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By a graph we mean here an undirected (not necessarily finite) graph without
loops and multiple edges. Thus if G is a graph with a vertex set V(G) and an
edge set E(G), then V(G) is a nonempty set and E(G) is a subset of the set of all
two-element subsets of V(G); G is called finite if V(G) is finite.

The letters h, i, j, k, m and n will be reserved for denoting integers.

Consider a graph G. We denote by #'(G) the set of all finite sequences of vertices
in G, including the empty sequence, which will be denoted by *. Thus #(G) — {*}
is the set of all sequences

(0) Vo, -5 Uj,

where j > 0 and wvp,...,v; € V(G). Similarly to [2], instead of (0) we will write
v ...vj. Let ug,...,us,wo,. .., wx € V(G), where i,k > 0, and let a = up ... u; and
3 =wq ... wg. Then we write

aﬂ:uo...uiwo...wk.

Moreover, we write yx = v = *v for every v € #(G). Let zg...,z,, € V(G), where
m>=0. Put d =x9...z,,. We write

6]l =m, Fé =0, L6 = 2, and 6 = Ty ... 2o.

Moreover, we define ¥ = x. Let yg,...,yn € V(G), wheren > 0. We say that yo...yn
is a path in G if the vertices yo, ..., yn are mutually distinct and {y;,y:+1} € E(G)
for every integer ¢ such that 0 < i < n. Let &(G) denote the set of all paths in G.
Obviously, Z(G) C #(G) — {x}. If a € £(G), then the number ||a|| is called the
length of a. Consider # C £(G) and u,v € V(G). Define

Ry ={a € #; Fa = u and La = v}.
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We say that G is connected if P,y # 0 for every pair of t,z € V(G), where
P =2(qG).
Consider a connected graph G. We define the distance dg(z,y) of vertices x and
yin G as
d¢(z,y) = min(||e||; « € P(G),Fa =z and La = y).

Let & € #(G) — {x}; we say that £ is a shortest path in G if £ € P(G) and
1€]] = da(FE, LE). Let &(G) denote the set of all shortest paths in G.

The set .’(G) was characterized by the present author in [2] (under the condition
that G is finite); his characterization is “almost non-metric” in the sense that the
lengths of paths greater than one are neither considered nor compared in it. In the
present paper a more general result will be proved. We will obtain an “almost non-
metric” necessary and sufficient condition for a set of paths in a connected graph
G to be an element of a certain set of subsets of #(G). To describe such a set of
subsets of ./(G) we introduce the notion of visibility in G.

Let G be a connected graph, and let @ C V(G) x V(G). We say that Q is a
visibility in G if Q fulfils the following Axioms I-IV (for arbitrary u,v,z,y € V(G)):

I if (u,v) € Q, then (v,u) € Q;

IT if (u,v) € Q and dg(u,z) + dg(z,v) = dg(u,v), then (u,z) € Q;

I if (u,v) € Q, {u,z}, {v,y} € E(G) and dg(z,v) = dg(u,v) — 1 = dg(z,y), then
(u,y) € Q;

IV if (u,v) € Q, {u,z},{v,y} € E(G) and dg(z,v) = dg(u,v) — 1 > 1. then
(z,y) € Q.

We are now prepared to formulate the main result of the present paper.

Theorem. Let G be a connected graph, and let # C #(G). Denote & = & (G).
Then the following statements (1) and (2) are equivalent:

(1) there exists a visibility @ in G such that

Rty = S,y if (t,2) €Q and
Ry =0 if (t,z)¢Q,

for every pair of vertices t and z of G;
(2) Z fulfils the following Axioms A,—-A4 and B,-Bjs (for arbitrary u,v,z,y € V(G)
and a, 3,7,0 € #(Q));
Ay ifa € #, then G € #;
A, if auv € #, then au € Z;
Az if uzav € Z,{v,y} € E(G),upyv ¢ #Z for any ¢ € #(G) and uxypy ¢ #
for any v € # (G), then xavy € Z;
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Ay if urav,ufyv € X, then R, ) # 0;

By if aufvy,udv € Z, then audvy € Z;

B, if uzav,ufyv, zufy € X, then xavy € Z;
Bj if uzav € #, then {u,v} ¢ E(G).

Proof. Instead of dg(t,z), where t,z € V(G), we will write d(t, 2).

Part One: (1) = (2). Let (1) hold. We want to prove that Z fulfils Axioms
A-A4 and B1-Bs.

Consider arbitrary u,v,z,y € V(G) and o, 8 € # (G).

