4) is valid, completing the proof. • 

2.3. Lemma. Let {G;}t-G/ be a nonempty subset of c(G) such that G, G GQ(i 
c 

for each i G I. Then V G, belongs to Ga(i)-
iei 

( i ) 

P r o o f . Put \J Gi= H. Let A be an order bounded disjoint subset of H. Thus 
iei 

there is h £ H such that 0 ^ a ^ h is valid for each a e A. 

There exist i ( l ) , i (2) , . . . ,i(n) in I such that h G G,^) -h Gt(2) -h . . . -h G,(n). Thus 
there are ai G G, ( 1) , . . . ,gn G Gl(n) with /i = g± + g2 + . . . -h gn. Hence /i ^ 

|gi | + |g2| + . . . + |gn|. 
Now let us apply Lemma 2.2, where the elements a, from 2.2 are replaced by \gj\ 

(j = 1, 2 , . . . , n), and let ipj have analogous meaning as in 2.2. For each a G A we 
have a ^ |gi | -h ... -h |gn | . Put t/^(a) = Oj. Thus 

(1) a = ax + a 2 -h . . . + an, 0 ^ a,j ^ |gj| G Gj (j = 1,2,... ,n). 

Let j G {1 ,2 , . . . , n} be fixed. Since A is disjoint, the set {aj}aeA is disjoint as well. 
Because Gj belongs to Ga(i) we conclude that V aj = bj does exist in Gj. 

a£A 

Put b = bi -h b2 -h . . . -h bn. Then clearly b G H and a ^ b for each a G A. Let 
x G G be such that a ^ re for each a e A. Denote x f\h = y. Hence a ^ y for each 
a e A. We set uj = ipj(y) for j = 1,2,..., n. Then aj ^ uj for each a e A and hence 
bj ^ yj. Because of y = y\ + y2 + . . . + yn we obtain that b ^ y. Hence b ^ x. This 
shows that b = sup A, completing the proof. • 

Now, Lemmas 2.1 and 2.3 yield 

2.4. Theorem. Ga(i) is a radical class. 

A radical class which is closed with respect to homomorphic images is said to be 
a torsion class [15]. Now we shall deal with the question whether Ga(i)

 1S a torsion 
class. 

Let M be an infinite set and let F be the set of all integer valued functions defined 
on M. The operation -h in F has the natural meaning and the partial order on F is 
defined componentwise. Then F G Ga(i)-

Let H be the system of all / G F such that the set {x G M: f(x) / 0} is finite. 
Then H is an Mdeal in F. Denote G = F/H. 
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Now let fi be the element of F with fi(x) = 1 for each x G M. The interval 
B = [0, fi] of F is a Boolean algebra. Put A = B n H. Hence A is an ideal of the 
Boolean algebra B. 

Consider the quotient Boolean algebra B/A. The following lemma is easy to 
verify. 

2.5. Lemma. Let f,g € B. Then f and g belong to the same element of B/A 
if and only if they belong to the same element of F/H. 

As a consequence of 2.5 we obtain 

2.6. Lemma. For each element A of B/A let ip(A) = a + H, where a G A. 
Then (D is an isomorphism of B/A onto the interval [H, f\ + H] of F/H. 

Now, Theorem 21.8 of [17] implies that the Boolean algebra B is not complete. 
Thus according to 20.1, [17] there exists a subset {Ai}iei of B/A such that (i) 
Ai ^ A for each i G I, (ii) -4;(i) A A^2) = A whenever i(l) and i(2) are distinct 
elements of I, and (iii) the join \J Ai does not exist in B/A. Hence by applying the 

iei 
isomorphism <p we infer that {<p(Ai)}iei is a disjoint subset of [H, f\ + H] such that 
the join of this subset does not exist in the interval [H, f\+H]. But then the join of 
this subset does not exist in F/H and hence F/H fails to belong to the class Ga(i)-
Therefore we have 

2.7. Proposition. Ga(i) f^s to be a torsion class. 

The condition a ( l ) can be weakened as follows: 
(a(lO)) (G is O-laterally complete): each countable order bounded disjoint subset 

of G has a supremum. 
By the same method as in the proof of 2.3 we obtain that Lemma 2.3 remains valid 

if a ( l ) is replaced by a(l<r). A similar situation occurs for Lemma 2.L Therefore 
we can replace a ( l ) by a(lcr) in 2.4 as well. 

