Czechoslovak Mathematical Journal

Ján Jakubík

On some completeness properties for lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 45 (1995), No. 2, 253-266

Persistent URL:
http://dml.cz/dmlcz/128515

Terms of use:

© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON SOME COMPLETENESS PROPERTIES

FOR LATTICE ORDERED GROUPS

JÁn Jakubík, Košice

(Received March 29, 1993)
G. J. M. H. Buskes [2] investigated a series of completeness properties for an archimedean Riesz space E. Each of these properties can be applied also in a more general setting, i.e., for the case when E is a lattice ordered group. If α is one of the properties under consideration, then we denote by \mathcal{G}_{α} the class of all lattice ordered groups G which have the property α.

The notion of radical class of lattice ordered groups was introduced in [8]; cf. also [4], [5], [12], [13], [16]. The relations between this notion and the classes \mathcal{G}_{α} will be dealt with in the present paper. We are mainly interested in the question whether \mathcal{G}_{α} (or some reasonably large subclass of \mathcal{G}_{α}) is a radical class.

This question is related to the problem of existence of α-kernels. For some properties defined by means of sequences similar considerations were established in [10] and [11].

1. Preliminaries

The standard notation for lattice ordered groups will be applied (cf. [3] and [6]). The group operation will be written additively.

We denote by \mathcal{G} the class of all lattice ordered groups. For $G \in \mathcal{G}$ let $c(G)$ be the system of all convex ℓ-subgroups of G; this system is partially ordered by inclusion. The lattice operations in $c(G)$ will be denoted by \bigwedge^{c} and \bigvee^{c}. In fact, \bigwedge^{c} coincides with the set-theoretical intersection. Let $\left\{A_{i}\right\}_{i \in I}$ be a nonempty subset of $c(G)$ and let $H=\bigvee_{i \in I}^{c} H_{i}$. It is well-known that H is the set of all $g \in G$ having the property that there is a finite subset $\{i(1), i(2), \ldots, i(n)\}$ of I such that there exist elements $h_{1} \in H_{i(1)}, \ldots, h_{n} \in H_{i(n)}$ with $g=h_{1}+h_{2}+\ldots+h_{n}$.

A nonempty subclass X of \mathcal{G} is said to be a radical class if it is closed with respect to
a) convex ℓ-subgroups, and
b) joins of convex ℓ-subgroups.

A nonempty subset A of G^{+}is called disjoint if $a_{1} \wedge a_{2}=0$ whenever a_{1} and a_{2} are distinct elements of A. We write $a \perp b$ if $a \wedge b=0$.

Let G be a lattice ordered group. We shall consider the following conditions for G (cf. [2]):
$(\alpha(1))$ (G is boundedly laterally complete): each order bounded disjoint subset of G has a supremum.
$(\alpha(2))$ (G is a disjoint order complete): for every disjoint sequence $\left(f_{n}\right)$ in G such that $f_{n} \rightarrow 0$ in order, the element $\sup \left\{f_{n}\right\}$ exists.
$(\alpha(3))$ (G is order complete): whenever $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are sequences in G with $f_{n} \leqslant$ g_{m} for all m, n such that $\inf \left(g_{n}-f_{n}\right)=0$, then there exists $h \in G$ such that $f_{n} \leqslant h \leqslant g_{n}$ for all n.
$(\alpha(4))$ (G has the σ-interpolation property): whenever $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are sequences in G such that $f_{n} \leqslant g_{n}$ for all m, n, there exists $h \in G$ such that $f_{n} \leqslant h \leqslant g_{n}$ for all n.
$(\alpha(5))$ (G is uniformly complete): cf. Section 4 for a thorough definition.
$(\alpha(6))$ (G is an A-group): for every disjoint set $\left\{f_{\lambda}\right\}$ in G which is order bounded there exists an element $g \in G^{+}$such that $g-f_{\lambda} \perp f_{\lambda}$ for all λ.
For $i \in\{1,2, \ldots, 6\}$ we denote by $\mathcal{G}_{\alpha(i)}$ the class of all lattice ordered groups which satisfy the condition $\alpha(i)$.

In Sections 1-3 it will be proved that if $i \in\{1,2,4\}$, then $\mathcal{G}_{\alpha(i)}$ is a radical class. The questions whether $\mathcal{G}_{\alpha(3)}, \mathcal{G}_{\alpha(5)}$ and $\mathcal{G}_{\alpha(6)}$ are radical classes remain open; some partial results in these directions will be established in Sections 3, 4 and 5. E.g., it will be shown that the class of all abelian lattice ordered groups belonging to $\mathcal{G}_{\alpha(3)}$ and the class of all abelian projectable lattice ordered groups belonging to $\mathcal{G}_{\alpha(6)}$ are radical classes.
2. The conditions $(\alpha(1))$ and $(\alpha(2))$

The following lemma is easy to verify; the proof will be omitted. In what follows, G is a lattice ordered group.
2.1. Lemma. Let $i \in\{1,2,3,4\}$. Assume that $G \in \mathcal{G}_{\alpha(i)}$ and $H \in c(G)$. Then $H \in \mathcal{G}_{\alpha(i)}$.

Let α be any property of lattice ordered groups. We denote by S_{α} the system of all elements of $c(G)$ which have the property α. If a convex ℓ-subgroup H of G is a largest element of S_{α}, then H is said to be the α-kernel of G.

The above lemma implies that for $i \in\{1,2,3,4\}$ the $\alpha(i)$-kernel exists for each $G \in \mathcal{G}$ iff $\mathcal{G}_{\alpha(i)}$ is a radical class.
2.2. Lemma. Whenever $a_{1}, a_{2}, \ldots, a_{n}$ are elements of G^{+}there exists a system $S\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of mappings

$$
\psi_{i}:\left[0, a_{1}+\ldots+a_{n}\right] \rightarrow\left[0, a_{i}\right] \quad(i=1,2, \ldots, n)
$$

such that
(i) each ψ_{i} is isotone;
(ii) for each $x \in\left[0, a_{1}+\ldots+a_{n}\right]$ the relation $x=\psi_{1}(x)+\ldots+\psi_{n}(x)$ is valid.

