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Czechoslovak Mathemat ica l Journal, 45 (120) 1995, P г a h a 

VISIBILITIES AND SETS OF SHORTEST PATHS 

IN A CONNECTED GRAPH 

LADISLAV NEBESKY, P r a h a 

(Received December 28, 1993) 

By a graph we mean here an undirected (not necessarily finite) graph without 

loops and multiple edges. Thus if G is a graph with a vertex set V(G) and an 

edge set E(G), then V(G) is a nonempty set and E(G) is a subset of the set of all 

two-element subsets of V(G); G is called finite if V(G) is finite. 

The letters h, i, j , k, m and n will be reserved for denoting integers. 

Consider a graph G. We denote by W(G) the set of all finite sequences of vertices 

in G, including the empty sequence, which will be denoted by *. Thus W(G) — {*} 

is the set of all sequences 

(0) VQ, ..., Vj, 

where j ^ 0 and v0,...,Vj G V(G). Similarly to [2], instead of (0) we will write 

VQ .. .Vj. Let UQ, ... ,U{,WQ, . . . ,Wk G V(G), where i,k ^ 0, and let a = UQ ...U{ and 

/3 = ivo • • • ivk • Then we write 

a/3 = UQ . . .U{WQ . . .Wk-

Moreover, we write 7* = 7 = *7 for every 7 G W(G). Let XQ ..., xm G V(G), where 

in ^ 0. Put S = XQ ... xm. We write 

||<S|| = ra, F6 = XQ, L6 = Xm, and 6 = x m .. .x'o-

Moreover, we define * = *. Let yQ,..., yn G V(G), where n ^ 0. We say that y0 .. .yn 

is a path in G if the vertices y0,... ,yn are mutually distinct and {H;,Hi+i} G E(G) 

for every integer i such that 0 ^ i < n. Let 2?(G) denote the set of all paths in G. 

Obviously, &>{G) C W(G) - {*}. If a G @>(G), then the number | |a | | is called the 

length of a. Consider 0P, C &>(G) and u,v G V(G). Define 

&(u,v) = {a e &; Fa = u and La = v}. 
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We say that G is connected if &(t,z) ¥" 0 f° r every pair of t,z G V(G), where 
^ = ^ ( G ) . 

Consider a connected graph G. We define the distance dG(x,y) of vertices x and 
y in G as 

dG(x,y) = min(||a||; a G £?(G),Fa = x and La = u). 

Let f G W(G) — {*}; we say that £ is a shortest path in G if £ G &(G) and 
||f || = dG(F£,L£). Let ^ ( G ) denote the set of all shortest paths in G. 

The set 5^(G) was characterized by the present author in [2] (under the condition 
that G is finite); his characterization is "almost non-metric" in the sense that the 
lengths of paths greater than one are neither considered nor compared in it. In the 
present paper a more general result will be proved. We will obtain an "almost non-
metric" necessary and sufficient condition for a set of paths in a connected graph 
G to be an element of a certain set of subsets of y(G). To describe such a set of 
subsets of y(G) we introduce the notion of visibility in G. 

Let G be a connected graph, and let Q C V(G) x V(G). We say that Q is a 
visibility in G if Q fulfils the following Axioms I-IV (for arbitrary u, v, x, y G V(G)): 

I if (u,v) G Q, then (v,u) G Q\ 

II if (u, v) G Q and dG(u, x) -f dG(x, v) = dG(u, v), then (u, x) G Q; 

III if (u,v) G Q, {u,x}, {v,y} G E(G) and dG(x,v) = dG(u,v) — 1 = dG(x,y), then 

(u,y) G Q; 

IV if (H,D) G Q, {u,x},{v,y} G F(G) and dG(x,v) = dG(u,v) — 1 ^ 1 , then 

(x,H) GQ. 
We are now prepared to formulate the main result of the present paper. 

Theorem. Let G be a connected graph, and let 3> C &>(G). Denote y = <¥(G). 

