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OSCILLATION OF ODD ORDER NEUTRAL DELAY 

DIFFERENTIAL EQUATION 

P . DAS, Berhampur 

(Received March 29, 1993) 

1. INTRODUCTION 

Biological models have provided many examples of differential equations with re
tarded arguments. The construction of a biological model using delays has been 
paralleled by the mathematical investigation of the nonlinear delay equations. Such 
equations also appear in control theory, economics, physics, ecology, etcetera. Re
cently the study of oscillatory behaviour of solutions of odd order differential equa
tions is a subject of great interest in which the retardation is only responsible for 
oscillation. For example, the first order delay differential equation 

x'(t)-x(t-D = 0 

has oscillatory solutions X\(t) = sint and x2(t) = cost, although all solutions of the 
corresponding ordinary differential equation 

x'(t) +x(t) = 0 

are nonoscillatory. 

The results of this paper was motivated by certain recent results due to Gopalsamy, 
et al. [3], Graef et al. [4] and Zhang [8]. 

In [3], authors proved that if 

(Ci) Q € C([a,oo),lR+), IR+ = (0,oc), r,OG (0,oo), p G [ 0 , l ) 

1991 Subject Classifications: 34C10, 34C11 and 34K15. Key words: Odd order, neutra l 
differential equat ion, oscillation of solutions . 
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and 

(C2) lim inf / (t - s)n-гQ(s) ds > (1 - p)(n - 1)!, 
W o ° Jt-a t-

then every solution of the odd order neutral delay differential equation 

(Ei) (x(t) - px(t - r ) ) ( n ) + Q(t)x(t - a) = 0, 

oscillates, that is, every solution x(t) of (Ei) has zeros for arbitrarily large t. When 

Q(t) = q E (0,oo), then (C2) reduces to 

(C3) qan > (1 - p)(n)l 

In this paper, we prove the same result in which (C2) may be replaced by the con

ditions 

(C4) lim inf / Q(s) ds > -?—-?- for n = 1, 
*-•«> Jt_a e 

lim inf / an~1Q(s)ds> -(1 -p)(-^—Y'1 (n - 1)\ for n > 1. 
£->oo Jt-sL e Vn — 1/ 

Clearly, when Q(t) = q G (0,oo), (C4) becomes 

qa > (1 — p)/e for n = 1 and 

qan>-(l-p)(-^-)n~\n)\, for n > 1, 
e Vn — 1/ 

which in view of the inequality 

K^r-K-?'-1"^)') 
X r — n / 

< l ( - ^ i ) < ' -

where C(n - l , r ) is the (r + 1) th binomial coefficient of the expansion (^zj) , 

is a weaker condition than that of (C3). 

In [4], Graef et al. proved that if (Ci) is satisfied, / : R -> R such that xf(x) > 0 

for x 7-- 0 and / is increasing, then every solution of 

(x(t) - px(t - T))' + Q(t)f(x(t - a)) = 0, 
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oscillâtes if 

r±oc 

/

°° [ ds 

Q(s) ds = oo and / —r-T- < oo for every a > 0. 
Jo f\s) 

Here we prove the same result for a general odd order neutral delay differential 

equation with several deviating arguments. A result of Zhang has been generalized 

here. 

2. SUFFICIENT CONDITIONS FOR OSCILLATION 

Consider the differential equations 

K v ( n ) 

(E2) 

and 

(Eз 

where 

/ л \ \n) m 

í x(t) - үPjx(t -тM +Y Qi(t)x(t - Gi) = 0, 
^ 7 = 1 ' г = l 

K ч ( n ) тn / л \ Kn) Tn 

í x(t) - J2 PM* - T , ) ) + S Qi w * И* - a { ) ) = °' 
^ j = l ' 1=1 

(C5) ph TJ G [0,oo) (j = l , 2 , . . . , K ) , Qi eC([a, oo),(0,oo)), o G i , 

Qi(t) > 0 almost everywhere Oi G (0, oo) (i = 1,2,..., m), 
K K 

n is odd and /__,£> j < 1. Denote p = Y^Pj , 
j = i j = i 

7f K ™ - 771 
To = mm Tj, T = max Tj, Oo = mm O; and O = max a. 

j = i j = i i = i i = i 

(C6) / i : (R —> [R such that /* are nondecreasing and xfi(x) > 0 

for x ^ 0 (i = 1,2,... ,m). 