Proof. We proceed by induction with respect to n. For $n=1$ we put $S\left(a_{1}\right)=$ $\left\{\psi_{1}\right\}$, where ψ_{1} is the identity on $\left[0, a_{1}\right]$.

Let $n>1$ and assume that the assertion is valid for $n-1$. We put $\psi_{1}(x)=a_{1} \wedge x$ for each $x \in\left[0, a_{1}+\ldots+a_{n}\right]$. Next, let us consider the pairs

$$
\begin{equation*}
\left(x,-x+a_{1}+\ldots+a_{n}\right),\left(a_{1}, a_{2}^{\prime}\right) \tag{1}
\end{equation*}
$$

where $a_{2}^{\prime}=a_{2}+\ldots+a_{n}$.
We apply the facts demonstrated in the proof of Theorem 1.2.16, [1] (Riesz theorem) concerning the case $m=n=2$ (instead of the pairs (a_{1}, a_{2}), (b_{1}, b_{2}) from the mentioned proof we take now the pairs (1)). In our case we get

$$
\begin{equation*}
0 \leqslant-\psi_{1}(x)+x \leqslant a_{2}^{\prime} \tag{2}
\end{equation*}
$$

By the induction hypothesis there exists a system $S\left(a_{2}, \ldots, a_{n}\right)=\left\{\psi_{i}^{\prime}\right\}(i=2, \ldots, n)$, where ψ_{i}^{\prime} is a mapping of $\left[0, a_{2}+\ldots+a_{n}\right]$ into $\left[0, a_{i}\right](i=2, \ldots, n)$ such that the conditions (i) and (ii) above are satisfied for the elements which are now under consideration.

Hence all ψ_{i}^{\prime} are isotone and

$$
\begin{equation*}
t=\psi_{2}^{\prime}(t)+\ldots+\psi_{n}^{\prime}(t) \quad \text { for each } \quad t \in\left[0, a_{2}+\ldots+a_{n}\right] \tag{3}
\end{equation*}
$$

Denote $\psi_{i}(t)=\psi_{i}^{\prime}\left(-\psi_{1}(t)+t\right)$ for each $t \in\left[0, a_{1}+\ldots+a_{n}\right]$ and $i=2,3, \ldots, n$. Hence (ii) holds.

It remains to verify that all ψ_{i} are isotone. For $i=1$ this is obvious. Let $x, y \in$ $\left[0, a_{1}+\ldots+a_{n}\right], x \geqslant y$. Since all ψ_{i}^{\prime} are isotone we have to show that

$$
-\psi_{1}(y)+y \leqslant-\psi_{1}(x)+x
$$

i.e., that

$$
\begin{equation*}
-\left(a_{1} \wedge y\right)+y \leqslant-\left(a_{1} \wedge x\right)+x \tag{4}
\end{equation*}
$$

An easy computation shows that the interval $\left[a_{1} \wedge y, y\right]$ is transposed to a subinterval of the interval $\left[a_{1} \wedge x, x\right]$. Thus the relation (4) is valid, completing the proof.
2.3. Lemma. Let $\left\{G_{i}\right\}_{i \in I}$ be a nonempty subset of $c(G)$ such that $G_{i} \in \mathcal{G}_{\alpha(1)}$ for each $i \in I$. Then $\bigvee_{i \in I}^{c} G_{i}$ belongs to $\mathcal{G}_{\alpha(1)}$.

Proof. Put $\bigvee_{i \in I}^{c} G_{i}=H$. Let A be an order bounded disjoint subset of H. Thus there is $h \in H$ such that $0 \leqslant a \leqslant h$ is valid for each $a \in A$.

There exist $i(1), i(2), \ldots, i(n)$ in I such that $h \in G_{i(1)}+G_{i(2)}+\ldots+G_{i(n)}$. Thus there are $g_{1} \in G_{i(1)}, \ldots, g_{n} \in G_{i(n)}$ with $h=g_{1}+g_{2}+\ldots+g_{n}$. Hence $h \leqslant$ $\left|g_{1}\right|+\left|g_{2}\right|+\ldots+\left|g_{n}\right|$.

Now let us apply Lemma 2.2, where the elements a_{i} from 2.2 are replaced by $\left|g_{j}\right|$ $(j=1,2, \ldots, n)$, and let ψ_{j} have analogous meaning as in 2.2. For each $a \in A$ we have $a \leqslant\left|g_{1}\right|+\ldots+\left|g_{n}\right|$. Put $\psi_{j}(a)=a_{j}$. Thus

$$
\begin{equation*}
a=a_{1}+a_{2}+\ldots+a_{n}, 0 \leqslant a_{j} \leqslant\left|g_{j}\right| \in G_{j} \quad(j=1,2, \ldots, n) \tag{1}
\end{equation*}
$$

Let $j \in\{1,2, \ldots, n\}$ be fixed. Since A is disjoint, the set $\left\{a_{j}\right\}_{a_{\in A}}$ is disjoint as well. Because G_{j} belongs to $\mathcal{G}_{\alpha(1)}$ we conclude that $\bigvee_{a \in A} a_{j}=b_{j}$ does exist in G_{j}.

Put $b=b_{1}+b_{2}+\ldots+b_{n}$. Then clearly $b \in H$ and $a \leqslant b$ for each $a \in A$. Let $x \in G$ be such that $a \leqslant x$ for each $a \in A$. Denote $x \wedge h=y$. Hence $a \leqslant y$ for each $a \in A$. We set $y_{j}=\psi_{j}(y)$ for $j=1,2, \ldots, n$. Then $a_{j} \leqslant y_{j}$ for each $a \in A$ and hence $b_{j} \leqslant y_{j}$. Because of $y=y_{1}+y_{2}+\ldots+y_{n}$ we obtain that $b \leqslant y$. Hence $b \leqslant x$. This shows that $b=\sup A$, completing the proof.

