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1. INTRODUCTION 

This paper deals with the classical method of reducing real almost-linear second-
order partial differential operators in two independent variables to a canonical form. 
A standard presentation of the method involves a good deal of calculations which 
usually are obscure. In the present article, we intend to illuminate the geometrical 
character of those calculations. We first show that reducing a real almost-linear 
second-order partial differential operator to a canonical form amounts to reducing a 
suitable symmetric 2-contravariant tensor field to a canonical form. Next we show 
that any symmetric 2-contravariant tensor field of locally constant type can locally be 
reduced to a canonical form. More specifically, given an almost-linear second-order 
partial differential operator P on an open region fi, of IR2 

_ d2u rt d2u d2u .( du du \ 
Pu = aii-r-T-- +2a12-—— +a 2 2^-2 + / U , u , - — , ^ ~ 

OX\ OX\OX2 OX2 V OX\ OX2' 

(_€Cg°(ft), x G l l ) , 

where an,ai2,a 22 - Cg°(^) and / € C^(Q x IR3), we associate with P a symmetric 
2-contravariant tensor field 

d d n d d d d 
a°, ~ a n ^ — ®* a ^2a i2 - -— cg)s r - a 2 2^— 0 S -5—. 

P OXi OX\ OX\ 0x2 0x2 0x2 
We show that a canonical form of P can be found by reducing aa to a canonical 

form, and that the latter reduction can always be done locally in Q provided the 
type of ao is locally constant. 
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2. PRELIMINARIES 

Let V be an n-dimensional real vector space, q be a quadratic form on V, and 
b be the associated symmetric bilinear form, q is said to take a canonical form in 
a basis {ef. i = 1 , . . . ,n} of V if, letting b(e{,ej) = atj (1 ^ i,j ^ n), we have 
a ĵ = 0 for i / j and all the an that are different from zero are equal in modulus. 

Sylvester's theorem guarantees that any quadratic form takes a canonical form in 
some basis. The numbers r0, r + , r_ of those Vs for which an = 0, an > 0, and 
an < 0, respectively, are determined uniquely r = r+ -f r_ is the rank of q. The 
form a is called: 

(i) elliptic if r = n, and either r+ = n or r_ = n, 
(ii) parabolic if r < n, 

(iii) hyperbolic if r = n, and either r+ = 1 or r_ = 1. 

In the case n = 2, if, given a basis {ei, e2}, we let A = a\2 - ana22, then g is: 
(i) elliptic if and only if A < 0, 

(ii) parabolic if and only if A = 0, 
(iii) hyperbolic if and only if A > 0. 
We will adhere to the convention according to which, in the case n = 2, q takes in a 
given basis {ei, e2}: 

(i) a canonical elliptic form if a n = 022 7-= 0 and ai2 = 0, 
(ii) a canonical parabolic form if ai2 = 022 = 0, 

(iii) a canonical hyperbolic form if a n = a22 = 0 and ai2 ^ 0. 

Let M be a C°° manifold of dimension n. We denote by C^(M) (C^(M)) the 
space of all real-valued (complex-valued) C°° functions on M. If M is real-analytic, 
then C$(M) (CQ(M)) will denote the space of all real-valued (complex-valued) real-
analytic functions on M. If M is a complex manifold (of complex dimension n), 
then A(M) will denote the space of all holomorphic functions on M. For a G M, we 
denote by Ta(M) the tangent space of M at a, and by T*(M) we denote the cotangent 
space of M at a. Ta(M) OR C and T*(M) cg)|R C will stand for the complexification 
of Ta(M) and T*(M), respectively F°°(T(M)) denotes the space of all C°° vector 
fields on M and F°°(T*(M)) denotes the space of all vector C°° 1-forms on M. If 
M is real-analytic, then rw(T(M) OR C) will denote the space of all complex-valued 
real-analytic vector fields on M and TU(T*(M) OR C) will denote the space of all 
complex-valued real-analytic 1-forms on M, and if M is complex, then A(T(M) OR C) 
will denote the space of all holomorphic vector fields on M and A(T*(M) OR C) will 
denote the space of all holomorphic 1-forms on M. For a vector space V and a positive 
integer p, we denote by ®^ V the corresponding space of symmetric p-contravariant 
tensors, and by (g)^ V* we denote the corresponding space of symmetric p-covariant 
tensors. F°°(0^T(M)) will stand for the space of C°° symmetric p-contravariant 
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tensor fields on M, and F°°((g)^T*(M)) will stand for the space of C°° symmetric 
p-covariant tensor fields on M. 

