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GENERALIZED COUPLINGS 

VLASTIMIL PTAK, P r a h a 

(Received Septembe r 29, 1993) 

The notion of generalized couplings was introduced and investigated, not long 
ago, in a joint paper of P. Vrbova and the present author [4]. The idea of combining 
two spaces, each with an operator given on it, appears first—in the particular case of 
semiunitary operators—in a paper of Adamyan and Arov. The ideas of Adamyan and 
Arov [1] were further developed by a number of authors; in particular, the connections 
of this notion with dilations of mappings of positive type form the subject of related 
investigations of Arocena and Cotlar [2]. In its full generality, as considered in [4], 
the problem may be formulated as follows. 

Given two bounded linear operators A\ and A2 acting on the Hilbert spaces J?[ 

and Jff2 and a contraction X: Jf?\ —•» J$?2, what are the conditions for the existence 

of a Hilbert space Jf and an operator U E B(J(f) such that 

(1) Jff contains Jtf[ and J^2l 

(2) J%{ is U invariant and U\j4f{ = A\, 

(3) Jff2 is U* invariant and U*\j¥2 = A2, 

(4) P(Jf2)\j{?\ =X. 

By P(Jf) we denote the orthogonal projection onto Jf. An operator satisfying 
the four properties listed above is called a coupling of A\ and A2. It is not difficult [4] 
to show that, for the existence of U, the following intertwining relation is necessary: 
the existence of U implies the relation XA\ = A\X. This necessary condition for the 
existence of couplings is also sufficient; it turns out that contractive U exist if A\ and 
A2 are both contractions. In [4] a parametrization of all contractive couplings was 
given together with a characterization of the triples A\, A2, X for which an isometric 
coupling exists. The approach used in [4], though straightforward enough, does not 
permit to describe the parametrization in terms of the original spaces and operators 
in a simple manner; in particular, the verification of the existence conditions for 
isometric solutions is not simple. In view of the fact that many questions in dilation 
theory may be reformulated in terms of couplings of suitable spaces and operators 
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it seems that the notion of couplings deserves a more careful study, in particular, 
a treatment that simplifies the technicalities. The present note is the result of an 
attempt to eliminate the technical complications connected with parametrizing he 
set of all solutions of the coupling problem (proposition (3.3) of [4]). The approach 
used in this note differs from the one described in [4] in that the operator to be 
constructed is interpreted as a mapping between two different representations of the 
coupling space. This makes it possible to apply methods related to those used in 
the proof of the Davis-Kahane-Weinberger theorem and to parametrize the set of all 
solutions in a different manner, in terms of the given data. At the same time, the 
whole treatment is considerably simpler than that used in [4]. 

1. NOTATION AND PRELIMINARIES 

If J>f is a Hilbert space, we denote by B(Jf) the algebra of all bounded linear 
operators in Jtf. By P(J%o) we denote the orthogonal projection onto a subspace 
J#o. A contraction is an element of B(J¥) of norm at most one. If T is a contraction 
we set D(T) = (1 - T*T)XI2 and D(T*) = (1 - TT*)1/2; the closure of the set 
D(T)J? is denoted by 9{T)\ similarly, 9(T*) stands for the closure of D(T*)Jf. 

When there is no danger of misunderstanding, we abbreviate D(T) and D(T*) to D 

and D* respectively. 

2. COUPLING SPACES 

We begin by formulating the intertwining relation which represents the basic nec­
essary condition for the existence of couplings. 

Lemma 2.1 . Let J f be a Hilbert space, J¥ be a subspace of Jtf', U G B(J^). 
Suppose J^ is invariant with respect to U*; then P(Jf)U = (U*\jf)*P(J??). 

P r o o f . Consider an arbitrary x G Jif and an arbitrary h G <#£\ Then 

(P(J^)UxJi) = (Ux,h) = (x,(U*\jr)ti) = (P(J?)x,(U*\jf)h) 

= ((U*\jf)P(Jf)x,h). 

Since this equality holds for arbitrary x G Jf and h G Jf, the identity follows. Using 
the terminology of dilation theory, the identity says that U is a lifting of (U*\j^)*. 

• 
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Corollary 2.1. Let X be a Hilbert space, J¥[ and J^2 two subspaces of X. 
Furthermore, let U e B(J(f) and suppose that Jtf[ is invariant with respect to U and 
J^2 invariant with respect to U*. Set 

A\=U\j?\, 

A2 = U*\jtf1. 