Now, Lemmas 2.1 and 2.3 yield

2.4. Theorem. $\mathcal{G}_{\alpha(1)}$ is a radical class.

A radical class which is closed with respect to homomorphic images is said to be a torsion class [15]. Now we shall deal with the question whether $\mathcal{G}_{\alpha(1)}$ is a torsion class.

Let M be an infinite set and let F be the set of all integer valued functions defined on M. The operation + in F has the natural meaning and the partial order on F is defined componentwise. Then $F \in \mathcal{G}_{\alpha(1)}$.

Let H be the system of all $f \in F$ such that the set $\{x \in M: f(x) \neq 0\}$ is finite. Then H is an ℓ-ideal in F. Denote $G=F / H$.

Now let f_{1} be the element of F with $f_{1}(x)=1$ for each $x \in M$. The interval $B=\left[0, f_{1}\right]$ of F is a Boolean algebra. Put $\Delta=B \cap H$. Hence Δ is an ideal of the Boolean algebra B.

Consider the quotient Boolean algebra B / Δ. The following lemma is easy to verify.
2.5. Lemma. Let $f, g \in B$. Then f and g belong to the same element of B / Δ if and only if they belong to the same element of F / H.

As a consequence of 2.5 we obtain
2.6. Lemma. For each element A of B / Δ let $\varphi(A)=a+H$, where $a \in A$. Then φ is an isomorphism of B / Δ onto the interval $\left[H, f_{1}+H\right]$ of F / H.

Now, Theorem 21.8 of [17] implies that the Boolean algebra B is not complete. Thus according to $20.1,[17]$ there exists a subset $\left\{A_{i}\right\}_{i \in I}$ of B / Δ such that (i) $A_{i} \neq \Delta$ for each $i \in I$, (ii) $A_{i(1)} \wedge A_{i(2)}=\Delta$ whenever $i(1)$ and $i(2)$ are distinct elements of I, and (iii) the join $\bigvee_{i \in I} A_{i}$ does not exist in B / Δ. Hence by applying the isomorphism φ we infer that $\left\{\varphi\left(A_{i}\right)\right\}_{i \in I}$ is a disjoint subset of $\left[H, f_{1}+H\right]$ such that the join of this subset does not exist in the interval $\left[H, f_{1}+H\right]$. But then the join of this subset does not exist in F / H and hence F / H fails to belong to the class $\mathcal{G}_{\alpha(1)}$. Therefore we have
2.7. Proposition. $\mathcal{G}_{\alpha(1)}$ fails to be a torsion class.

The condition $\alpha(1)$ can be weakened as follows:
$(\alpha(1 \sigma))$ (G is σ-laterally complete): each countable order bounded disjoint subset of G has a supremum.

By the same method as in the proof of 2.3 we obtain that Lemma 2.3 remains valid if $\alpha(1)$ is replaced by $\alpha(1 \sigma)$. A similar situation occurs for Lemma 2.1. Therefore we can replace $\alpha(1)$ by $\alpha(1 \sigma)$ in 2.4 as well.

Next, let us consider the condition ($\alpha(2)$). We can denote by 2.3 ' the assertion which we obtain from 2.3 if $\alpha(1)$ is replaced by $\alpha(2)$. To prove 2.3 ' we have to work (instead of A as in 2.3) with a disjoint sequence $\left(f_{m}\right)$ in G^{+}. We apply the same procedure as in the proof of 2.3 with the distinction that instead of (1) we write

$$
\begin{equation*}
f_{m}=a_{m 1}+a_{m 2}+\ldots+a_{m n} \tag{1'}
\end{equation*}
$$

with the obvious further modifications of notation. It suffices to observe that whenever $f_{n} \rightarrow 0$ in order, then for each $j \in\{1,2, \ldots, n\}$ the relation $a_{m j} \rightarrow 0$ in order is valid. Therefore we obtain
2.8. Theorem. $\mathcal{G}_{\alpha(2)}$ is a radical class.

For investigating the question whether $\mathcal{G}_{\alpha(1 \sigma)}\left(\right.$ or $\left.\mathcal{G}_{\alpha(2)}\right)$ is a torsion class the above consideration which was applied for $\mathcal{G}_{\alpha(1)}$ does not suffice.
2.9. Example. Let F and H be as above. There exists a system $\left\{M_{n}\right\}_{n \in \mathbb{N}}$ of infinite subsets of M such that $M_{n(1)} \cap M_{n(2)}=\emptyset$ whenever $n(1)$ and $n(2)$ are distinct positive integers. For each $n \in \mathbb{N}$ let $f_{n} \in F$ be such that $f_{n}(x)=1$ whenever $x \in M_{n}$ and $f_{n}(x)=0$ otherwise. Then $\left\{f_{n}+H\right\}_{n \in \mathbb{N}}$ is a disjoint subset of F / H.

Next, for $n \in \mathbb{N}$ let $g_{n} \in F$ be such that $g_{n}(x)=1$ if $x \in \bigcup_{i \geqslant n} M_{i}$, and $g_{n}(x)=0$ otherwise. Hence $g_{n}+H>g_{n+1}+H>H$ is valid in F / H for each $n \in \mathbb{N}$. Moreover, $\bigwedge_{n \in \mathbb{N}}\left(g_{n}+H\right)=H$. Also, $g_{n}+H>f_{n}+H$ for each $n \in \mathbb{N}$. Thus $f_{n}+H \rightarrow H$ is $n \in \mathbb{N}$
order.