By a solution of (E2) ((E3)) in [a, 00) with initial function #, we mean a function 

x G C([a — a, 00), (R), a = max{T, O}, such that x(t) = #(£) for t G [a — a, a], #(£) 

is continuable in [a,00) and satisfies (E2) ((E3)). Such a continuable solution x(t) 

is said to be oscillatory if it has zeros for arbitrarily large t. Otherwise, we call it 

nonoscillatory. 
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Lemma 1. [2, Lemma 1]. Suppose that f G C(n)([T, oo), (0, oo)) such that f{i)(t) 
has no zeros in [T, oo) for i = 1,2,... , (n - 1) and f{n)(t) ^0,t^T. If a > 0 then 

f^-^)^r—^f{n~lHt), t>T + 2a. (n- 1)! 

Theorem 1. Suppose that (C5) hold. If n = 1 and all solutions of 

m 

(1) x'(t) + Ai ~P Qi(t)x(t - Gi) = 0 
t = i 

are oscillatory for some 

(2) A i e ( 0 , l / ( 1 - P ) ) , 

then all solutions of (E2) are oscillatory. If n > 1 and all solutions of 

m 

(3) x'(t) + A2 ~T °rlQiit)x(t - Gijn) = 0 
; = i 

are oscillatory for some 

W ^^'-(.-iwi-,)^)'"')-
then aii solutions of (E2) are oscillatory 

P r o o f . Contrary to the theorem, suppose that x(t) is a nonoscillatory solution 
of (E2). Without any loss of generality, assume that x(t) > 0 for t ^ t0. Set 

K 

(5) z(t)=x(t)-~~~pjx(t-rj). 
i=i 

From (E2) it follows that z(n)(£) ^ 0, t ^ lo + o almost everywhere and conse
quently, there exists a T ^ t0 + G such that z^l)(t) has no zeros in [T, oo) for 
i = 0 , l , 2 , . . . , ( n - 1). Therefore, z(t) < 0, or z(t) > 0, t ^ T. We shall reach 
to some contradiction in both cases. Suppose that z(t) < 0, t ^ T. Since n is odd, it 
follows that z'(t) < 0, t ^ T. Let lim supx(t) = n. If n = oo, then x(l) is unbounded 

£ — • 0 0 

and hence there exists a sequence ( O n ^ i s u c n that tn —> 00, x(tn) —> oo as n —> oo 
and £(s) < :r(£n) for s < tn. From (5) we have z(tn) ^ (l-p)x(tn) and consequently, 
^(^n) -> 00 as n -> 00, a contradiction. If 0 ^ n < 00, there exists a sequence (tn)

<
n°=l 
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such that tn —r oo and x(tn) -> // as n -+ oo. Clearly, the bounded sequence of real 

numbers (x(tn - Ti))n
G

=l admits a convergent subsequence say, (x(tn^) - T\)),1)=1 

which converges to fi\ ^ fi. Again (.z(£n(i) — T2)) is a bounded sequence of real 

numbers, so it admits a convergent subsequence say, (x(tn(2) — T2))n(2)=1, which 

converges to some p,2 ^ p. Since (tn(2)) is a subsequence of (£n(i)), it follows that 

(x(tn{2) — r i ) ) converges to p\. Proceeding in this way upto K time we can find a 

subsequence (x(tn(K) ~ TK)) (K\-I w m c n converges to a number PK ^ M- Clearly 

(x(tn{K) — Tj))n(K)=i c o n v e r g e s to H ^ M (i — 1»2. • • • »-^0- From (5) we see that 
K K 

z(tn(K)) —> P> — zC PjMj ^ n(-^0 "* °°- But P> ~ Yl PjP'j ^ A*(l — p) > 0 leads a 
3=1 j=l 

contradiction to the fact that z is negative and decreasing in [T, oo). Hence z(t) < 0, 
t ^ T is not possible. 

Next, suppose that z(t) > 0, t ^ T. Here we claim that z'(t) ^ 0, t ^ T. If not, 
assume that z'(£) > 0, t ^ T. Consequently, 

(6) lim inf x(r) = lim inf (z(t) + ^TPjx(t - r,-) J ^ lim inf *(*) > 0. 
t—>oo £—>-oo V --—' / £—>-oo 

From Theorem 2.7.4 [6] it follows that all solutions of either of the equations (1) or 
(3) are oscillatory implies that 

/

oo / m \ 

(~2Qi(s)jds = 

00. 

Integrating (E2) from T to t and then using (6) and (7) we see that z^n~l\t) -> -oo 
as t -> oo. Consequently, z(£) -> oo as £ -> oo. This contradiction proves our claim. 

