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1. AUXILIARY RESULTS

We will use the standard notation for ¢-groups, cf. [5]. Throughout the paper G is
an {-group, R is the real group, @ is the rational group and Z is the integer group.
If G and H are ¢-groups, G 8 H denotes their cardinal sum. Let {Go | a € A} be a

system of ¢-groups and let [[ G, be their product. For an element g € [] G4 we
a€A a€A
denote the a component of g by go. An ¢-group G is said to be a subdirect sum of

(-groups G, in symbols G C' [] Ga, if G is an ¢-subgroup of [] G4 such that for
a€EA a€A
cach @ € A and each g’ € G, there exists g € G with the property g, = ¢’. An ¢-

group G is said to be an ideal subdirect sumn of (-groups G, in symbols G C* [] G,
«a€EA

if G C' [] Ga and G is an (-ideal of [ G.. We denote the ¢-subgroup of [ Ga
a€EA a€A acA

consisting of the elements with only finitely many non-zero components by Y G,.
a€A

An (-group G is said to be a completely subdirect sum, if G is an f-subgroup of

Il Gaand > G4 CG.
a€A a€A
A subset {0} # D C G is said to be disjoint, if g; A g2 = 0 for any pair of distinct

clements g1, g2 € D. For any X C G we designate X+ = {g € G | |g| A|z| = 0 for
cach x € X}. For g € G, [g] is the convex ¢-subgroup of G gencrated by g, (g) = g**
is the polar subgroup of G generated by g. We denote the least cardinal a such
that |A] < a for each bounded disjoint subset A of G by vG, where |A| denotes the
cardinal of A. G is said to be v-homogeneous if vH = vG for any convex ¢-subgroup
H # {0} of G. If G is an archimedean v-homogeneous (-group and vG = ¥;, we call
G an archimedean v-homogeneous ¢-group of X; type.

In [9] we proved that an ¢-group G is complete if and only if G is ¢-isomorphic to
an ideal subdirect sum of real groups, integer groups and continuous v-homogeneous
complete ¢-groups. By using this result, we described the structure of an archimedean
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¢-group in [10]. Suppose that G is a subdirect sum of subgroups of reals and v-

homogeneous ¢-groups, G C' [] Ts. Let Ay = {6 € A | Ts is a subgroup of reals}.
seA
If > Ts C G, then G is said to be a semicomplete subdirect sum of subgroups of
s€A;
reals and v-homogeneous ¢-groups of X; type, in symbols

(1.1) Z Ts CGC HTé.

seh, CA sea

Theorem 1.1 (Theorem 4.7 of [10]). An ¢-group G is archimedean if and only
if G is {-isomorphic to a semicomplete subdirect sum of subgroups of reals and
archimedean v-homogeneous €-groups of X; type.

Now let G be an archimedean ¢-group. Then we have an ¢-isomorphism g such

that
Y. T, CoGC [ T,
§1€A.CA seA

where T}, is a subgroup of reals for each §; € A; C A and T is an archimedean v-
homogeneous ¢-group of X; type for each § € A\ A;. Forz € Gput 2! = (...2}...)

1 (91:)(5 5€A11
Ty =
0 dEA\ A

such that

We call z! the real part of z. If for any z € G, the real part 2! € oG, G is said to
be real decomposable archimedean ¢-group. In this case, if we put 22 = (...21%..))

) 0 0 € A,
Ti = )
s (ox)s 0 A\ A

as follows:

then
0T = z! + 1:2,

and 22 = pz — 2! € pG. Put

Gy ={or € oG |z €qG, (ox)s=0foréd € A\ A},
G2 = {or € 0G|z € G,(px)s =0 for § € A}.

Then both G; and G, are ¢-subgroups of pG, moreover,
oG =G, BG,.
It is clear that Gy = R(pG) (the radical of G) and G; = R(oG)*.
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Corollary 1.2. Let G be a real decomposable archimedean ¢-group. Then G is
(-isomorphic to a cardinal sum G B G2, where G, is a completely subdirect sum of
subgroups of reals and G is a subdirect sum of archimedean v-homogeneous ¢-groups
of X; type.

So, if G is a real decomposable archimedean ¢-group, then G = R(G) B R(G)*.
However, in general, R(G) is not a cardinal summand of G. If G is complete or
laterally complete, then R(G) is a cardinal summand.