Let $f \in F$ such that $f_{n}+H \leqslant f+H$ for each $n \in \mathbb{N}$. Put $X_{n}=\left\{x \in M_{n}\right.$: $\left.f_{n}(x) \leqslant f(x)\right\}$. Hence the set X_{n} must be infinite. For each $n \in \mathbb{N}$ we choose an element $x_{n} \in X_{n}$ and put $Y=\left\{x_{n}\right\}_{n \in \mathbb{N}}$. Let $f^{\prime} \in F$ be such that $f^{\prime}(x)=0$ if $x \in Y$ and $f^{\prime}(x)=f(x)$ otherwise. Then $f_{n}+H \leqslant f^{\prime}+H$ for each $n \in \mathbb{N}$, and $f^{\prime}+H<f+H$. Hence the set $\left\{f_{n}+H\right\}$ does not possess a supremum in F / H.

This example implies that the following result is valid (in fact, it also gives an alternative proof of 2.7):
2.10. Proposition. Neither $\mathcal{G}_{\alpha(1 \sigma)}$ nor $\mathcal{G}_{\alpha(2)}$ is a torsion class.
3. The conditions $(\alpha(3))$ and $(\alpha(4))$

Let us first consider the following condition which we obtain by modifying ($\alpha(3)$):
($\left.\alpha^{\prime}(3)\right)$ Whenever $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are bounded sequences in G^{+}with $f_{n} \leqslant g_{m}$ for all m, n and such that $\inf \left(g_{n}-f_{n}\right)=0$, then there exists $h \in G$ such that $f_{n} \leqslant h \leqslant g_{n}$ for all n.
3.1. Lemma. The conditions $(\alpha(3))$ and $\left(\alpha^{\prime}(3)\right)$ are equivalent.

Proof. It is obvious that $(\alpha(3)) \Rightarrow\left(\alpha^{\prime}(3)\right)$. Assume that $\left(\alpha^{\prime}(3)\right)$ is valid and let $\left(f_{n}\right)$ and $\left(g_{n}\right)$ be as in $(\alpha(3))$. Denote

$$
f_{n}^{\prime}=\left(f_{n} \vee f_{1}\right)-f_{1}, \quad g_{n}^{\prime}=\left(g_{n} \wedge g_{1}\right)-f_{1}
$$

for each $n \in \mathbb{N}$. Then $f_{n}^{\prime} \leqslant g_{m}^{\prime}$ for all m, n. Next we have

$$
g_{n}^{\prime}-f_{n}^{\prime} \leqslant g_{n}-f_{n} \quad \text { for each } n \in \mathbb{N},
$$

whence $\inf \left(g_{n}^{\prime}-f_{n}^{\prime}\right)=0$. Thus there is $h^{\prime} \in G$ such that $f_{n}^{\prime} \leqslant h^{\prime} \leqslant g_{n}^{\prime}$ for all n. Put $h=h^{\prime}+f_{1}$. Then $f_{n} \leqslant f_{n} \vee f_{1} \leqslant h \leqslant g_{n} \wedge g_{1} \leqslant g_{n}$ for each n.
3.2. Lemma. Let G be abelian. Let us apply the same assumptions and notation as in 2.2. Let $x, y \in\left[0, a_{1}+\ldots+a_{n}\right], x \geqslant y$. Then $x-y \geqslant \psi_{i}(x)-\psi_{i}(y)$ for $i=1,2, \ldots, n$.

Proof. By induction on n. For $n=1$ the assertion obviously holds. Let $n>1$. Denote $a_{2}^{\prime}(x)=-\psi_{1}(y)+y$. Next let $z=\psi_{1}(x) \vee y$. The intervals $[a \wedge y, y]$ and [$a \wedge x, z]$ are transposed, whence

$$
\begin{equation*}
-y+(a \wedge y)=-z+(a \wedge x) \tag{1}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
& a_{2}^{\prime}(x)=(x-z)+\left(z-\psi_{1}(x)\right)=(x-z)+a_{2}^{\prime}(y), \\
& a_{2}^{\prime}(x)-a_{2}^{\prime}(y)=x-z \leqslant x-y .
\end{aligned}
$$

Now, by the induction hypothesis and by the definition of $\psi_{2}, \ldots, \psi_{n}$ we infer that $\psi_{i}(x)-\psi_{i}(y) \leqslant x-y$ for $i=2, \ldots, n$. Clearly $\psi_{1}(x)-\psi_{1}(y) \leqslant x-y$.
3.3. Lemma. Let $\left\{G_{i}\right\}_{i \in I}$ be a nonempty subset of $c(G)$ such that $G_{i} \in \mathcal{G}_{\alpha^{\prime}(3)}$ for each $i \in I$. Then $\bigvee_{i \in I}^{c} G_{i}$ belongs to $\mathcal{G}_{\left.\alpha^{\prime}(3)\right)}$.

Proof. Put $\bigvee_{i \in I}^{c} G_{i}=H$. Assume that $\left(f_{n}\right)$ and $\left(g_{n}\right)$ are bounded sequences in H^{+}with $f_{n} \leqslant g_{m}$ for all n, m and such that $\inf \left(g_{n}-f_{n}\right)=0$. Hence there is $h \in H^{+}$ such that $g_{m} \leqslant h$ for each m.