Then P(Jf2)U = A*2P(X2). 

If X stands for the restriction P(Jtf2)\j%\ then 

XA\ = A*2X. 

P r o o f . An immediate consequence of the lemma. • 

Suppose J$?\ and J^2 are closed subspaces of a Hilbert space Jif such that their 
sum J^o = 3%\ + ^ 2 is dense in X. Write X for the restriction of P ( ^ 2 ) to Jtf\. 

Given two elements x, x' G J^o 

x = h\ + li2, x' = h[ + h'2 

their scalar product is given by the expression 

(x, x') = (Xh\ + h2,h'2) + (h\ + X*h2,h[). 

In particular 

(x,x) = \h\\2 + |li2 |2 + 2Re(Kln, l i2) 

= \Xh\ + h2\
2 + ID^I2 = \h\ + K*li2|

2 + |LU 2 | 2 . 

Consider the space Jf?\ 0 J^2; its elements will be column vectors of the form v = 
(h\,h2)

T. We define the operator A: J%{ ® J^2 —> J£Q by the formula Av = h\ + b2. 
Using the above formula for x = Av, we obtain an explicit description of KerA as 
follows 

'<e^={(_*'j.^,=o}={n;fe).^=i 
Denote by W the operator 

HJT) 
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acting on 3%[ 0 3^2. It is easy to verify the identity 

(Wx,x') = (Ax,Ax'). 

It follows that IV ^ 0 and 

Ker IV = {x; (Wx, y) = 0 Vu} = {x; (Wx, x) = 0} = Ker A. 

Denote by 3tf§ the quotient J$?\ 0 JT̂  modulo Ker IV equipped with the scalar 
product (Wx,y). The relation 

(Wx,x') = (Ax,Ax') 

shows that A establishes an isometric isomorphism mapping J% onto J^o. 

Summing up, we have proved the following proposition. 

Proposi t ion 2.2. Given a Hilbert space Jf generated by a pair of subspaces 3tf\, 
Jf2 then Jf is isometrically isomorphic to the completion of J$?o. 

On the other hand, suppose we are given two Hilbert spaces J¥[ and J^2 together 
with a contraction X: 3%\ -> J^2. 

Consider the space J^\ 0 J^2 and the operator W on J^\ 0 J^2 given by the matrix 

HiT 
Denote by M the closed subspace Ker IV. It is not difficult to show that the 

following two alternative descriptions of J( are possible 

л = ((l£);Xh1+k2 = 0,Dhi = o | = j ( M ; / i 1 + X * / i 2 = 0 , D , / i 2 = o | 

Now consider the space J4?\ 0 J^2 and its subspace <2)(X) 0 3^2. Now JF\ — 

Q) 0 KerF) the corresponding orthogonal projectors being denoted by P(S>) and 
P (Ker JD). Consider the mapping 

defined as follows 

Hi\\ ( P(9)h\ \ _ ( P(9) 0 \ (h\ 
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It is easy to see that KerE — M and E2 — E. 

It follows that E is a projection operator of <ffl\ <&JF2 onto 2)®J?2 with kernel Jt'. 
In this manner we may identify the quotient of Jtf\ © J^2 modulo ^ with _2 © Jf2. 
Consider, on 3tf{ © J^2, the two operators 

« = ( • ; ) - * - ( _ ' , : 

Since F2(_x\ ) — ^ for any /ii G JTt we have, in particular, F2^ = 0- It follows 
that both F2 and P^ may be considered as operators on the quotient of J^\ © J^2 

modulo y/t'. 

If x = (£>) then P2x = (Xh°+h2). So that \P2x\2
w = \Xh\ + h2\

2. For P^z we 
obtain P£x = ( _ ^ J and I P / x ^ = \Dh\\2 thus |a,|^ = |P2-r|?y + lIV^Ivv-

Denote by «^(X) the completion of the space 3) © J^2 taken in the metric given 
by IV 

d\ 2 

= |Dd|2 + |X,i + /i2 |2 . 
Kh2j W 

In this manner £P(X) may be considered as the Hilbert space generated from J^\^>J^2 

by the weighted metric W. 