Next, let us consider the condition (a(2)). We can denote by 2.3' the assertion 
which we obtain from 2.3 if a ( l ) is replaced by a(2). To prove 2.3' we have to work 
(instead of A as in 2.3) with a disjoint sequence (fm) in G + . We apply the same 
procedure as in the proof of 2.3 with the distinction that instead of (1) we write 

(V) fm = Ami + Gm2 + • • • + ^mn 

with the obvious further modifications of notation. It suffices to observe that when­
ever fn —•> 0 in order, then for each j G {1,2,. . . , n} the relation amj —•> 0 in order is 
valid. Therefore we obtain 
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2.8. Theorem. Ga(2) is a radical class. 

For investigating the question whether Ga(ia) (or Ga(2)) ls a torsion class the above 
consideration which was applied for Ga(i) does not suffice. 

2.9. Example. Let F and H be as above. There exists a system {Mn}neN 

of infinite subsets of M such that Mn(i) D Mn(2) = 0 whenever n(l) and n(2) are 
distinct positive integers. For each n G N let fn G F be such that fn(x) = 1 whenever 
x G Mn and fn(x) = 0 otherwise. Then {/n + H}n(=N is a disjoint subset of F/H. 

Next, for n G N let gn G F be such that gn(x) = 1 if x G IJ Mi, and gn(x) = 0 

otherwise. Hence gn + H > On+i + H > H is valid in F / H for each 7i G N. Moreover, 
/\ (On + H) = H. Also, an + H > fn + H for each n G N. Thus / n + H -» H is 

order. 
Let / G F such that / n + H ^ / + H for each n G N. Put Xn = {x G Mn: 

fn(x) ^ / (#)}• Hence the set Xn must be infinite. For each n G M we choose an 
element a;n G Xn and put F = {xn}ne^. Let / ' G F be such that / ' (x) = 0 if 
x G Y and / ' (x) = /(a;) otherwise. Then fn + H ^ / ' + H for each n G N, and 
f + H < f + H. Hence the set {/n + H} does not possess a supremum in F/H . 

This example implies that the following result is valid (in fact, it also gives an 
alternative proof of 2.7): 

2.10. Proposition. Neither Ga(\a)
 n°r Ga(2) is a torsion class. 

3. T H E CONDITIONS (a(3)) AND (a(4)) 

Let us first consider the following condition which we obtain by modifying (a(3)): 
(a'(3)) Whenever (fn) and (gn) are bounded sequences in C+ with fn ^ Om for all 

ra,n and such that inf(on — fn) = 0, then there exists h G G such that fn^h^gn 

for all n. 

3.1. Lemma. The conditions (a(3)) and (a'(3)) are equivalent. 

P r o o f . It is obvious that (a(3)) =J> (a'(3)). Assume that (a'(3)) is valid and 
let (/n) and (gn) be as in (a(3)). Denote 

fn = (fn v / i ) - A , gn = (gn A 9l) - A 

for each n e M. Then fn ^ g'm for all ra, n. Next we have 

9n~ fn^9n- fn for each neN, 

whence inf (O; - / ; ) = 0. Thus there is h! G G such that fn^h'^ g'n for all n. Put 
h = h! + A- Then / n ^ / n V A ^ ft ^ gn A gx ^ on for each n. D 
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3.2. Lemma. Let G be abelian. Let us apply the same assumptions and 
notation as in 2.2. Let x, y G [0, ax + . . . + an] , x ^ y. Then x - y ^ ipi{x) - ipi{y) 
for i = 1,2,... ,?i. 