(Verification of Axiom A;). Suppose a € #. There exist ¢,z € V(G) such that
« € X.)- Hence #(;.) # 0. It follows from (1) that (¢,2) € @ and therefore,
R1,2) = St,z)- We get a € F; ;). This means that @ € ;). Axiom I implies
that (z,t) € Q. According to (1), Z(. 1) = S(z,)- Thus @ € Z.

(Verification of Axiom As). Suppose auv € Z. First, let @ = *. According to
(1), wv € & and (u,v) € Q. Axiom II implies that (u,u) € Q. As follows from
(1), au = u € #. Let now a # . There exist t € V(G) and ¢ € #(G) such that
a = te. Then tpuv € ;). According to (1), touv € ¥ and (t,v) € Q. Obviously,
tou € . We have d(t,v) = d(t,u) + d(u,v). Axiom II implies that (¢,u) € Q.
According to (1), Z(1,u) = Ht,u). We get au = tou € Z.

(Verification of Axiom A3z). Suppose uzav € Z, {v,y} € E(G), upyv ¢ Z for
any ¢ € #(G) and uzypy ¢ X for any ¢ € #(G). Clearly, {u,z} € E(G). Since
Ry # 0, it follows from (1) that Z(, v) = H(u,0) and (u,v) € Q. This implies that
urav € & and upyv ¢ & for any ¢ € # (G). Thus d(z,v) = d(u,v) —1 > 1 and
d(u,v) < d(u,y)-

Obviously, d(z,y) > d(u,y) — 1. This means that d(u,v) — 1 < d(z,y) < d(u,v).
Assume that d(z,y) = d(u,v) — 1. Axiom III implies that (u,y) € Q. As follows
from (1), Z(u,y) = H(u,y). This means that uxypy ¢ & for any ¢ € #(G). Thus
d(u,y) < d(z,y). Clearly, d(u,v) < d(u,y) < d(z,y) < d(u,v) — 1, which is a
contradiction. Hence d(z,y) = d(u,v). We see that zavy € &.

Recall that d(z,v) = d(u,v)—1 > 1. Axiom IV implies that (z,y) € Q. According
to (1), Z(z,y) = Ha,y)- We get zavy € Z.

(Verification of Axiom A4). Suppose uzav,ufyv € #. Then {u,z}, {v,y} €
E(G). According to (1), uzav € & and (u,v) € Q. Since d(z,v) = d(u,v) —1 > 1,
it follows from Axiom IV that (z,y) € Q. According to (1), Z(5,y) # 0.

Thus Z fulfils Axioms A;—A4. Axioms B;—Bj follows from (1) and simple prop-
erties of . Hence (2) holds.

Part Two: (2) = (1). Let £ fulfil Axioms A;-A4 and B;—-Bs. Combining
Axioms A; and Az, we get

(3) ifue V(Q), a,B € #(G) and auf € #Z, then au, uf,ua, fu € X.
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Combining Axioms A, and Ag, we get

(4) if u,v,z,y € V(G),a € #(G),uzav € Z,{v,y} € E(G) and zavy ¢ £, then
A (u,y) # 0.
This part of the proof will be divided into Sections 1 and 2. In Section 1 we will
prove that

(5) if P(uw) # 0, then Z(y ) = H(u,v) for every pair of vertices v and v of G.
In Section 2 we will prove that

{(u,v); u,v € V(G) such that Z, ., # 0}

is a visibility in G.

Section 1. We denote by M the set of all integers k such that there exist t, z € V(G)
with the property that d(t,z) = k. Obviously, either M is the set of all non-negative
integers or there exists h > 0 such that M = {0,...,h}. For each m € M we will
prove that

(6m) if Z(uw) #0, then Hy ) C Z(u,v) for every pair of vertices u and v of G such
that d(u,v) < m,

and

(Tm) R(uw) © S u,v) for every pair of vertices u and v of G such that d(u,v) < m.

We proceed by induction on m. First, let m = 0. Since Z C F£(G), we get
R(w,wy © {w} for each w € V(G). Hence (6¢) and (7o) follow. Next, let m = 1.
Consider arbitrary t,z € V(G) such that d(t,z) = 1. Axiom B3 implies that Z(; .y C
{t,z}. Hence, (6,) and (7;) follow.

Now, let m > 2. Suppose (6,,—;1) and (7,,—;) hold. This section of the proof will
be divided into two subsections. In 1.1, combining (6,,—1) and (7,,—;) we will prove
that (6,,) holds. In 1.2, combining (6,,) and (7,,—1) we will prove that (7,,) holds.

1.1. If #(;;) = 0 for every pair of vertices ¢t and z of G such that d(t,z) = m,
then (6,,—;) implies that (6,,) holds. Assume that there exist ¢,z € V(G) such that
Ri,z) # 0 and d(t, z) = m.