If V is an n-dimensional real vector space, then a tensor 8 G ® s V is said to be 
elliptic (parabolic, hyperbolic) if 8 treated as a quadratic form on the dual space V* 
of V is elliptic (parabolic, hyperbolic). If M is a C°° manifold of dimension n, then 
a tensor field a G F°°(®^T(M)) is called elliptic (parabolic, hyperbolic) if a(a) is 
elliptic (parabolic, hyperbolic) for each a G M. Let (U, <D) be a coordinate system 
in M with (p — (x\,..., xn). A tensor field a G r°°((g)2

sT(M)) is said to take a 
canonical form in (U,<p) if, for each a G M, a (a) treated as a quadratic form on 
T*(M) takes a canonical form in the basis {(dxi)a: 1 ^ i ^ n). According to the 
convention adopted, in the case n = 2 a tensor field a G F°°(®5T(M)) takes in 

(£!,V): 
(i) a canonical elliptic form if, for some / G Cg°(U) with / 7- 0 on U, 

/ 9 a a a 
\OX\ OX\ 0x2 0x2 

(ii) a canonical parabolic form if, for some / G CR°(U), 

- f___ ___ 
a^i s a ^ i ' 

(iii) a canonical hyperbolic form if, for some / G C^(U) with / / 0 on (7, 

r 9 a 
OX 1 OX2 

3. DIRECT IMAGES OF OPERATORS 

Let Q be an open region in lRn, and P be a real almost-linear second-order partial 

differential operator on Q of the form 

Pu= E °«aS£;+ /(*'"• £ ? • • • ' £ ) («ec?(n),xen), 

where azj G Cg°(0) satisfy â - = aj{ (1 ^ i, j ^ n) and / G Cg°(ft x (Rn+1). The 
o 

principal part P of P is the operator on Q defined by 

°Pu= E a ^ a S ^ (we^(ft»-
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The principal symbol a0 of P at x G ft is the element of 0 S TX(Q) defined as 
p 

l^г,j^n x -t ' . 

P is said to be elliptic (parabolic, hyperbolic) at x G ft if O0 (#) is elliptic (parabolic, 

hyperbolic). P is called elliptic (parabolic, hyperbolic) on ft if a0(x) is elliptic 

(parabolic, hyperbolic) at each point of ft. P is said to take a canonical elliptic 

(parabolic, hyperbolic) form on ft if O0 takes a canonical elliptic (parabolic, hyper

bolic) form in the canonical coordinate system on ft. 

Let (p be a C°° diffeomorphism from ft into Un. For x G ft, we denote by (£>*iX 

the differential of p at x and also, for any positive p, the pth tensor power of this 

differential. We denote by <p*(P) the direct image of P by p, which is the operator 

on <p(ft) acting by the rule 

(MP))u = (P(u o V)) o cp-1 (« e cs°(v?(fi))). 

We have the fundamental theorem as follows (cf. [4, Section II. 11.3]): 

Theorem 1. If P is a real almost-linear second-order partial differential operator 

on an open region ft of Un and p is a C°° diffeomorphism from ft into Un, then, for 

each x G ft. 

^ ( P ) (<£(*)) =<£*,*(<To>)) . 

In view of Theorem 1, P is elliptic (parabolic, hyperbolic) at a G ft if and only if 

<p*(P) is elliptic (parabolic, hyperbolic) at p(o). 