P r o o f . By induction on n. For n = 1 the assertion obviously holds. Let n > 1. 
Denote a2(x) = —^\{y) + y. Next let z = -01 (#) v ?/• The intervals [a A H,H] and 
[a A x, 2] are transposed, whence 

(1) -y + (a A y) = -z + (a A re). 

Thus we have 

a'2(x) = {x- z) + {z- ipi{x)) = {x - z) + a'2(H), 

a2{x) — a2(H) = x — z ^ x — y. 

Now, by the induction hypothesis and by the definition of t/^, • • •, V̂x w e n-fer that 
</>-(#) ~ *Pi(y) < -c - y for i = 2 , . . . ,n. Clearly Vi(z) -ipi{y) t^x-y. D 

3.3. Lemma. Let {Gj};e/ be a nonempty subset of c{G) such that Gi G £at(3 ' ( 3 ) 

for eacii i G I. Then V G; belongs to Ga'(3))-
iei 

P r o o f . Put V Gi = H. Assume that (/n) and (gn) are bounded sequences in 
i€l 

H+ with fn ^ gm for all n, m and such that inf (gn — fn) = 0. Hence there is h G H+ 

such that gm ^ h for each m. 
We proceed by applying an analogous argument as in the proof of 2.3. There 

exist indices i(l),... ,i(k) in I and elements g\ G G^i ) , . . . ,gk G G^k) such that 
h = g\ + g-2 + • • • + 9k- Hence 

(1) h^\9l\ + \g2\ + ... + \gk\. 

Thus in view of 2.2 for each positive integer n there are elements anj G G^ {j = 
1,2, ...,fc) with 

(2) fn = &nl + • • • + ank\ 

similarly, for each positive integer m there are bmj G G^ {j = 1, 2 , . . . , k) such that 

(3) gm = bmi + . . . + bm/c, 

and, moreover, anj ^ bmj for each j G { 1 , . . . , k} and for each m, n. 
Next, according to 3.2 the relation gnj- — fnj ^ gn — / n is valid for each j G 

{1, 2 , . . . , k} and each n. Hence inf {gnj — fnj) = 0 holds for j = 1, 2 , . . . , k. Because 
of G^ G Get'(3) we infer that there is hj G G^ such that / n j ^ hj ^ gnj for all 
•n. Denote hi + ... + hk = h. Then (2) and (3) yield that fn ^ h ^ gn for all n. 
Therefore H belongs to Ga'(3)- • 
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We denote by Ga the class of all abelian lattice ordered groups. Then Ga is a 
radical class. This can be easily proved directly, but it is also a particular case of a 
more general result proved in [7]. 

3.4. Theorem. Ga(3) n Ga is a radical class. 

P r o o f . This is a consequence of 2.1, 3.1, 3.3 and of the above mentioned result 
concerning Ga> • 

The method of proving the following result is analogous to that which was used 
in proving 3.4 (with the distinction that we need not apply 3.2); the detailed proof 
will be omitted. 

3.5. Theorem. Ga(4) -s a radical class. 

The question whether Ga(3) n Ga (or Ga(4)) IS a torsion class remains open. 

4. UNIFORM COMPLETENESS 

First we recall the basic definitions concerning uniform completeness of Riesz 
spaces (cf., e.g., [14]). 

Let L be a Riesz space. 

4 .1. Definition. Given an element e ^ 0 in L, we say that a sequence (fn) in 
L converges e-uniformly to the element f G L whenever, for every real e > 0, there 
exists a positive integer no(e) such that \f — fn\ ^ ee holds for all n ^ no(e). 

4.2. Definition. Let e 6 L, e ) 0. A sequence (fn) in L is called an e-uniform 
Cauchy sequence whenever, for every real e > 0, there exists a positive integer rii (s) 
such that | / m — fn\ ^ ee holds for all ra,n ^ n\(s). 