Then the following statements (1) and (2) are equivalent: 

(1) there exists a visibility Q in G such that 

% , ; ) = ^ ( M ) i f ( M ) £ Q ^ d 

^ ( M ) = 0 if (t,z)$Q, 

for every pair of vertices t and z of G; 

(2) & fulfils the following Axioms A\ - A 4 and Hi -H3 (for arbitrary u, v, x, y G V(G) 

anda,/3,<y,Se W(G)); 

Ax if a G &, then a G &; 
A2 ifauv G &, then au G &; 

A3 ifuxav G 8$, {v,y} G E(G),uipyv £ gft for any (D G ^ ( G ) and Hx^y ^ & 

for any i[) G W(G), then xavy G «^; 
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A4 if uxav,u(3yv e St., then St.(x^y) 7-= 0; 

B\ if au(3v^,u8v e S#, then auSvj e St.; 

B2 if uxav,u(5yv,xu(3y e S#, then xavy e St,; 

B3 ifuxav e St,, then {u,v} £ E{G). 

P r o o f . Instead of do{t, z), where t, z e V(G), we will write d{t, z). 

P a r t O n e : (1) => (2). Let (1) hold. We want to prove that St, fulfils Axioms 
A1-A4 and H1-H3. 

Consider arbitrary u,v,x,y e V(G) and a, (3 e W(G). 

(Verification of Axiom A\). Suppose a e St,. There exist t,z e V(G) such that 
a £ ^\t,z)- Hence S$(t,z) i1 0- It follows from (1) that (t,z) e Q and therefore, 
^(t,z) — ^(t,z)- We get a e ^(t,z)- This means that a e y(z,t)- Axiom I implies 
that (z,t) e Q. According to (1), St^z^ = y^ty Thus a G St,. 

(Verification of Axiom A2). Suppose auv e St.. First, let a = *. According to 
(1), uv e y and (u,v) e Q. Axiom II implies that {u,u) e Q. As follows from 
(1), au = u e St,. Let now a / *. There exist t e V(G) and (p e W{G) such that 
a = tip. Then t(puv e St,(t^v). According to (1), t(puv e y and {t,v) e Q. Obviously, 
tipu e y . We have d{t,v) = d(t,u) + d{u,v). Axiom II implies that (t,u) G Q. 

According to (1), St,(t,u) = y(t,u)- We get au = t(pu G St.. 

(Verification of Axiom As). Suppose uxav G St., {v,y} G E(G), U(pyv £ St, for 
any ip G W{G) and uxi/jy £ St. for any ^ G W{G). Clearly, {u,x} G E{G). Since 
St(u,v) 7̂  0, it follows from (1) that St,(u^v) = y^v) and {u,v) G Q. This implies that 
uxav e y and uipyv £ y for any tp G W{G). Thus d{x,v) = d{u,v) — 1 ^ 1 and 
d{u,v) ^ d{u,y). 

Obviously, d{x,y) ^ d{u,y) — 1. This means that d{u,v) — 1 ^ d{x,y) ^ d{u,v). 

Assume that d{x,y) = d{u,v) — 1. Axiom III implies that (w,y) G Q. As follows 
from (1), St(Uiy) = ^(u.y). This means that uxipy £ y for any ^ G W{G). Thus 
d{u,y) ^ d{x,y). Clearly, d (u^ ) ^ d(u,y) ^ d{x,y) ^ d{u,v) — 1, which is a 
contradiction. Hence d{x,y) = d{u,v). We see that :râ ;H G ^ . 

Recall that <i(:r, U) = d(u, v) — 1 ^ 1. Axiom IV implies that (x, y) e Q. According 
to (1), St.{x,y) = y(x,y). We get xavy G St,. 

(Verification of Axiom A4). Suppose uxav,u/3yv G St.. Then {u,x},{v,y} G 
E{G). According to (1), uxav G ̂  and (u,v) G Q. Since d{x,v) = d{u,v) — 1 ^ 1 , 
it follows from Axiom IV that (x,^) G Q- According to (1), St,(x^y) ^ 0. 

Thus St. fulfils Axioms A\-A\. Axioms B\-B3 follows from (1) and simple prop­
erties of y . Hence (2) holds. 

P a r t T w o : (2) => (1). Let St, fulfil Axioms A1-A4 and Bx-Bz. Combining 
Axioms A\ and A2, we get 

(3) if u e V(G), a, (5 G W{G) and au(3 G ^ , then au, uf3, ua, pu G St. 
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Combining Axioms A2 and ^ 3 , we get 

(4) ifu,v,x,y G V(G),a G W(G),uxav G @>,{v,y) G E(G) and xavy $ &, then 
^>(u ,H ) /0 . 