Consider arbitrary u,v € V(G) such that Z(, ) # @ and d(u,v) = m. Consider
an arbitrary £ € #{,,,). We want to prove that £ € . Since Z(y,) # 0, there exists
Ce 'ﬂ(u,v%

We first assume that £ and ¢ have a common vertex w such that u # w # v. Then

(8) there exist 1, @2,%1,¥2 € #/(G) — {*} such that { = pywy, and ¢ = P wy,.

Obviously, 1w € F(y,w) and wps € Hy,v). As follows from (3), Y1w € F(u,w)
and wipy € H(w,y)- It is clear that d(u,w) < m and d(w,v) < m. Since L(y,u) #
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0 # R(w), (6m—1) implies that g 1w, wps € #Z. Recall that Yywips € Z(y 1) Using
Axiom B; we get 1wy, € Z and £ = prwps € Z.
We now assume that £ and ¢ have no common vertex different from v and v. Put
n = ||¢]|]. Obviously, n > m > 2. There exist mutually distinct zo,...,Zmtn-1 €
V(G) such that
(9) €=z0Tmyn_1..-Tn and ( = ToTy ... Tn.
Obviously, 2o = u and z,, = v. Put
(10)  Zk4min =z foreach k € {0,...,m +n — 1}.
Then € = TminTmin—1---Zn. We define
(11) & = TitmanTitmin—1 - .- Titn and § = TiTigp1 ... Titn

for each i € {0,...,m}. Obviously, & = £ and (, = (. Recall that we want to prove
that £, € #. Suppose, to the contrary, that &, ¢ Z. It follows from (3) that ¢, ¢ Z.
Since & ¢ #, (o € # and (n, ¢ £, there exists j € {0,...,m — 1} such that

(a) & € #, ¢ € # and (b) either ;41 € Z or (j+1 ¢ Z.

Let ¢j41 € #. According to (b), {41 € Z. Since (; € Z, Axiom B, implies that
& € &, which is a contradiction. Thus ;11 ¢ Z.

Clearly, d(zj,zj+n) < |I&ll = m. If d(zj,z;4,) < m, then—combining (7,_1)
with the fact that (; € #—we get (; € & and therefore n = ||(;|| = d(zj, zj4n) < m,
which is a contradiction. Thus d(zj,z;4+n) = m. This means that {; € . Put

0O=2Zj...20Tm4n—-1---Tjtnt1-

Then §; = 0zj4n. Clearly, 0 € . Recall that ;41 ¢ Z. It follows from (4) that

‘@(Iiﬂj+n+1) # 0.

Since o € ., it follows from (6,,—1) that 0 € #. Since §; ¢ %, Axiom B; implies
that

(12) TiPTitnt1Zj4n € £ forany ¢ € #(G).

Combining the fact that (;+1 ¢ £ with (12) and Axiom A3, we see that there exists
¥ € #(G) such that

TiTi1 YTipns1 € X

Put w = 2419 4n41. Since d(z;, Tj4nt1) = m — 1, (7;n—1) implies that z;w € &
Since 0zj1n € 7, we get T;wTjrn € . Hence wzjin € & and d(zj41,Zj4n) =
lwjanll = m = 1.
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Define
(13) 0=2ZTj41---Tjtn-

Since (; € %, (3) implies that o € #. Since Fo = x4, Lo = zj4n and wzjy, €
&, it follows from (6,,—1) that wz;i, € #Z. Obviously, z;0 € #£. According to
Axiom By, 2jwTj4n € Z. Since Lw = Tj4n41, We get a contradiction with (12).

We have proved that £ € #. This means that (6,,) holds.

1.2. Consider arbitrary u,v € V(G) such that d(u,v) = m. If Z(,.) = 0, then
R(uwy © Hluwy. Let Zupy # 0. Consider an arbitrary ¢ € Z(y,). We want to
prove that ¢ € . Obviously, there exists £ € H(y,,)-

We first assume that £ and ¢ have a common vertex w such that u # w # v.
Then (8) holds. Clearly, d(u,w) < m and d(w,v) < m. As follows from (7,,_;),
1w € Hu,w) and wipy € ). This implies that ( € 7.

We now assume that £ and ¢ have no common vertex different from v and v. Put
n = ||¢]|. Obviously, n > m = d(u,v). Recall that we want to prove that { € .%.
Suppose, to the contrary, that ( ¢ .. Then n > m. There exist mutually distinct
20,y Tmtn—1 € V(G) such that (9) holds. We adopt the convention (10) and
define &; and (; as in (11) for each i € {0,...,m}. Recall that

GO=C=20.--.Tm--Tny Cn =Tm ... Tn...Tmtn and Tmin = Zg.
If (;n € #, then Axioms A; and B; imply that
Tm .o Tpn.o T ...To € R,

which contradicts the fact that Z C Z(G). Hence (,, ¢ Z.
Since & € &, (o € Z and (,, ¢ Z, there exists j € {0,...,m — 1} such that

(a) & € &, ¢ € X and (b) either {j41 ¢ 7 or (j11 € Z.
Since ¢; € ., it follows from (6,,,) that & € #. Axiom A4 implies that

%(Ij+1@j+u+1) #0.