Again, let e £ L, e ^ 0. It is easy to verify that the condition expressed in 4.1 
is equivalent to the following one (for a given sequence (/n) in L and an element 
feL): 

(i) For every positive integer k there exists a positive integer no(k) such that 
&l/ ~ fn\ ^ e holds for all n ^ no(k). 

Analogously, the following condition is equivalent to that from 4.2: 
(ii) For every positive integer k there exists a positive integer n\(e) such that 

k\fm — fn\ ^ e holds for ra,n ^ n\(k). 
Moreover, the conditions (i) and (ii) can be applied also in the case when L is a 

lattice ordered group. Thus if (i) holds, then we say that (/n) converges e-uniformly 
to the element / . If (ii) is valid, then (fn) is called an e-uniform Cauchy sequence. 

Next, analogously to the definition 42.1 in [14] we introduce 
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4.3. Definition. A lattice ordered group G is said to be uniformly complete 
whenever, for every e G G + , each e-uniform Cauchy sequence has an e-uniform limit. 

4.4. Lemma. Let H be a convex i-subgroup of a lattice ordered group G. Let 
0 ^ e G H , / G G and let (fn) be a sequence in H. Suppose that (fn) converges 
e-uniformly to the element f (in G). Then f G H. 

P r o o f . Under the notation as in (i) above let n ^ no(l). Then \f — fn\ ^ e, 
hence — e ^ / — fn^e. Since H is convex in G we infer that / belongs to H. D 

4.5. Corollary. The class Ga(s) is closed with respect to convex i-subgroups. 

Let us consider the following condition for a lattice ordered group G: 
(iii) Whenever 0 ^ e G G and (gn) is an e-uniform Cauchy sequence in G with 

0 ^ 9n ^ 2e for all n, then there exists g G G such that (gn) converges e-uniformly 
to the element g. 

4.6. Lemma. Let G be a lattice ordered group satisfying the condition (iii). 
Then G is uniformly complete. 

P r o o f . Let (fn) be an e-uniform Cauchy sequence in G. Denote ni ( l ) = t. Let 

m ^ t. Thus 

- e ^ fm ~ ft ^ e. 

Put om = / m - ft + e. Hence 

0 ^ gm ^ 2e. 

Next, let j be a positivie integer, j ^ t. Then 

gm gj — Jm Jj • 

Thus (gn) is an e-uniform Cauchy sequence. Since G satisfies the condition (iii) there 
is g G G such that (gn) converges e-uniformly to the element g. Put / = g - e + ft. 
Then (/n) converges e-uniformly to the element / . D 

Let us consider the following condition for a lattice ordered group G: 
(A) If H G c(G),0 ^ e e G and if (fn) is a sequence in H such that (/n) is 

e-uniform Cauchy (in G), then there is 0 ^ ei G H such that (/n) is ei-uniform 
Cauchy in H. 

It is easy to verify that if G fails to be archimedean, then it does not satisfy the 
condition (A). It is an open question whether each archimedean lattice ordered group 
must satisfy the condition (A). 
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4.7. Lemma. Let G be an abelian lattice ordered group satisfying the condition 
(A). Let G\ and G2 be convex i-subgroups of G such that G = G\ V G2. Assume 
that both G\ and G2 are uniformly complete. Then G is uniformly complete as well. 

P r o o f . In view of 4.6 it suffices to verify that G satisfies the condition (iii). Let 
e and (gn) be as in (iii). 

Since G is abelian we have G = G\ + G2. Hence there are a\ G G+ and a2 G G.j~ 
such that 2e = a\ + a2. For each gn let us denote 

gni = gn A Oi, gn2 = gn - gnl. 

Then we have (cf. [6], p. 77, the property 0) 

Igml " g n l | ^ |gm ~ gn|-

Then (gni) is a sequence in G\ and in view of (A) there is ei G G± such that (gni) 
is ei-uniformly Cauchy (in G\). Hence there is g1 G G\ such that (gni) converges 
ei-uniformly to the element g1. 