The expression for the norm in S?(X) suggests a straightforward representation 
of @>(X) avoiding the use of weights. 

Consider the matrix 

* \X 1 

Taken as an operator on Jtf{ © J^2 it satisfies the identity ip*^ — W so that Ker ip = 
KerVV = Jt'. Since tyJl = 0, ip may be considered as a mapping of &(X) into 
_2 © J%2- We intend to show that ip establishes an isometry between &>(X) and 
_2 © <>#2, the space _2 © J^2 being taken in its standard metric. 

Indeed, decomposing ip into the sum 

*=«+**-(" î)Uî)+ 
73 0 \ / 1 0 

X l)\-X 0 
0 0 \ / D O 
X 1 ) + { 0 0 

we obtain \ip(x)\2 = \Xh\ + /i2 |2 + |L>/ii|2 = \x\2
w. 

Performing the obvious identifications we may formulate the following 

Proposition 2.3. Given two Hilbert spaces J%\ and J^2 and a contraction 
X: J?\ —> Jf2 there exists exactly one Hilbert space 2?(X) with the following prop­
erties 
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1° &(X) contains both Jff\ and J^f2 and is generated by their sum 

2° P(Jf2)\jf\ =X 

We shall need more precise information on the structure of £P(X). 

Proposi t ion 2 .4 . Consider the mappings F\ and F2 defined by 

F\:J?\-+9(BJe2 F\ = (*£\, 

F2 : Jf2 -> 9 © J?2 F2=(° 

Then F\ and F2 are isometric mappings respectively of Jif\ and J&i into 9 © J^2. 

The range of F\ equals the kernel of(X, —D,). On the range of F\, the inverse of 

F\ equals (D,X*). 
P r o o f . If (d) =F\h then (X,-Dt)(

d) = (X,-Dt)(°
h

h) = (XD - D*X)h = 0. 
On the other hand, suppose Xd — D,k = 0; set h = Dd + X*k and let us show that 
(d) = F\h. Indeed, 

D(Dd + X*k) = d- X*Xd + DX*k = d- X*Xd + X*D,k 

= d-X*(Xd-D,k)=d, 

X(Dd + X*k) = XDd + XX*k = DtXd + XX*k 

= k-Dlk + DtXd = k. 

Let us show that (D,X*) is isometric on the kernel of (X, —Dt). 

\Dd + X*k\2 = \Dd\2 + \X*k\2 + 2Re(Dd,X*k) 

= \d\2 - \Xd\2 + \k\2 - \D*k\2 + 2 Re (Xd, Dtk) 

= \d\2 + \k\2 - \Xd - D,k\2 = \d\2 + \k\2. 

D 

Expressed in the form of matrix identities the first statement is a consequence of 

(1) (X,-D,)(^j=0, 

(2) (D
X)(D,X*) = 1-(^)(X,-D,). 

The second statement follows from (2) and 

(3) (D,X*)(^j=l. 

522 



Proposition 2 .5 . In a similar manner we define the mapping 

-X* 
G2: 9, -> 9 e Jif2 G2 = . 

LJ + 

Then G2 is an isometric mapping of $* onto the orthogonal complement of F\J4?\; 
the range of G2 equals the kernel of (D,X*). On the range ofG2, the inverse of G2 

equals (-X,D*). 

P r o o f . First of all, we observe that (**) G (K i^i)1" if and only if Du\ + 

X*u2 = 0. 
The fact that the range of G2 equals Ker(D,X*) follows from the identities 

(1*) ( £ > , * * ) ( " * * ) = 0 

and 

(2-) tfy-xM^-ftyD^), 

the second statement follows from (2*) and 

(4) {-x,Dj-n=i. 

It follows from the preceding two propositions that the mapping ip = Fi (B G2 

D -X* 

D 

*'' \X L>* 

of J$?\ 0 @* onto Q) 0 3^2 is an isometry. 

3 . COUPLING OPERATORS 

In this section we intend to consider the following situation. We are given two 
Hubert spaces tf{, ^2 and two contractions A\ G B(Jtf\), A2 G B(J¥2). Further­
more, let X: Jtf[ —•> 3^2 be a contraction. 