A diffeomorphism p is said to reduce P to a canonical elliptic (parabolic, hyper

bolic) form if (p*(P) takes a canonical elliptic (parabolic, hyperbolic) form on <p(ft) 

with respect to the canonical coordinate system in <D(ft). In view of Theorem 1, p 

reduces P to a canonical elliptic (parabolic, hyperbolic) form if and only if Oo takes 

a canonical elliptic (parabolic, hyperbolic) form in the coordinate system (Q,ip). 
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4 . REDUCTION OF TENSOR FIELDS AND OPERATORS 

This section presents our main results on reduction to a canonical form. We begin 
by stating two auxiliary theorems. The first of them is a theorem on rectification 
of a vector field (cf. [1, Proposition 8.3.2]; see also [5, Theorem 2.11.8]), that can 
be proved by applying a theorem on solvability of the Cauchy problem for ordinary 
differential equations. The other is a holomorphic analogue of the first one, and can 
be established by utilising a suitable theorem on solvability of the Cauchy problem 
for ordinary differential equations in the complex domain (cf. [5, Theorem 1.8.10]). 

Theorem 2. Let M be a C°° manifold of dimension n and let X G F°°(T(M)). 
Then for each a G M with X(a) ^ 0 there exists a coordinate system (U,p) at a 
with <p = (xi,..., xn) such that X = f̂- on U. 

Theorem 3. Let M be a complex manifold of complex dimension n and let 

X G A(T(M) <g>R C). Then for each a G M with X(a) ^ 0 there exists a coordinate 

system (U, up) at a with tp = (z\,..., zn) such that X = -^- on U. 

We now use the above theorems to establish the following result: 

Theorem 4. If M is a two-dimensional C°° manifold and to G F°°(T*(M)). then 

for each a G M with uj(a) ^ 0 there exists an open neighbourhood U of a and 

/ , g G Cg°(U) such that / ?- 0, do / 0, and 

(1) uj = fdg 

on U. If M is a two-dimensional real analytic manifold and UJ G TU(T*(M) <S>U C), 
then for each a G M such that uj(a) ^ 0 there exists an open neighbourhood U of a 
and / , g G C£(U) such that / ^ 0, dg / 0, and (1) holds on U. 

P r o o f . Let M be a two-dimensional C°° manifold, let UJ G F°°(T*(M)), and 
let a G M be such that u(a) ^ 0. Then there exists an open neighbourhood U C M 
of a and X G F°°(T(U)) such that uj(m) 7- 0 and X(m) 7- 0 for each m G U, and 
uj(X) = 0 on U. In view of Theorem 2, by shrinking U if necessary, one can find a 
one-to-one C°° mapping <p from U into M.2 with (p = (xi,x2) such that X = ^ - on 
U. Now UJ can be represented in U as 

UJ = a\ dx\ + a2 d^2 

for some Oi,a2 G C^(U). Since C J ( ^ - ) = 0, it follows that 

UJ = O2 dX2-
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Taking O2 and #2 for / and g, respectively, we obtain (1). 
Now let M be a two-dimensional real analytic manifold, let LU G ruJ(T*(M) ®R C), 

and let a G M be such that LU(O) ^ 0. Then there exists a coordinate system (V, i/j) 
with a G V and X G FUJ(T(V) ®R C) such that Lu(m) ^ 0 and X(m) 7- 0 for each 
m G V, and cD(X) = 0 on V. Choose an open neighbourhood V C C2 of ib(a) such 
that: 1° VOIR2 = tp(V); 2° the push-forward ?/j*(K) of X by ip (i.e. the unique vector 
field on V that is 7/>related to X) has an extension to a holomorphic vector field X 
on V; 3° the pull-back (ip~l)*(u;) of LU by 7/J-1 has an extension to a holomorphic 
1-form LU on V. By Theorem 3, there exists a holomorphic one-to-one map £ from 
an open neighbourhood V' C V of ip(a) into C2 with £ = (z\,z2) such that X = ^?-
in V'. Reasoning as before, we see that LU can be represented as LU = o^o7^ for some 
a2 G ^-(V'). Now letting U = ^ _ 1 ( ^ ' n ^2)> f = a-ioip, and G = 22 o ̂ , we obtain 

(1). a 

Now we are ready to state our main result. 