This part of the proof will be divided into Sections 1 and 2. In Section 1 we will 
prove that 

(5) if &(u,v) ¥" 07 then &(u,v) — ^(u,v) for every pair of vertices u and v of G. 
In Section 2 we will prove that 

{(u,v); u,v G V(G) such that 3?(UiV) 7- 0} 

is a visibility in G. 

Section 1. We denote by M the set of all integers k such that there exist t, z G V(G) 

with the property that d(t,z) — k. Obviously, either M is the set of all non-negative 
integers or there exists h ^ 0 such that M = {0 , . . . , h}. For each m G M we will 
prove that 

(6m) if &(u,v) ¥" 0> then ^(UjV) C &(UyV) for every pair of vertices u and v of G such 
that d(u,v) ^ m, 

and 

(7m) &(UyV) _. ^%,u) for every pair of vertices u and v of G such that d(u,v) ^ m. 

We proceed by induction on m. First, let m = 0. Since Sf. C &(G), we get 
3?(w,w) Q {w} for each w £ y(^0- Hence (60) and (7o) follow. Next, let m = 1. 
Consider arbitrary t,z G V(G) such that d(t,z) = 1. Axiom H3 implies that &(t,z) _= 
{1,2;}. Hence, (61) and (7i) follow. 

Now, let m ^ 2. Suppose (6m_i) and (7m_i) hold. This section of the proof will 
be divided into two subsections. In 1.1, combining (6m_i) and (7m_i) we will prove 
that (6m) holds. In 1.2, combining (6m) and (7m_i) we will prove that (7m) holds. 

1.1. If y#(t,z) — 0 f° r every pair of vertices t and z of G such that d(t,z) — m, 

then (6m_i) implies that (6m) holds. Assume that there exist t,z G V(G) such that 

^(t,z) i=- 0 ar-d d(t, z) = m. 
Consider arbitrary u,v G V(G) such that ffi(u,v) ^ 0 and d(u,v) = m. Consider 

an arbitrary £ G «i/,(lt>u)- We want to prove that £ G &. Since «^(Ujl,) 7- 0, there exists 

(e3>(u,v)-

We first assume that £ and £ have a common vertex w such that a 7̂  w 7- D. Then 

(8) there exist ^1 , ^2 , ^1^2 € ^ ( G ) - {*} such that £ = ipiwtp2 and C = ^iW'2-

Obviously, </?i_> G ^%)U;) and iLv2 G <-̂ J>,i>)- As follows from (3), ipiw G i#(u,w) 
and 1/J02 G &(WtV). It is clear that d(u,w) < m and d(w,v) < m. Since « (̂UjlA.) 7-" 
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0 ± ^(w,v)-, (6m - i ) implies that <p\w,w(p2 G &?• Recall that ip\wip2 G &(u,v)- Using 
Axiom Hi we get tp\W(p2 G $ and £ = WiW{£i G -^-

We now assume that £ and C have no common vertex different from u and v. Put 
n = ||C||. Obviously, n ^ m ^ 2. There exist mutually distinct XQ, ... ,xrn+n-\ G 
V(G) such that 

(9) £ = x 0xm+ n_i . . . x n and C = ^o^i • • -xn. 

Obviously, xo = u and xn = v. Put 

(10) Xk+m+n = 3; Ac for each k G {0, . . . , m - f n — 1}. 

Then £ = xrn+nxrn+n-\ ... xn. We define 

( i i / si — Xi+rn+nXi+rn+n—\ ... Xi+n and c,t
# — XiXi+\ ... Xi+n 

for each i 6 {0 , . . . , m}. Obviously, £o = £ a n ( l Co = C- Recall that we want to prove 

that £0 G &. Suppose, to the contrary, that £0 ^ «^. It follows from (3) that Cm ^ «-̂ \ 

Since £0 ^ < \̂ Co G ^ and Cm £ < \̂ there exists j G {0 , . . . , m - 1} such that 

(a) £, £ <^, Cj G ^ and (b) either fi+1 G ^ or Cj+i £ ^ . 