The problem is to construct and parametrize the family of all Hilbert spaces J ^ 
with the following properties 

1° X contains <ffl\ and J^2 and is generated by their sum 
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2° P(J?2)\J4?\ =X 

3° there exists an operator U £ B(J(f) such that U\jt?\ = A\ and U*\jf2 = A2 

4° the operator U is a contraction. 
Our approach is based on treating U as a mapping between two different real­

izations of 2?(X). This makes it possible to parametrize the family of all solutions 
directly in terms of operators on the spaces 3tf[ and 3^2. 

We are looking for a contraction 

such that 

V\j#L =-4i , 

P(J^)v(^) =A*2P2(
h
d

1) =A*2(Xh\+D*d*). 

If we denote by M the operator 

M: Jrl -> Jr"2, M = XA\ = A*2X 

the operator V shall assume the following form 

(D(X)A\ Y 

\ M A*2D(X*) 

where Y: Q)* —>• Q) is to be determined. 
In our constructions we shall use two contractions the existence of which is a 

consequence of the following lemma. 

Lemma 3.2. There exist contractions 

C\: @(M) -> @, 

C2: ®(M*)^ 9* 

such that 

D(X)A\ =C\D(M), 

A*2D(X*) =D(M*)C;. 

P r o o f . The existence of C\ is a consequence of the inequality 

A*(l - X*X)A\ <: 1 - A{X*XAi. 
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In a similar manner, we have 

A*(l - XX*)A2 ^ 1 - A*2XX*A2 

so that there exists a contraction C2: @(M*) ->> $* with D(X*)A2 = C2D(M*). 

n 
Writing V in the form 

v = T + z_(ClD(M) o \ to y 
V M r>(M*)c2*j vo o 

V will be a contraction if and only if 

1 - T*T ^ T*z + z*T + Z*Z\ 

the matrix on the right hand side may be rewritten in the form 

(12) ( ° D(M)dY\ f 0 CtY\ 
v ;

 \Y*C1D(M) yy ) v̂ *Ci y*yj 

^ /T>(M) o \ „ 
where Q = . Since V 0 lj 

_ (D(M)C*C1D(M) + M*M M*D(M*)C^ 
~ \ C2D(M*)M C2D(M*)2C2* 

_ (D(M)C*C1D(M) + M*M D(M)M*C2* \ 

~ V C2MD(M) C2C\ - C2MM*Cl ) ' 

we obtain, for 1 — T*T, the following expression 

r i 3 , _ (D(M)D(C1fD(M) -D(M)M*C* \ 
[ ' V -C2MD(M) D(C*2)

2 + C2MM*Cl) 
= Q(D(C1f -M*C*2 \ 

^ V -C2M T>(C2*)2 + C2MM*C*2 )
 v ' 

Thus V will be a contraction iff 

fD(Cx)~ -M*C* \ t 0 C_Y\ 
1 ; V-C2M D(C2*)2+C2MM*C2/ \Y*C_ Y*Y)' 

To justify this equivalence it suffices to use the following facts. The matrix Q 
represents, in the formulae above, two different operators: on the right-hand side, Q is 
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/ < • = ' - - ^ 

considered as an operator in 3tf)\ 0 ^ * , on the left-hand side as an operator in Q>^J^2. 
For the first row of the "inner" matrices, D(C\)2 is an operator Q)(M) -» S>(M) by 
definition, C*Y is ^* -> @(M) by the definition of Ci. The fact that -M*C2* maps 
®* into &(M) follows from the identity M*D(M*) = D(M)M*. 

Inequality (14) is equivalent to 

1 -M*C2* \ > ( C t \ ( c Y) 
-C2M D(C2*)2 + C2MM*C2*j ^ V^V U 

Since the matrix on the left-hand side may be written in the form K*K for 

' 1 -M*C2* 

,0 Dipt) 

V will be a contraction iff 

(CUY) = (KUK2)K 

for a suitable contraction (K\,K2). Since K\ — C\ we have K2 — D(C*)C for a 
suitable contraction C: ^ (C 2 ) -» $>(C*). 

It follows that y = -CiM*C2* -f D(C*)CD(C%). The operator V assumes thus 
the following form 

(15) v=(C' °\(D(M) -M*\(l 0 \ / 0 £ (C*)CD(C*) \ 
1 ; Vo iy v M L>(M*)Ao c*2) \o o y' 

The result may thus be formulated as follows. 