Theorem 5. Let M be a two-dimensional C°° manifold, o G F°°(®2T(M)), 
and a G M be such that o(a) is either elliptic or hyperbolic, or there exists an 

open neighbourhood of a on which o is parabolic. In the elliptic case, M and o 

are additionally assumed to be real-analytic. Then there exists a coordinate system 

(U, if) at a in which o takes a canonical form. 

P r o o f . Let (U, ip) be a coordinate system at a with ip = (x\, :r2) such that if 

d d o d d d d 
(2) o = On-— (g)s h 2 O i 2 - — ®s ~— + 0 2 2 - 5 — ®s Q — 

OX\ OX\ OX\ ox2 0x2 0x2 
for some an,Oi2,O22 £ C^(M), then A (defined, let us recall, as a2

2 — OHO22) is 
either negative, or null, or positive on U. Let LU — dx\ A dx2. Being non-degenerate 
(and in fact symplectic), the 2-form LU induces an isomorphism Iu between the spaces 
F°°(T(U)) and T°°(T*(U)) defined by 

(IU(X))(Y)=L>(X,Y) (X,Y G F°°(T(U))). 

If (U,ip) is another coordinate system on U with ip = (yi,H2) in which LU takes the 
form 

(3) LU = / dg i A dg2 

for some / G C(g°(U) with / 7̂  0 on U, then, as one can easily verify, 

(4) ^ 

'"(a-)--'**1-
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Let I^ <g> Iu be the tensor square of Iu mapping isomorphically r°°((g)s T(U)) onto 

T°°(®2
S T*(U)). The last identities imply that 

(5) Iu, ® I^ f-r— <S>S — ) = f2 dy2 <g>s du2, 

(6) .L <g> I^ f — <8)s — ) = -f2 di/i <8>s dy2 , 

(7) Iu,®Iu,(-^— <S>S ^ — ) = / 2 d u i 0 s dyi . 

In par t icular, (2) together with (5), (6), and (7) yields 

(8) Iu <g> I^(O) = a22 dxi <g>s dxi - 2ai2 dxi <g>s dx 2 -f a n d^2 <S>S dx 2 . 

We now consider the following three cases. 

A. Hyperbolic type: A > 0 on U. By shrinking U if necessary, we may assume 

that at least one of the functions a n and a22 does no t vanish in U (for otherwise a 

already takes a hyperbolic canonical form on U). Suppose that an / 0 on U. Using 

(8), it is readily verified that 

(9) OllIu; <8> Iu(&) = U)i ®s U2, 

where 

wi = (ai2 + v / A ) d x i - a n d x 2 , 

<̂ 2 = (a\2 - v^A) d^i - a n dx 2 . 

By Theorem 4, upon shrinking U if necessary, one can choose K, \,fi,v £ Cg°(U) so 

that K ^ 0, A ^ 0, d/j ^ 0, di/ 7- 0, and 

U)\ = /idtI , 
( l i ) 

UJ2 — \ dv 

on U. Let cp: U -> 1R2 be the map given by cD = (/1,1/). Since, by (10) and (11), 

(12) AcAd/I A dv = uo\ A UJ2 = — 2 a n V A C J , 

it follows from (6) that 

(13) I«®I«(lu®*i) = -£^Kd^°d1'-\ 3 / i dvJ 4 a n A 
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Moreover, (12) in conjunction with the inverse function theorem implies that ҷ) is 

a diffeomorphism if U is sufficiently small. Now comparison of (9), (11), and (13) 

shows that 
_ ____A___ __ 

к\ дџ s дv 

We see that a takes a canonical hyperbolic form in the coordinate system (U, ф). 