Denote J = {1, 2 , . . . , 1\~}. From (5), it follows that 

K 

(8) z W ^ W + ^ i ^ - T , - ) 
J = l 

^*(*)+P-*(*- r f c l ) , t^T + T, 

for some k\ e J which depends on £. Replacing £ by t — Tkl in (8) and then using 
the resulting inequality in (8) we see that for t ^ T + 2r, 

K 

x(£) ^ 2 : ( ^ ) + p 2 ; ( ^ - r A ; i ) + p ^ p j a ; ( i - r j - r f c l ) 
j=i 

^ z(t) +pz(t-Tkl) +p2x(t-Tk2 -rkl), 
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for some k2 € «I- Proceeding successively for any positive integer N, we get 

A / - 1 / i v / N 

(9) -cŵ ô + Xi^б-È^Ì+p^б-E7--,-). 
ѓ = l ^ 7 = 1 ' ^ 7 = 1 ' 

for some kj £ J (j = 1,2,.. . , N) and r ^ T + NT. From (9) and the fact that z is 
decreasing we obtain 

x(t) > z(t){\ + p + p2 + . . . , +pN~1}, t> T + NT, 

that is, 

(10) x(r) ^ ^ { l ^ - } , t^T + NT. 

We shall obtain separate contradictions for the cases n = 1 and n > 1, respectively 

If n = 1, choose N large enough such that x(t) > X\z(t) and then from (E2) we 

see that z(t) is an eventually positive solution of the differential inequality 

m 

z'(t) + Xi ] T Qi(t)z(t - <Ji) ^ 0, 
1 = 1 

which by Theorem 2.2 [3] implies that Eq. (1) has a nonoscillatory solution, a con

tradiction to our assumption. 

Suppose that n > 1. From Lemma 1, it follow that 

(11) z(t-<n) > -J_(-l^l<r1)n"1-(«-1)(t _<-./„), 
(n — 1)! V n / 

for i — 1, 2 , . . . , m and t^T + 2a. Set 

(12) 0 = M ^ ) n ~ 1 ( n ~ i ) ! 

From (4), it follows that /3 < 1/(1 -p) and hence in (10) choose N large enough such 

that (1 - pN)/(l - p) > ft. Consequently, from (10) we obtain 

x(t) > (3z(t), t>T + NT, 

that is, 

(13) x(t-Gi) > (3z(t-ai), t^T + NT + ai (i = l ,2 , . . . , ?n) . 
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From (11), (12) and (13) we obtain 

(14) x(t - Gi) > X2(G
n-1)z^~^(t - Gi/n), t^T + NT + Sa. 

Using (14) in (E2) we see that z^n~l\t) is an eventually positive solution of the first 

order differential inequality. 
m 

(15) y'(t) + X2^2ai~1Qi(t)y(t - <n/n) < 0. 
t = i 

Consequently, by Theorem 2.2 of [3] and the remark following it, we see that the 

equation associated with (15), that is, Eq. (3) admits a nonoscillatory solution, which 

again is a contradiction to our assumption. This completes the proof. • 

R e m a r k 1. When (C5) hold, n = 1, Qi(t) = q{ G IR+ (i = 1,2,. . . , ra) and 
K = 1, Zhang [8] proved that any one of the conditions 

v- C-PI ) ITI V /™/'V' "l (l-pi) 

!>,> — or (n^.) (X>)> — 
implies that all solutions of (E2) are oscillatory In view of Proposition 3 due to 

Arino, et al [1], Theorem 1 is a generalization of the above observations. 

Corollary 1. Suppose that (C5) holds and n > 1. If either of the conditions 

pt / m \ .. n —1 

(15) lim inf / ^ar'Q^sUds > -(l-p)(-^-) (n - 1)\ 
*->oo Jt-aQ/n\jr{ j e \n-U 

or 
pt / m \ 1 

(16) lim sup / (Y/^~1Qi(s))ds>(l-p)(-^-)n (n-1)! 
t^oo Jt-*0/n\r^ ) \n-l/ 

are satisfied, then all solutions of (E2) are oscillatory. 

P r o o f . If (15) or (16) hold, then there exists \i £ (0,1) such that the term 
m m 
^2 an~ Qi(s) in (15) and (16) can be replaced by the term /x( ^ an~1Qi(s)). By 
t = i i = i 

Theorem 2.7.1 and Remark 2.7.3 of [6], it follows that either of the resulting condi

tions implies that all solutions of 
m 

*' W + A Yl °rlQi(s)z(t - Gi/n) = 0 
t = l 

are oscillatory, where 

A м-^-г-1 

(l-p)(n-l)\' 

Hence by Theorem 1 all solutions of (E2) are oscillatory. • 
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Remark 2. When m = 1 and K = 1, the motivation given in introduction 

follows from the above corollary 

Example 1. The equation 

(x(t) - \x(t - 1))(3) + 3(|§ + e-l)x[t - 1) = 0, t> 1, 

satisfies the hypotheses of Corollary 1 with (15). Hence every solution of it oscillates. 

Theorem 4.1 due to Gopalsamy, et al [3] is not applicable to it. 

In the following we prove a theorem which generalizes a main result due to 

Zhang [8]. 