Let ;41 € 7. According to (6,,), &j4+1 € Z. Recall that &;,(; € #. Axiom Bs
implies that (j4+1 € #, which contradicts (b).

Thus &1 ¢ .. This means that d(zj+1,2j4n41) < m—1. Hence d(z41,%j4n) <
m. Define g as in (13). Assume that d(2j41,%j4+n) < m—1; then (7,—1) implies that
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0 € ; therefore n — 1 € m — 1, which is a contradiction. Thus d(zj+1,Zj4+n) = m.
This means that d(z;41,2j4+nt1) = m — 1. There exists ) € #'(G) such that

Tjp1PTj4n+1Titn € .

Similarly to 1.1, put w = j419¥Zj4nt1. Then [jw|| = m — 1. It follows from (6,,)
that wxj, € #Z. Since (; € #, Axiom B; implies that 2wz, € #. According
to (3), zjw € Z. Since d(xj,Tj4nt1) = m — 1, (Tm—1) implies that z;w € . But
llzjw|| = m > d(zj,Zj4n+1), which is a contradiction.

We have proved that ¢ € . This means that (7,,) holds.

Summarizing the results of 1.1 and 1.2, we see that (5) holds.

Section 2. Denote

Q={(t,z); t,z€ V(G) suchthat % # 0}.

We want to prove that @ fulfils Axioms I-IV.
Consider arbitrary u,v,z,y € V(G). Suppose (u,v) € Q. Then Z(,,) # 0.
According to (5), Z(u,v) = uw)-

(Verification of Axiom I) It follows from Axiom A; that Z(,.) # 0. We get
(v,u) € Q.

(Verification of Axiom II) Suppose d(u,v) = d(u,z) + d(z,v). If x = v, then
it is obvious that (u,z) € Q. Let © # v. Then there exist a,8 € #(G) such
that axfv € H,,). Hence axfv € Z(y,). It follows from (3) that az € Z(y 4.
Therefore, Z(, ;) # 0. We get (u,z) € Q.

(Verification of Axiom IIT) Suppose {u,z}, {v,y} € E(G) and d(z,v) = d(u,v) —
1 = d(z,y). Clearly, z # v. There exists a € #(G) such that uzav € %. Since
d(z,v) = d(z,y), we have zavy ¢ .. Since uzav € %, we have uzav € #. Since
zavy ¢ 7, (5) implies that zawvy ¢ Z. It follows from (4) that %, ,) # 0. We get
(v, y) € Q.

(Verification of Axiom IV) Suppose {u,z}, {v,y} € E(G) and d(z,v) = d(u,v) —
1 > 1. There exists @ € #(G) such that uzav € .. Hence uzav € Z. If zavy € £,
then Z(; ,) # 0. Let zavy ¢ Z. If there exists 3 € #'(G) such that uzfy € £, then
(3) implies that zfy € #, and thus #(, ) # 0. Let uxpy € Z for any ¢ € #/(G).
Axiom Aj implies that there exists v € #'(G) such that uyyv € £. Since uzav € #,
Axiom A4 implies that Z(; ) # 0. We get (z,y) € Q.

We have proved that Q is a visibility in G.

The proof of the theorem is complete. 0O
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The following corollary is similar to the result which was (under the condition that
G is finite) originally proved in [2]:

Corollary. Let G be a connected graph, and let # C P (G). Then # = #(G) if
and only if # fulfils Axioms A;-As, B1—B3 and the following Axiom Aq (for arbitrary
u,v,z,y € V(G) and a,f,v,6 € #(G)):

Ao Ruw) #9.

Proof. Let Z = .(G). Then £ fulfils Axiom Ag. Our theorem implies that
Z fulfils Axioms A;-As and B;-Bs.

Conversely, let # fulfil Axioms Ap—Az and B;—-B;. Axiom Ag implies that 2
fulfils Axiom A4. According to our theorem, there exists a visibility @ in G such
that (1) holds. Axiom Ay states that %, ) # @ for every pair of vertices u, v of G.
Combining this fact with (1), we get Z = .(G), which completes the proof. O

Remark. Let G be a finite connected graph. The set .#(G) is closely related to
the interval function of G in the sense of H.M. Mulder [1]. An “almost non-metric”
characterization of the interval function of G was given in [3].
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