We proceed by applying an analogous argument as in the proof of 2.3. There exist indices $i(1), \ldots, i(k)$ in I and elements $g_{1} \in G_{i(1)}, \ldots, g_{k} \in G_{i(k)}$ such that $h=g_{1}+g_{2}+\ldots+g_{k}$. Hence

$$
\begin{equation*}
h \leqslant\left|g_{1}\right|+\left|g_{2}\right|+\ldots+\left|g_{k}\right| . \tag{1}
\end{equation*}
$$

Thus in view of 2.2 for each positive integer n there are elements $a_{n j} \in G_{i(j)}(j=$ $1,2, \ldots, k$) with

$$
\begin{equation*}
f_{n}=a_{n 1}+\ldots+a_{n k} \tag{2}
\end{equation*}
$$

similarly, for each positive integer m there are $b_{m j} \in G_{i(j)}(j=1,2, \ldots, k)$ such that

$$
\begin{equation*}
g_{m}=b_{m 1}+\ldots+b_{m k} \tag{3}
\end{equation*}
$$

and, moreover, $a_{n j} \leqslant b_{m j}$ for each $j \in\{1, \ldots, k\}$ and for each m, n.
Next, according to 3.2 the relation $g_{n j}-f_{n j} \leqslant g_{n}-f_{n}$ is valid for each $j \in$ $\{1,2, \ldots, k\}$ and each n. Hence $\inf \left(g_{n j}-f_{n j}\right)=0$ holds for $j=1,2, \ldots, k$. Because of $G_{i(j)} \in \mathcal{G}_{\alpha^{\prime}(3)}$ we infer that there is $h_{j} \in G_{i(j)}$ such that $f_{n j} \leqslant h_{j} \leqslant g_{n j}$ for all n. Denote $h_{1}+\ldots+h_{k}=h$. Then (2) and (3) yield that $f_{n} \leqslant h \leqslant g_{n}$ for all n. Therefore H belongs to $\mathcal{G}_{\alpha^{\prime}(3)}$.

We denote by \mathcal{G}_{a} the class of all abelian lattice ordered groups. Then \mathcal{G}_{a} is a radical class. This can be easily proved directly, but it is also a particular case of a more general result proved in [7].
3.4. Theorem. $\mathcal{G}_{\alpha(3)} \cap \mathcal{G}_{a}$ is a radical class.

Proof. This is a consequence of 2.1, 3.1, 3.3 and of the above mentioned result concerning \mathcal{G}_{a}.

The method of proving the following result is analogous to that which was used in proving 3.4 (with the distinction that we need not apply 3.2); the detailed proof will be omitted.
3.5. Theorem. $\mathcal{G}_{\alpha(4)}$ is a radical class.

The question whether $\mathcal{G}_{\alpha(3)} \cap \mathcal{G}_{a}$ (or $\mathcal{G}_{\alpha(4)}$) is a torsion class remains open.

4. Uniform Completeness

First we recall the basic definitions concerning uniform completeness of Riesz spaces (cf., e.g., [14]).

Let L be a Riesz space.
4.1. Definition. Given an element $e \geqslant 0$ in L, we say that a sequence $\left(f_{n}\right)$ in L converges e-uniformly to the element $f \in L$ whenever, for every real $\varepsilon>0$, there exists a positive integer $n_{0}(\varepsilon)$ such that $\left|f-f_{n}\right| \leqslant \varepsilon e$ holds for all $n \geqslant n_{0}(\varepsilon)$.
4.2. Definition. Let $e \in L, e \geqslant 0$. A sequence $\left(f_{n}\right)$ in L is called an e-uniform Cauchy sequence whenever, for every real $\varepsilon>0$, there exists a positive integer $n_{1}(\varepsilon)$ such that $\left|f_{m}-f_{n}\right| \leqslant \varepsilon e$ holds for all $m, n \geqslant n_{1}(\varepsilon)$.

Again, let $e \in L, e \geqslant 0$. It is easy to verify that the condition expressed in 4.1 is equivalent to the following one (for a given sequence $\left(f_{n}\right)$ in L and an element $f \in L$) :
(i) For every positive integer k there exists a positive integer $n_{0}(k)$ such that $k\left|f-f_{n}\right| \leqslant e$ holds for all $n \geqslant n_{0}(k)$.

Analogously, the following condition is equivalent to that from 4.2:
(ii) For every positive integer k there exists a positive integer $n_{1}(\varepsilon)$ such that $k\left|f_{m}-f_{n}\right| \leqslant e$ holds for $m, n \geqslant n_{1}(k)$.

Moreover, the conditions (i) and (ii) can be applied also in the case when L is a lattice ordered group. Thus if (i) holds, then we say that (f_{n}) converges e-uniformly to the element f. If (ii) is valid, then $\left(f_{n}\right)$ is called an e-uniform Cauchy sequence.

Next, analogously to the definition 42.1 in [14] we introduce
4.3. Definition. A lattice ordered group G is said to be uniformly complete whenever, for every $e \in G^{+}$, each e-uniform Cauchy sequence has an e-uniform limit.
4.4. Lemma. Let H be a convex ℓ-subgroup of a lattice ordered group G. Let $0 \leqslant e \in H, f \in G$ and let $\left(f_{n}\right)$ be a sequence in H. Suppose that $\left(f_{n}\right)$ converges e-uniformly to the element f (in G). Then $f \in H$.

Proof. Under the notation as in (i) above let $n \geqslant n_{0}(1)$. Then $\left|f-f_{n}\right| \leqslant e$, hence $-e \leqslant f-f_{n} \leqslant e$. Since H is convex in G we infer that f belongs to H.
4.5. Corollary. The class $\mathcal{G}_{\alpha(5)}$ is closed with respect to convex ℓ-subgroups.

Let us consider the following condition for a lattice ordered group G :
(iii) Whenever $0 \leqslant e \in G$ and $\left(g_{n}\right)$ is an e-uniform Cauchy sequence in G with $0 \leqslant g_{n} \leqslant 2 e$ for all n, then there exists $g \in G$ such that $\left(g_{n}\right)$ converges e-uniformly to the element g.
4.6. Lemma. Let G be a lattice ordered group satisfying the condition (iii). Then G is uniformly complete.