Next, we have gn2 G [0,a2] for each positive integer n (cf. the proof of 2.2), hence 
(gn2) is a sequence in G2. Let m,n be positive integers. Then 

|gm2 - gn2| = | (gm ~ gml) ~ (gn ~ gnl)| = | (gm ~ gn) + (gnl ~ gml)| ^ 

^ Igm - gn| + |gml ~ gnl | ^ 2|on ~ gn | • 

Hence (gn2) is e-uniform Cauchy in G. In view of (A) and since G2 is uniformly 
complete, there are g2 G G2 and e2 G Gf such that (gn2) converges e2-uniformly to 
the element g2. 

Put g = g1 + g2. The above results yield that (gn) converges (ei + e2)-uniformly 
to the element a, completing the proof. D 

By obvious induction we can verify that 4.7 remains valid when the two-element 
system {G\,G2} is replaced by a finite system {Gi, G2,..., Gn} G c(G) such that 

c 

y G{ = G and all Gi are uniformly complete. 
z'=l ,2 , . . . ,n 

4.8. Lemma. Let G be an abelian lattice ordered group satisfying the condition 
c 

(A). Let Gi G c(G), i G / such that G = \J Gi and all Gi are uniformly complete. 
Then G is uniformly complete. 

P r o o f . Again, according to 4.6 it suffices to show that G satisfies the condition 
(iii). Let e and (gn) be as in (iii). There exist i(l), i (2) , . . . , i(n) in I such that e G H, 
where H = Gi(\) V . . . V G^n) • Let t be as in the proof of 4.6. Then fn G H for each 
n ^ t. Now we can apply to H the above mentioned generalization of Lemma 4.7. 

D 
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From 4.8 we obtain 

4.9. Theorem. Let G be an abelian lattice ordered group satisfying the condi­
tion (A). Then the uniform complete kernel ofG does exist. 

Let GA be the class of all abelian lattice ordered groups which satisfy the condi­
tion (A). 

4.10. Lemma. GA is a radical class. 

P r o o f . It is easy to verify that GA is closed with respect to convex ^-subgroups. 
Let G be an abelian lattice ordered group and let G{ (i = 1,2) be elements of c(G) 
satisfying the condition (A). By a similar consideration as in the proofs of 4.6 and 
4.7 we can show that G\ V G2 belongs to GA\ the details will be omitted. Hence by 
applying obvious induction and by the same method as in 4.8 we obtain that GA is 
closed with respect to joins of convex ^-subgroups. Therefore GA is a radical class. 

• 

4.11. Theorem. Ga(b) H GA is a radical class. 

P r o o f . This is a consequence of 4.5, 4.9 and 4.10. • 

The question whether Ga(5) is a radical class remains open. 

5. T H E CONDITION a(6) 

Let us recall the following notions and notation. Let G be a lattice ordered group. 
If X C G, then we set 

X± = {g £ G: \g\ A \x\ = 0 for each x £ X}; 

X1- is said to be a polar of G. If cardX = 1, then XL1- is a principal polar. 
G is called projectable if each its principal polar is a direct factor, i.e. if G = 

X1- x X^1- whenever cardK = 1. 
If we have a direct product decomposition G = A x B and g £ G, then the 

component of the element g in the direct factor A will be denoted by g(A). 

5.1. Lemma. The class Ga(e) JS closed with respect to convex ^-subgroups. 

P r o o f . Let G £ Ga(e) and H £ c(G). Assume that {f\} is a disjoint subset of 
H which is order bounded in H. Thus there is h £ H such that h is an upper bound 
of {fA}- Since G £ Ga(e) there exists g £ G+ such that g - f\±f\ for all A. Put 
g1 = g A h. Then g' £ H and g' - f\Lf\ for all A. Therefore H £ 0 a ( 6 ) . • 
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5.2. Lemma. Let G be abelian and protectable. G{ G c(G) (i = 1,2), ai G G+, 
«2 £ G2. Then there are a[ G G2 such that a[±a2 and ax + a2 ^ a[ + a2. 