B. Parabolic type: A = 0 on U. As previously, we may assume that Oц ф 0 on U. 

Using (8), it is easy to verify that 

(14) auIш®Iш(a) = ®S , 

where 

(15) = a\2 dx\ — a ц d:T2. 

By Theorem 4, upon shrinking U if necessary, one can choose к, џ Є CífҶU) so that 

к ф 0, dџ ф 0, and 

(16) = кdџ 

on U. Let (p: U -> [R2 be the map given by (D = (rl./i), where r? Є Cg°(U) is chosen 

so that drj Л dџ ф 0 in a, neighbourhood of a. It follows from the inverse function 

theorem that U can be contracted so that </? is a local diffeomorphism on U. Writing 

u) in the form 

u) = f drj Л d/л 

with / Є Cg°(U) nowhere vanishing and using (5), we see that 

Iш ^ Iш ( g - ®s - ) = / 2 d/x Ø s d/z. 

Comparing the last equality with (14) and (16), we obtain 

_ K2 d d_ 

Q>nP dr] s drj' 

We see that a takes a canonical parabolic form in the coordinate system (U,<p). 

C Elliptic type: A < 0 on U. As previously, we may assume that an ^ 0 on U. 

Using (8), it is easy to verify that 

(17) anIu ®Iu(<r) =0®S6, 
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where 

(18) 
— («i2 + V—Дi) dяi - Oц dx 2, 

= (Oi2 — л/—Дi) dxi — oц d.r2 

are elements of Fa'(T*(U) ®R C). By Theorem 4, upon shrinking U if necessary, one 

can choose A,/I G CQ{U) so that A ̂  0, d/i 7- 0, and 

(19) 

on U. Letting 

(20) 

69 = Ad/i, 

= Xdџ 

X = Лi 4- A2i, 

/i = /ii + /i2І, 

we have, by (17), 

(21) anIu <g> ^(cr) = (A2 4- A2)(d/ii <8>s d/ii + d/i2 ® s d/i2). 

Let <̂ : U —> IR2 be the map given by <D = (Lti, /i2). In view of (18) and (19), 

2an>/=Ai 
d/i A d/i = 2 2 a;, 

аnd so 

(22) 

A? + Al 

d/ii Л d/i2 = - — dџ Л d/i = 2 2 6.J 7- 0. 

Hence, by (5) and (7), 

(23) 

_a_ _a_ _a_ _a_ 
a/ii d/ii o\±2 o\i2 

iш ®iш 

(A? + Aj)2 

0Ï1A 
(dдi ® s d/íi + d^2 ®s d/x2)-

Moreover, (22) together with the inverse function theorem shows that U can be 

contracted so that (f is a local diffeomorphism in U. Now, by (21) and (23), 

а = — -
Ö Ц Д Ә ð 

+ A2 -f A2 V ^ i S ^ 1 d/i2
 6 c^/i2/ 

We see that O- takes a canonical elliptic form in the coordinate system (U, <D). • 
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As an immediate corollary, we obtain the following result: 

Theo rem 6. Let P be a real almost-linear second-order partial differential op
erator on an open region ft of R2 and a G ft be such that P is either elliptic or 
hyperbolic at a, or there exists an open neighbourhood of a on which P is parabolic. 
In the elliptic case, P is additionally assumed to have real-analytic coefficients. Then 
there exists an open neighbourhood U C ft of a and a C°° diffeomorphism <p from 
U into Un reducing P to a canonical elliptic (parabolic, hyperbolic) form on <p(U). 

In closing, we remark that the above result can be formulated in terms of geometric 

objects defined invariantly. As such a formulation would require a heavy machinery 

of jet bundles, we do not present it here. We refer the interested reader to [2] and 

[3] for a suitable material concerning differential equations on jet bundles. 

Acknowledgement. The author should like to thank Professor Wojciech Choj-
nacki for his help in the preparation of this paper. 
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