Proof. Let $\left(f_{n}\right)$ be an e-uniform Cauchy sequence in G. Denote $n_{1}(1)=t$. Let $m \geqslant t$. Thus

$$
-e \leqslant f_{m}-f_{t} \leqslant e
$$

Put $g_{m}=f_{m}-f_{t}+e$. Hence

$$
0 \leqslant g_{m} \leqslant 2 e
$$

Next, let j be a positivie integer, $j \geqslant t$. Then

$$
g_{m}-g_{j}=f_{m}-f_{j}
$$

Thus $\left(g_{n}\right)$ is an e-uniform Cauchy sequence. Since G satisfies the condition (iii) there is $g \in G$ such that $\left(g_{n}\right)$ converges e-uniformly to the element g. Put $f=g-e+f_{t}$. Then $\left(f_{n}\right)$ converges e-uniformly to the element f.

Let us consider the following condition for a lattice ordered group G :
(A) If $H \in c(G), 0 \leqslant e \in G$ and if $\left(f_{n}\right)$ is a sequence in H such that $\left(f_{n}\right)$ is e-uniform Cauchy (in G), then there is $0 \leqslant e_{1} \in H$ such that $\left(f_{n}\right)$ is e_{1}-uniform Cauchy in H.

It is easy to verify that if G fails to be archimedean, then it does not satisfy the condition (A). It is an open question whether each archimedean lattice ordered group must satisfy the condition (A).
4.7. Lemma. Let G be an abelian lattice ordered group satisfying the condition (A). Let G_{1} and G_{2} be convex ℓ-subgroups of G such that $G=G_{1} \vee G_{2}$. Assume that both G_{1} and G_{2} are uniformly complete. Then G is uniformly complete as well.

Proof. In view of 4.6 it suffices to verify that G satisfies the condition (iii). Let e and $\left(g_{n}\right)$ be as in (iii).

Since G is abelian we have $G=G_{1}+G_{2}$. Hence there are $a_{1} \in G_{1}^{+}$and $a_{2} \in G_{2}^{+}$ such that $2 e=a_{1}+a_{2}$. For each g_{n} let us denote

$$
g_{n 1}=g_{n} \wedge a_{1}, \quad g_{n 2}=g_{n}-g_{n 1}
$$

Then we have (cf. [6], p. 77, the property O)

$$
\left|g_{m 1}-g_{n 1}\right| \leqslant\left|g_{m}-g_{n}\right|
$$

Then $\left(g_{n 1}\right)$ is a sequence in G_{1} and in view of (A) there is $e_{1} \in G_{1}^{+}$such that ($g_{n 1}$) is e_{1}-uniformly Cauchy (in G_{1}). Hence there is $g^{1} \in G_{1}$ such that $\left(g_{n 1}\right)$ converges e_{1}-uniformly to the element g^{1}.

Next, we have $g_{n 2} \in\left[0, a_{2}\right]$ for each positive integer n (cf. the proof of 2.2), hence $\left(g_{n 2}\right)$ is a sequence in G_{2}. Let m, n be positive integers. Then

$$
\begin{gathered}
\left|g_{m 2}-g_{n 2}\right|=\left|\left(g_{m}-g_{m 1}\right)-\left(g_{n}-g_{n 1}\right)\right|=\left|\left(g_{m}-g_{n}\right)+\left(g_{n 1}-g_{m 1}\right)\right| \leqslant \\
\leqslant\left|g_{m}-g_{n}\right|+\left|g_{m 1}-g_{n 1}\right| \leqslant 2\left|g_{n}-g_{n}\right|
\end{gathered}
$$

Hence $\left(g_{n 2}\right)$ is e-uniform Cauchy in G. In view of (A) and since G_{2} is uniformly complete, there are $g^{2} \in G_{2}$ and $e_{2} \in G_{2}^{+}$such that $\left(g_{n 2}\right)$ converges e_{2}-uniformly to the element g^{2}.

Put $g=g^{1}+g^{2}$. The above results yield that $\left(g_{n}\right)$ converges $\left(e_{1}+e_{2}\right)$-uniformly to the element g, completing the proof.

By obvious induction we can verify that 4.7 remains valid when the two-element system $\left\{G_{1}, G_{2}\right\}$ is replaced by a finite system $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\} \in c(G)$ such that $\bigvee_{i=1}^{c} \quad G_{i}=G$ and all G_{i} are uniformly complete. $i=1,2, \ldots, n$
4.8. Lemma. Let G be an abelian lattice ordered group satisfying the condition (A). Let $G_{i} \in c(G), i \in I$ such that $G=\bigvee^{c} G_{i}$ and all G_{i} are uniformly complete. Then G is uniformly complete.

Proof. Again, according to 4.6 it suffices to show that G satisfies the condition (iii). Let e and $\left(g_{n}\right)$ be as in (iii). There exist $i(1), i(2), \ldots, i(n)$ in I such that $e \in H$, where $H=G_{i(1)} \vee \ldots \vee G_{i(n)}$. Let t be as in the proof of 4.6. Then $f_{n} \in H$ for each $n \geqslant t$. Now we can apply to H the above mentioned generalization of Lemma 4.7.

From 4.8 we obtain
4.9. Theorem. Let G be an abelian lattice ordered group satisfying the condition (A). Then the uniform complete kernel of G does exist.

Let \mathcal{G}_{A} be the class of all abelian lattice ordered groups which satisfy the condition (A).
4.10. Lemma. \mathcal{G}_{A} is a radical class.

Proof. It is easy to verify that \mathcal{G}_{A} is closed with respect to convex ℓ-subgroups. Let G be an abelian lattice ordered group and let $G_{i}(i=1,2)$ be elements of $c(G)$ satisfying the condition (A). By a similar consideration as in the proofs of 4.6 and 4.7 we can show that $G_{1} \vee G_{2}$ belongs to \mathcal{G}_{A}; the details will be omitted. Hence by applying obvious induction and by the same method as in 4.8 we obtain that \mathcal{G}_{A} is closed with respect to joins of convex ℓ-subgroups. Therefore \mathcal{G}_{A} is a radical class.
4.11. Theorem. $\mathcal{G}_{\alpha(5)} \cap \mathcal{G}_{A}$ is a radical class.