Theorem 3.3. The set of all contractions satisfying 1°, 2° and 3° in problem 

(3.1) is nonvoid. The solutions are given by (15) where C is an arbitrary contraction 

from ®(C*2) mto@(C*). 

Let us turn now to the problem of isometric couplings. 

4. ISOMETRIC COUPLINGS 

Suppose that V is an isometry. Thus 1 — V*V — 0 and it follows from (12) and 
(13) that 

D(M)(1 -C*d)D(M) = 0. 

Since C\ is a contraction defined on 3)(M) with values in Q> this implies 1 — C*C\ — 0, 

so that (D(X)A1)*D(X)Al = D(M)C{C\D(M) = D(M)2. Since 

1 - A{A\ = 1 - A{X*XA\ - A*(l - X*X)Ai 

= 1 - M*M - (D(X)A\yD(X)A\ = 0 
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we have A\A\ = 1. 

We have seen that C\ is an isometry. In particular D(C{)C\ and C{D(C{) are 

both zero—this follows from D(C{)C\ = C\D(C\) = 0. Since V is a contraction, we 

have 

Y = -C\M*C*2 + D(C{)KD(C*2) 

for some contraction K: ^(C2*) -> ®(C{). Using D(C{)C\ = C{D(C{) = 0, we 
obtain 

(16) D(C{)Y = D(C{)2KD(C*2), 

(17) C{Y = -M*C*2. 

Using (17) and (14) we obtain 

Y*D(C{)2Y = Y*Y - C2MM*C*2 = D(C*2)
2. 

It follows that there exists an isometry W such that D(C{)Y = WD(C2). Using 

(16) we obtain WD(C*2) = D(C{)Y = D(C{)2KD(C*2) so that D(C{)2K = W is an 

isometry; thus K is an isometry. 

On the other hand, suppose that A\ is an isometry and let us prove that C\ is an 

isometry. Since D(X)A\ = C\D(M) we have 

D(M)C{C\D(M) = A\(\ - X*X)A\ = A\A\ - M*M = 1 - M*M = D(M)2. 

It follows that C{C\ = 1. 

Suppose further that K is an isometry from 3(C2) into 3>(C{). Define V by 

taking 

Y = -C1M*C2* + D(C{)KD(C$). 

We intend to show that V*V = 1. First observe that C{D(C{) = 0 whence 
C{K = 0. 

It suffices to show that equality is attained in (14). This is a consequence of the 
following two identities. 

C*Y = -M*C*2 + C{D(C{)KD(C2*) = -M*C^ 

Y*Y = ( - C2MC\ + D{Cl)K*D{Cl)) ( - CiM*C2* + D(C{)KD{C*2)) 

= C2MM*Cl + £>(C2*)/ť*(l - CXC1)KD(CZ) 

= C2MM*CZ+D(CZ)2. 
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Summing up, we have proved 

Proposition 4.1. Isometric couplings exist if and only if A\ is an isometry and 
dim Q)(C\) ^ dim .^(C* )• In that case, they are given by (15) where C is an arbitrary 
isometry from @(C%) into ®(C{). 

Example 4.2. To show that isometry of A\ alone is not sufficient for the exis­
tence of an isometric coupling it suffices, in view of (4.1), to produce an example of 
a triple Au A2, X for which D(C%) = 1 and D(C*) = 0. 

Let Jif\ and J^2 be two nontrivial Hilbert spaces, let A\ be unitary and A2 = 

X = 0. It follows that M = 0 so that D(M) = D(M*) = 1. The equalities defining 
C\ and C2, C\D(M) = D(X)A\ and C2D(M*) = D(X*)A2 imply C\ = A\ and 
C2 = 0. Thus D(C{) = 0 and F>(C2*) = 1. 

It is much easier to see this directly. Indeed, suppose U is an isometry on Jif\ © J ^ 
leaving Jtf{ invariant and such that U\j%[ is unitary and U*\j$?2 = 0. We prove first 
that UJ^f2 C J#2. Given x G J^\, we have x = Ux' for a suitable x' £ 3%\ so that 
(Uh2,x) = (Uh2,Ux') = (h2,x') = 0 for every h2 G 34?2 and x G JZ{. Now U*U = 1 
since U is isometric. For h2 G Jf?2 we have Uh2 G J^2 whence U*Uh2 = 0. It follows 
that Jft = 0. 
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