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SPACES WITH A BOREL-COMPLETE 

STONE-CECH COMPACTIFICATION 

HERMANN RENDER, Duisburg 

(Received April 15, 1993) 

A topological space is called Borel-complete if every two-valued Borel measure is 
a Dirac measure. In this short note we want to investigate the Tychonoff spaces X 

whose Stone-Cech compactification /3X is Borel-complete. In [3] it was proved that 
pseudocompactness is a necessary condition; moreover a conjecture was stated that 
X is even compact. In other words, the conjecture claims that the following class 

(1) & := {13X \ X; /3X is Borel-complete} 

consists only of the empty set. Our main result shows that the conjecture is not 
true; e.g. it shows that every separable metric space is in £%. 

Theorem. A Tychonoff space is in the class 38 (up to homeomorphy) iff it is a 

subset of a Borel-complete compact space. 

Let ^ be the space described in [6, p. 272]. As pointed out in [3] ^ is a Borel-
complete pseudocompact space. Moreover one can assume that *£* := (3$\ty consists 
exactly of one element, cf. [4]. Consequently (3^ is the union of two Borel-complete 

-el subsets; by Theorem 2.4 in [3] /3\P is Borel-complete. This example already 
shows that the above conjecture is not valid. 

P r o o f of T h e o r e m . The necessity is clear since Borel-completeness is 
hereditary. Let now Y be a subset of a Borel-complete compact Hausdorff space 
Iv. Define 5 := /3* x K \ (** x Y). At first we show that (3S = (3$> x K. Note that 
^ x A' is a pseudocompact space. By Glicksberg's Theorem (see [6, p. 199]) # x K 
is C*-embedded in (3^ x K. Since S contains $ x K the space S is C* embedded in 
(Jfy x A' and therefore (3S = (3^ x K. As a product of two Borel-complete spaces (3S 
is Borel-complete. On the other side the space /3S \ S = ^* x Y is homeomorphic 
to Y. The proof is complete. D 

325 



As pointed out in [3] it is unclear which topological spaces X admit a Borel-
complete compact extension. By Theorem 3.1 in [3] every space with a perfectly 
normal compactification and by Corollary 2.5 every discrete space of non-measurable 
cardinality have this property 
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