Proof. This is a consequence of 4.5, 4.9 and 4.10 .
The question whether $\mathcal{G}_{\alpha(5)}$ is a radical class remains open.

5. The condition $\alpha(6)$

Let us recall the following notions and notation. Let G be a lattice ordered group. If $X \subseteq G$, then we set

$$
X^{\perp}=\{g \in G:|g| \wedge|x|=0 \quad \text { for each } x \in X\}
$$

X^{\perp} is said to be a polar of G. If card $X=1$, then $X^{\perp \perp}$ is a principal polar.
G is called projectable if each its principal polar is a direct factor, i.e. if $G=$ $X^{\perp} \times X^{\perp \perp}$ whenever $\operatorname{card} X=1$.

If we have a direct product decomposition $G=A \times B$ and $g \in G$, then the component of the element g in the direct factor A will be denoted by $g(A)$.
5.1. Lemma. The class $\mathcal{G}_{\alpha(6)}$ is closed with respect to convex ℓ-subgroups.

Proof. Let $G \in \mathcal{G}_{\alpha(6)}$ and $H \in c(G)$. Assume that $\left\{f_{\lambda}\right\}$ is a disjoint subset of H which is order bounded in H. Thus there is $h \in H$ such that h is an upper bound of $\left\{f_{\lambda}\right\}$. Since $G \in \mathcal{G}_{\alpha(6)}$ there exists $g \in G^{+}$such that $g-f_{\lambda} \perp f_{\lambda}$ for all λ. Put $g^{\prime}=g \wedge h$. Then $g^{\prime} \in H$ and $g^{\prime}-f_{\lambda} \perp f_{\lambda}$ for all λ. Therefore $H \in \mathcal{G}_{\alpha(6)}$.
5.2. Lemma. Let G be abelian and projectable, $G_{i} \in c(G)(i=1,2), a_{1} \in G_{1}^{+}$, $a_{2} \in G_{2}^{+}$. Then there are $a_{1}^{\prime} \in G_{2}^{+}$such that $a_{1}^{\prime} \perp a_{2}^{\prime}$ and $a_{1}+a_{2} \leqslant a_{1}^{\prime}+a_{2}^{\prime}$.

Proof. Put $\left(a_{1}-a_{2}\right)^{+}=c_{1},\left(a_{1}-a_{2}\right)^{-}=c_{2}$ and denote

$$
A=\left\{c_{1}\right\}^{\perp \perp}, \quad B=\left\{c_{2}\right\}^{\perp \perp}, \quad C=\left\{c_{1} \vee c_{2}\right\}^{\perp}
$$

The projectability of G yields that

$$
G=A \times B \times C
$$

We set $a_{1}^{\prime}=2 a_{1}(A)+2 a_{1}(C)$ and $a_{2}^{\prime}=2 a_{2}(B)$. Then $a_{1}(A)$ and $a_{1}(C)$ belong to the interval $\left[0, a_{1}\right]$, whence $a_{1}^{\prime} \in G_{1}$. Similarly, $a_{2}^{\prime} \in\left[0, a_{2}\right] \subseteq G_{2}$ and thus $a_{2}^{\prime} \in C$.

In virtue of the definitions of A, B and C the relations

$$
a_{1}(A) \geqslant a_{2}(A), \quad a_{1}(B) \leqslant a_{2}(B), \quad a_{1}(C)=a_{2}(C)
$$

are valid. Since $a_{1}=a_{1}(A)+a_{1}(B)+a_{1}(C)$ and similarly for a_{2}, we infer that $a_{1}+a_{2} \leqslant a_{2}^{\prime}+a_{2}^{\prime}$.
5.3. Lemma. Assume that G is abelian and projectable. Let $G_{i} \in c(G) \cap \mathcal{G}_{\alpha(6)}$ $(i=1,2)$. Then $G_{1} \vee G_{2} \in \mathcal{G}_{\alpha(6)}$.

Proof. Put $H=G_{1} \vee G_{2}$; thus $H=G_{1}+G_{2}$. Let $h \in H$ and let $\left\{f_{\lambda}\right\}$ be a disjoint subset of H such that $f_{\lambda} \leqslant h$ for each λ. Then $h \in H^{+}$.

There exist $a_{i} \in G_{i}^{+}(i=1,2)$ such that $h=a_{1}+a_{2}$. Let a_{1}^{\prime} and a_{2}^{\prime} be as in 5.2. For each f_{λ} there exist elements $f_{\lambda 1}$ and $f_{\lambda 2}$ in G^{+}such that

$$
f_{\lambda}=f_{\lambda 1}+f_{\lambda 2}, \quad f_{\lambda 1} \leqslant a_{1}^{\prime}, \quad f_{\lambda 2} \leqslant a_{2}^{\prime}
$$

Then $f_{\lambda 1} \perp f_{\lambda 2}$ for each λ. Next, the system $\left\{f_{\lambda 1}\right\}$ is disjoint. Since G_{1} satisfies the condition $\alpha(6)$ there is $g_{1} \in G_{1}$ such that $g_{1}-f_{\lambda 1} \perp f_{\lambda 1}$ for each λ. Analogously, there is $g_{2} \in G_{2}$ such that $g_{2}-f_{\lambda 2} \perp f_{\lambda 2}$ for each λ. Let A, B and C be as in the proof of 5.2 .