2. A COMPLETELY SUBDIRECT SUM OF SUBGROUPS OF REALS

Now we can characterize those ¢-groups which can be represented as completely
subdirect sums of subgroups of reals.

Theorem 2.1. Let G # {0} be an archimedean ¢-group. Then the following
properties are equivalent:

(1) G is ¢-isomorphic to a completely subdirect sum of subgroups of reals;

(2) G is ¢-isomorphic to an ideal subdirect sum of real groups and integer groups;

(3) G has a basis.

Proof. (1) = (2): Without loss of generality, assume

Y Tcac [T,

seA feA

where each T} is a subgroup of R for 6 € A. Then

el g* H T&A7
sea

where T* = Ror Z for § € A.

(2) = (1): It is similar to the proof of Theorem 1.1.

(1) = (3): If we have the formula (1.1), then for each § € A we choose a fixed ts
with 0 < t5 € Ts; the system {t5 | 6 € A} is a basis for G.

(3) = (2): See Theorem 3.5 in [5]. O

By Theorem 4 and Corollary IV of Chapter 3 in [5] we see that an archimedean
¢-group G has a finite basis if and only if G is ¢-isomorphic to a completely subdirect
sum of a finite number of subgroups of reals. However, a completely subdirect sum of
a finite number of subgroups of reals is a cardinal sum of a finite number of subgroups
of reals. So we get
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Corollary 2.2. An archimedean ¢-group G has a finite basis if and only if G is
(-isomorphic to a cardinal sum of a finite number of subgroups of reals.

3. HYPER-ARCHIMEDEAN PROPERTY

An (-group G is called hyper-archimedean if each ¢-homomorphic image of G is
archimedean.

Proposition 3.1. An {¢-group G is hyper-archimedean if and only if G is pro-
jectable and [g] = (g) for each 0 < g € G.

Proof. Necessity. Suppose that G is hyper-archimedean. For any 0 < g € G
we have gt 8 (9) € G. But gt B (g) 2 g+ B[g] = G by Theorem 2.4 in [5]. So
G = g+ B (g), and G is projectable. From G = g B [g] = g* B (g) we get [g] = (9)-

Sufficiency. If G is projectable and 0 < g € G, then G = g+ B(g). Since [g] = (g),
G = g+ B[g]. Hence G is hyper-archimedean. ]

An l-group G is an a-extension of an ¢-group H if and only if H is an ¢-subgroup
of G and the map L — LN H is a one-to-one map of the set of all convex ¢-subgroups
of G onto those of H. G is a-closed if it admits no proper a-extension.

Corollary 3.2. Let G be a hyper-archimedean ¢-group with a basis. If G is
a-closed, then G/P ~ R for each proper prime P.

Proof. Let G be an a-closed hyper-archimedean ¢-group with a basis. By the
above Theorem 2.1, without loss of generality, we have

ZTagGQ'HTJ,

sea seA

where cach Ty is a subgroup of reals. Let P be a proper prime. By Theorem 2.4 in
[5] P is maximal and P = {z € G | 25, = 0 for some Jo € A}. So

G=Ts; 8P
and G/P ~ Ty,. If G/ Py fails to be isomorphic to R for some proper prime Ip, then

G'=RBPhDQBPy,or G =RBP, D ZBP, is clearly an a-extension of G, a
contradiction. Therefore G/P = R for each proper prime P. O
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This corollary partly answers the question of the Corollary 2 in [2].

Next we discuss the hyper-archimedean kernel Ar(G) of an archimedean {-group
G. Ar(G) is a convex {-subgroup of G which is hyper-archimedean and contains
every hyper-archimedean convex ¢-subgroup of G. An ¢-group G is continuous if for
cach 0 < © € G there exist 1, 9 € G such that z = 27 + 22, x1 Az2 =0, 27 #0
and xy # 0.

Lemma 3.3. Let G be a complete (laterally complete and archimedean) divisible
v-homogeneous ¢-group of R; type. Then Ar(G) = 0.