Theorem 2. Suppose that (C5) holds, Qi(t) = Qi £ (0,oo) and r ^ O0. If 

( m \ 

V > ) > F ( A ) , 

where 

F(A) = i ( l - p A ) " + 1 

and A is the unique real root of the equation. 

(18) n(l-p)y = \n(y), 1 ^ </<C 1/p, 

then every solution of (E2) oscillates. 

P r o o f . It is known from [7] that every solution of (E2) oscillates if and only if 

the associated characteristic equation. 

(19) 
/ К \ т 

ед = -А." (1 - 5> е М Т ' ) + Е ^ а { = ° 
^ 3=1 ' 1 = 1 

has no real roots. Clearly, G([i) > 0 for // ^ 0. We claim that G(p) > 0 for fi > 0. If 

not, let G(lx) = 0 for some p > 0. Multiplying (19) throughout by exp(-/iT0)(T0/7i)n 

and simplifying we get 

(To/nY ( £ Q-) < ( V « ) exp(-MT0)Mn ( l - f > e ^ 
^ i= i ' ^ j = i 

^ (r0/n)exp(-/iT0)//n(l -pe" T 0 ) . 
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Put x(t) = exp(/xr0) in the above inequality to get 

x i= i ' 

Setting 

«/ x (lnx)n(l -pa:) 
(21 R(x) = ± --- - ^ , 

x 

wee see that the maximum of R(x) for x > o attains at x = A, where A is the unique 

real root of (18). Hence 

r,, x ( lnA) n ( l -pA) 
(22) R(x) ^ K- - - i - ^ . 

Again from (18) we get 

(23) l n A - n ( l - p A ) . 

From (20), (21), (22) and (23) we obtain 

(Vn)n(f>)^[l-pA]"+\ 
^ t = l ' 

a contradiction to (17). Hence the proof is completed. • 

Remark 2. When n = 1, K = 1, the above theorem was proved by Zhang in [8]. 

Theorem 3. Suppose that (C5), (Ce) hold and for some k G [1 ,2 , . . . , m], 

/

oo 

Qk(s)ds = oo, 

r±a ds_ 

/*(*) 
(25) / T T T < °° ^or e v e i T a > 0> 

Jo 

then every solution of (E3) oscillates. 

P r o o f . If possible, suppose that :r(£) is a nonoscillatory solution of (E3). Sup
pose that x(t) > 0 for t ^ t0. The case when x(t) < 0, t ^ t0 may be treated 
similarly. Set z(t) as in (5). From (E3), it follows that z^\t) ^ 0, t ^ t0 + a. 
Consequently, there exists & T ^ t0 + a such that z^(t) has no zeros in [T, 00) for 
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i = 0,1, 2 , . . . , (n — 1). If z(t) < 0, t ^ T we proceed in the lines of Theorem 1 and 

reach at a contradiction. Thus z(t) > 0, t ^ T. By Lemma 1 we get 

(26) z{t-ai)^^LLz(n-l){t) 

(n- 1)! 

> / i ^ ( n - 1 } ( 0 , t^T+ 2a, 

where 

n = mm { -—-—— >. P i=i \(n- 1)!/ 

From (26) and the fact that z(t) ^ x(t), it follows that 

(27) x(t-(n) > uz{n-l)(t), t^T+ 2(7 (i = l,2,...,m). 

Using (E 3), (C6) and (27) we get 

(28) z^n)(t) + Qk(t)fk(nz{n-l)(t)) ^ 0 . 

Set To = T + 2d. Dividing (28) throughout by fk(az{n~l)(t)) and then integrating 

the resulting inequality from To to t we obtain 

, / z ^ " - 1 ' ^ ) 1 rt 

(29) - / —-+ / Qk(s)ds^0. 
J^tz^-^(t) Jk(X) JT0 

We may note that z(t) > 0, z^n)(t) ^ 0 in [T,oo) implies that z{n~l)(t) is positive 

and decreasing in [T, oo). Using (24) and (25) in (29) we lead to a contradiction 

when t -» oo. 

This completes the proof of theorem. • 

Corollary 2. Suppose that (C5) and (Ce) are satisfied. If 

(!><•>)<• S = - OO 

aлd 
f±а dx 

Jo fi(x) 
< 00 for every a > 0 (i = 1, 2, . . . , m), 

i(x) 

then every solution of (E3) oscillates. 

The proof of this theorem follows from Theorem 3. 
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Remark 3. In [4], Graef et al. proved the particular case of Corollary 2, that is, 
Corollary 2 when n = V m = 1 and K = 1. 

The sublinearity condition on fk assumed in (25) includes fk(x) = xa, where a is 
the ratio of odd integers and 0 < a < 1. 
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