Denote $g_{1}^{\prime}=g_{1}(A+C), g_{2}^{\prime}=g_{2}(B)$. Since $f_{\lambda 1} \in A+C$ and $g_{1} \geqslant f_{\lambda 1}$, we obtain that $g_{1}(A+C) \geqslant f_{\lambda 1}(A+C)=f_{\lambda 1}$, thus $g_{1}^{\prime}-f_{\lambda 1} \geqslant 0$. Next, since $g_{1}^{\prime} \leqslant g_{1}$ we get $g_{1}^{\prime}-f_{\lambda 1} \perp f_{\lambda 1}$ for each λ. Similarly, $g_{2}^{\prime}-f_{\lambda 2} \perp f_{\lambda 2}$ for each λ. Moreover, $g_{1}^{\prime} \perp g_{2}^{\prime}$. Therefore $0 \leqslant f_{\lambda 1}+f_{\lambda 2} \leqslant g_{1}^{\prime}+g_{2}^{\prime}$ and the element $g=g_{1}^{\prime}+g_{2}^{\prime}$ satisfies the relations

$$
\begin{aligned}
g-f_{\lambda} & =\left(g_{1}^{\prime}+g_{2}^{\prime}\right)-\left(f_{\lambda 1}+f_{\lambda 2}\right)=\left(g_{1}^{\prime}-f_{\lambda 1}\right)+\left(g_{2}^{\prime}-f_{\lambda 2}\right)= \\
& =\left(g_{1}^{\prime}-f_{\lambda 1}\right) \vee\left(g_{2}^{\prime}-f_{\lambda 2}\right),
\end{aligned}
$$

$$
\begin{gathered}
\left(g-f_{\lambda}\right) \wedge f_{\lambda}=\left(\left(g_{1}^{\prime}-f_{\lambda 1}\right) \vee\left(g_{2}^{\prime}-f_{\lambda 2}\right)\right) \wedge\left(f_{\lambda 1} \vee f_{\lambda 2}\right)= \\
=\left(\left(g_{1}^{\prime}-f_{\lambda 1}\right) \wedge f_{\lambda 1}\right) \vee\left(\left(g_{2}^{\prime}-f_{\lambda 2}\right) \wedge f_{\lambda 2}\right)=0
\end{gathered}
$$

Hence $H \in \mathcal{G}_{\lambda(6)}$.
By obvious induction we can generalize the assertion of 5.3 to the case of n convex ℓ-subgroups of G. Next by the same method as in the proof of 4.8 we conclude that the following result is valid:
5.4. Lemma. Assume that G is abelian and projectable. Let $G_{i} \in c(G) \cap \mathcal{G}_{\alpha(6)}$ $(i \in I)$. Then $\bigvee_{i \in I}^{c} G_{i} \in \mathcal{G}_{\alpha(6)}$.

Let \mathcal{G}_{a} and \mathcal{G}_{p} be the class of all abelian or all projectable lattice ordered groups, respectively. It has been already remarked above that \mathcal{G}_{a} is a radical class. Next, \mathcal{G}_{p} is a radical class (cf. [9]). Therefore in virtue of 5.1 and 5.4 we arrive at the following result:
5.5. Theorem. $\mathcal{G}_{a} \cap \mathcal{G}_{p} \cap \mathcal{G}_{\alpha(6)}$ is a radical class.

Some open questions have been already proposed above. Let us add the following ones:

Are $\mathcal{G}_{a} \cap \mathcal{G}_{\alpha(6)}$ or $\mathcal{G}_{p} \cap \mathcal{G}_{\alpha(6)}$ radical classes?
Is $\mathcal{G}_{a} \cap \mathcal{G}_{p} \cap \mathcal{G}_{\alpha(6)}$ a torsion class?

References

[1] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et anneaux réticulés, Lecture Notes in Mathematics 608. Springer Verlag, Berlin, 1977.
[2] G. J. M. H. Buskes: Disjoint sequences and completeness properties. Indag. Math (Proc. Netherl. Acad. Sci. A 88) 47 (1985), 11-19.
[3] P. Conrad: Lattice ordered groups. Tulane University, 1970.
[4] P. Conrad: K-radical classes of lattice ordered groups. Algebra, Proc. Conf. Carbondale (1980), Lecture Notes in Mathematics 848. 1981, pp. 186-207.
[5] M. Darnel: Closure operations on radicals of lattice ordered groups. Czechoslov. Math. J. 37 (1987), 51-64.
[6] L. Fuchs: Partially ordered algebraic systems. Oxford, 1963.
[7] W. C. Holland: Varieties of ℓ-groups are torsion classes. Czechoslov. Math. J. 29 (1979), 11-12.
[8] J. Jakubik: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 31. Academic Press, New York-London, 1977, pp. 451-477.
[9] J. Jakubik: Projectable kernel of a lattice ordered group. Universal algebra and applications. Banach Center Publ. Vol. 9, 1982, pp. 105-112.
[10] J. Jakubik: Kernels of lattice ordered groups defined by properties of sequences. Časopis pěst. matem. 109 (1984), 290-298.
[11] J. Jakubik: On some types of kernels of a convergence ℓ-group. Czechoslov. Math. J. 39 (1989), 239-247.
[12] J. Jakubik: Closure operators on the lattice of radical classes of lattice ordered groups. Czechoslov. Math. J. 38 (1988), 71-77.
[13] J. Jakubik: On a radical class of lattice ordered groups. Czechoslov. Math. J. 39 (1989), 641-643.
[14] W. A. J. Luxemburg, A. C. Zaanen: Riesz spaces, Volume I. Amsterdam-London, 1971.
[15] J. Martinez: Torsion theory for lattice groups. Czechoslov. Math. J. 25 (1975), 284-292; 26 (1976), 93-100.
[16] N. Ja. Medvedev: On the lattice of radicals of a finitely generated ℓ-group. Math. Slovaca 33 (1983), 185-188. (In Russian.)
[17] R. Sikorski: Boolean algebras, Second edition. Berlin, 1964.

Author's address: Matematický ústav SAV, dislokované pracovisko, Grešákova 6, 04001 Košice, Slovakia.