Proof. First we can show that a projectable v-homogeneous ¢-group of R; type
is continuous. In fact, v[z] = vG = X; for any 0 < z € G. So there exist 0 < a; <z
and 0 < ay < 2 such that a; Aag = 0. Then G = af B aj- and so z = z; + 72 with
xy € ai and x, € ail. It is clear that = ¢ ai and z ¢ ai‘. Hence z; # 0, z2 # 0.

Now let G be a complete (laterally complete and archimedean) divisible v-
homogeneous ¢-group of X; type. Then G is projectable (see [5], [4]) and continuous.
Consider the Bernau representation ([3])

0: G- G C D(Xg).

For any 0 < z € G there exists a maximal disjoint subset X in G such that x € X.
By Theorem 3.3 in [6] we can choose g such that Z is the characteristic function of a
clopen subset S in X¢. Since G is continuous, G is also continuous. So T = zi + 2}
with 2} A2? = 0 and 2} # 0, 22 # 0. For 0 < 22 € G we also have 22 = z} + 22 with
vy Axd =0and 2} #0, 23 # 0. We continue to get a sequence {z! |n =1,2,...}
in G such that

T, = Xs(z1), ThATh =0 (n#m)

and

S(z) € S(x),  S(z,)NS(xy,) =0 (n # m),

where S(a,) is the support of x, and xg(,1) is the characteristic function on S(z).
Put

1 &
Ty = —a;,ll and T = \/ (G)xn.
n
n=1

Then 2,, T € G. Now (T A nZ)(t) = o for t € S(zl,1). On the other hand
[T A (n+ 1)T)(t) = 0. Therefore

TANT =T A (n+1)T.
This proves that Ar(G) = 0 by Lemma 2.1 in [8]. O
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Proposition 3.4. Let G be a complete (laterally complete and archimedean)
v-homogeneous ¢-group of R; type. Then Ar(G) = 0.

Proof. By Lemma 3.3, Ar(G%) = 0 where G is the divisible hull of G. For
any 0 < z € G and any n € N we have

QF

[z]G:[%]Gd and =z

(3
- n)cd’

d
where [z]¢ is the convex (-subgroup of G generated by  and [%]G is the convex (-

subgroup of G¢ generated by £, 2 and (%)é, are polars in G and in G¢, respectively.
Hence o
G 1
G n T T
et < 7] B(0) e
[x] Te = n n/ G4

By Corollary 2.1.1 in [8] we get

a@ = () (wee)= N (] 8 (2),)=ae =0

0<zeCG 0<z€C
neN

O
Theorem 3.5. Let G be a complete ¢-group. Then Ar(G) is an ideal subdirect
sum of real groups and integer groups.
Proof. By Proposition 2.2 in [9], without loss of generality, we have

YLscac [[ 1

seA SEA

where each T5 (0 € A) is R or Z or a complete v-homogeneous ¢-group of X; type.
Put Ay ={6€ A|Ts =Ror Z}, Ay, = A\ Ay. Assume z € Ar(G). For any
8o € Az and any as, € Ts, we have @5, = (...0...a5,...0...) € G. So there exists
n € N such that

x Anas, =z A (n+ 1)as,.

Hence
Zs, A nas, = Ts, N (Tl + 1)05“.

By Lemma 2.1 in [8] this means that x5, € Ar(Ts,). However, by Proposition 3.4,
Ar(Ts,) = 0. So x5, = 0. Therefore

Ar@G) ' I T
s€N,
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By Lemma 2.1. in [8] it is clear that Y. Ts5 C Ar(G). Since Ar(G) is convex in G

SEA,
and G is convex in  [] Ts, Ar(G) is convex in  [] Ts. So we have
S LN
Sonscar@G) e [ Ts
€N, [ J<YANY

O

Corollary 3.6. If a complete ¢-group G is hyper-archimedean, then G is an ideal
subdirect sum of real groups and integer groups.

Theorem 3.7. Let G be a complete {-group. Then Ar(G) is dense in G if and
only if G is an ideal subdirect sum of real groups and integer groups.

Proof. Necessity. By the proof of Theorem 3.5 we have

Y LcaG e [T

€A SEA
and
(3.1) dYonscanG) ¢ [] T
sEA, s€A,

where Ts = Ror Z (6§ € Ay). Since G is complete, Ar(G)F C [[ Ts by (3.1).