P r o o f . Put (ai - a 2 ) + = Gi, (ai - a2)~ = c2 and denote 

A = {c1}
±±, H = { c 2 } x ± , G = {c iVc 2 } ± . 

The projectability of G yields that 

G = AxBxC. 

We set a[ = 2ax(A) + 2ax(G) and a2 = 2a2(B). Then ai(,4) and ax(C) belong to 
the interval [0,ai], whence a[ G Gi. Similarly, a2 G [0,a2] C G2 and thus a2 G G. 

In virtue of the definitions of A,B and G the relations 

ai(A) ^ a2(A), ai(H) ^ a2(H), ax(C) = a2(C) 

are valid. Since ai = ai(A) + a\(B) + ai(G) and similarly for a2, we infer that 
ai + a2 ^ a'2 + a2. • 

5.3. Lemma. Assume that G is abelian and projectable. Let G{ G c(G) n Ga{6) 
(i = l ,2). TiienGi V G2 G 0 t t ( 6 ) . 

P r o o f . Put H = Gi VG2; thus H = Gx + G2. Let h e H and let {/A} be a 
disjoint subset of H such that fx^h for each A. Then h G H+. D 

There exist a; G Ĝ ~ (i = 1, 2) such that h = a\ + a2. Let a'x and a2 be as in 5.2. 
For each f\ there exist elements fxi and /A2 in G + such that 

fx = /AI + /A2, /AI ^ «i, /A2 ^ a2. 

Then /AI-L/A2 for each A. Next, the system {/AI} is disjoint. Since Gi satisfies the 
condition a(6) there is g\ G Gi such that g\ — /AI-L/AI for each A. Analogously, 
there is g2 G G2 such that g2 — /A2-L/A2 for each A. Let A, B and G be as in the 
proof of 5.2. 

Denote Gi = gi(A + G), a2 = g2(B). Since /Ai G A + G and Oi ^ / A i , we obtain 
that gi(A + C) ^ / A i ( A + G) = / A i , thus Gi - fxi ^ 0. Next, since g[ ^ Gi we 
get g[ - /AI-J-/AI for each A. Similarly, g2 - f\2Lf\2 for each A. Moreover, g[±g2. 
Therefore 0 ^ /Ai + /A2 ^ g[ + g2 and the element g = g[ + g2 satisfies the relations 

g-fx = (g[+ g2) - (fxi + fx2) = (gi - fxi) + (g2 - /A 2 ) = 

= ( g i - / A i ) V ( a 2 - / A 2 ) , 
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(g - fx) A fx = ((g[ - fxi) V (g'2 - fx2)) A ( / A I V f X 2 ) = 

= ((gi ~ / A I ) A fxl) V ((g2 - fX2) A / A 2 ) = 0. 

Hence H G G\(6)-

By obvious induction we can generalize the assertion of 5.3 to the case of n convex 

^-subgroups of G. Next by the same method as in the proof of 4.8 we conclude that 

the following result is valid: 

5.4. L e m m a . Assume that G is abelian and projectable. Let G{ G c(G) n Ga(6) 

( i 6 J). Then \/ G{ G Ga{6). 

iei 

Let Ga and GP be the class of all abelian or all projectable lattice ordered groups, 

respectively. It has been already remarked above that Ga is a radical class. Next, GP 

is a radical class (cf. [9]). Therefore in virtue of 5.1 and 5.4 we arrive at the following 

result: 

5.5. T h e o r e m . Ga^GPr\ Ga(6) is a radical class. 

Some open questions have been already proposed above. Let us add the following 

ones: 

Are Ga n Ga(6) or GP n Ga(6) radical classes? 

Is Ga n GP n Ga(6) a torsion class? 
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