LYPAN
Since Ar(G) is dense in G, G = Ar(G)&. Hence
Y T CAG) CAr@)EF =G [[ Tn
(YA sel,
Sufticiency. Let
Z IsCcGCt H Ts,
seA, [ Y<FANY
where cach Ts = Ror Z (§ € A). Since
> T5 C Ax(G) C G,
seA,
Ar(G) is dense in G. a

Corollary 3.8. Let G be a complete (-group. Then Ar(G) is dense in G if and
only if G has a basis.

Theorem 3.7 and Corollary 3.8 partly answer the question and conjecture in [8].
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4. PROJECTABILITY

It is well known that a complete (o-complete) ¢-group is projectable. M. An-
derson defined some weak concepts of projectability in [1]. An ¢-group G is called
subprojectable if for each 0 < x € G and each non-zero polar P C 21 there exists a
non-zero polar @ such that Q C P and z = QB Q. G is called densely projectable
if it has a family F of non-trivial cardinal summands such that if {0} # P € P(G)
then there exists a @ € F such that Q@ C P, where P(G) is the Boolean algebra of
all polars in G.

Suppose that H is an {-subgroup of an ¢-group G. H is called a signature for
G if P - PN H is a Boolean isomorphismn from P(G) onto P(H). An {-group G
is a specker group if it is generated as a group by its singular elements. Assume
O0<zed Ilfz=ux +2z 21 AN22 =0in G, we call z; (and z2) a component of
x. We call 0 < x € G a specker sign if for each 0 < y < z there exists a non-zero
component z; of z in y-. We will say that G has a specker signature if it has a
signature if it has a signature which happens to be a specker ¢-subgroup.

Let G be an archimedean ¢-group. We denote by G¢ the essential closure of G
(see [6]). An element 0 < z € G is said to be saturated if, whenever there exist xy,
Ty € G* with 1 Axzy = 0 in G€ such that = x; + z9, then ;1 € G. An archimedean
¢-group G is said to be saturated if each 0 < z € G is saturated. For example, a
divisible complete ¢-group is saturated.

Proposition 4.1. A subprojectable v-homogeneous {-group G of X; type is con-
tinuous.

Proof. By Theorem 6 in [7] each 0 < z € G is a specker sign. v[z] = vG = N;
implies that z is not basic. It follows from Lemma 9 of [7] that G is continuous. O

Proposition 4.2. A saturated archimedean ¢-group is subprojectable.

Proof. Let G be a saturated archimedean ¢-group. Consider the Bernau rep-
resentation

Let 0 < y < z € G. By Theorem 3.3 in [6] the ¢-isomorphism 7 can be chosen so
that g is the characteristic function of a clopen subset S of the Stone space X¢. Put
S" = S(2) \ S where S() is the support of &. Then S’ is also a clopen subset of X¢

and
S(@)=Sus'.
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So we have

where #; € D(S), 22 € D(S') and D(S)(D(S")) = {f: S(S") = (R,£00) | f is
continuous and f is real on a dense open subset of S(S')}. Since G is saturated, so
is G. Hence I € G. Tt is clear that

v ={3€G|S@ cS}

(see [3]). So we have Z; € yéL. This proves that & is a specker sing. Hence each
0 < z € G is a specker sign. By Theorem 6 in [7], G is subprojectable. ]

Corollary 4.3. A saturated archimedean v-homogeneous (-group of X; type is
continuous.

From Theorem 7 in [7] we have

Corollary 4.4. A saturated archimedean {-group has a specker signature.
In [1] M. Anderson proved that G is subprojectable if and only if each [z] is densely

projectable. so from Proposition 4.2 we have

Corollary 4.5. Let G be a saturated archimedean {-group. Then each [z] (z € G)
is densely projectable.

Proposition 4.6. Let G be an archimedean {¢-group with a basis. Then G is
subprojectable.
Proof. By Theorem 1.1 we have

Y Tscac [T

seA sea

where each T5 (6 € A) is a subgroup of reals. Then for each § € A we choose a fixed
ts with 0 < ts € Ts; the system {ts € T5 | 6 € A} is a maximal disjoint subset and
each ts is a specker sign (each basic is a specker sign). By 4(b) in [7], G has a specker
signature. It follows from Theorem 7 in [7] that G is subprojectable. O
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