Let Cj+i G ffl. According to (b), £j+i G £#. Since Cj G ̂ , Axiom H2 implies that 
£j G «^\ which is a contradiction. Thus Cj+i ^ «^. 

Clearly, d(xj,Xj+n) ^ ||£j|| = m. If d(xj,Xj+n) < m, then—combining (7m_i) 
with the fact that Cj G <^—we get Cj G J? and therefore n = ||Cj || = d(xj, Xj+n) < m, 
which is a contradiction. Thus d(xj,Xj+n) = m. This means that £7 G 5?. Put 

O" —•• Xj . . . Xo^Trn+n —1 • • • Xj+n+\ . 

Then £j = axj+n. Clearly, a € y . Recall that Cj+i ^ ^ - It follows from (4) that 

%,-,«,•+„+,) 7- 0-

Since cr G ^ , it follows from (6m_i) that a G &. Since £j ^ ^ \ Axiom £?i implies 
that 

(12) XjifXj+n+\Xj+n <£ <% for any <D G W{G). 

Combining the fact that Cj+i ^ & with (12) and Axiom A3, we see that there exists 
ip G y//(G) such that 

XjXj+\ipXj+n+\ G «^. 

Put UJ = Xj+i^Xj+n+i. Since d(.Xj,Xj+n+i) = m — 1, (7m_i) implies that XJUJ G J?'. 
Since <7.rj+n G <^\ we get XjUXj+n G <y. Hence o;Xj+n G ^ and r1(.T7-+i,:r7+n) = 
||cDxj+n|| = m - 1. 
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Define 

(13) Q = Xj+i .. .Xj+n. 

Since Q E £&, (3) implies that !JE£ Since FQ = Xj+i, LQ = Xj+n and uJXj+n E 

^ , it follows from (6m_i) that (JXj+n G ̂ . Obviously, XjQ G « \̂ According to 

Axiom _?i, Xj(.O ĵ+n G « \̂ Since L„> = „j+n+i, we get a contradiction with (12). 

We have proved that £ G £%. This means that (6m) holds. 

1.2. Consider arbitrary u,v G V(C7) such that d(u,v) = m. If ^(UjU) = 0, then 
«-̂ (u,v) _i ^(u,v)- Le^ «̂ (i4,v) / 0- Consider an arbitrary C G &(u,v). We want to 
prove that ( E y . Obviously, there exists £ G <5f(u,v)-

We first assume that £ and C have a common vertex w such that u ^ w ^ v. 

Then (8) holds. Clearly, d(u,w) < m and d(w,v) < m. As follows from (7m_i), 

ipiw G ̂ tx,u;) and _»̂ 2 £ ^(_,v)« This implies that C E y . 
We now assume that £ and C have no common vertex different from u and v. Put 

n = ||C||. Obviously, n ^ m = d(u,v). Recall that we want to prove that C E y . 
Suppose, to the contrary, that Q £ y . Then n > m. There exist mutually distinct 
XQ,. .. ,xrn+n-\ G V(G) such that (9) holds. We adopt the convention (10) and 
define £; and Q as in (11) for each i E {0, . . . ,m}. Recall that 

SO — S — *^0 • • • %m • • • %ni Sm — %m • • • %n • • • %m+n ctnG %m-\-n — 3?0 • 

If Cm G &, then Axioms Ai and Hi imply that 

x m . . . Xn . . . Xjji . . . XQ t *st', 

which contradicts the fact that :^ C <?(G). Hence Cm i &• 

Since £0 G y , Co G ̂  and Cm ^ < \̂ there exists j E {0 , . . . , m - 1} such that 

(a) £j G y , Cj G ^ and (b) either £ i +i ^ ^ or Cj+i £ @. 

Since £j G y , it follows from (6m) that £j G ^ . Axiom A4 implies that 

&(XJ+1,Xj+n+1)*Q. 

Let £ j+i G «^\ According to (6m), £ j+i G ̂ . Recall that £i?Cj G _#. Axiom B2 

implies that £7+1 £ « \̂ which contradicts (b). 

Thus £j+i \t y . This means that d(xj+\,xj+n+i) ^m — 1. Hence „(.rj+i,.z;j+n) ^ 
m. Define Q as in (13). Assume that d(xj+\,Xj+n) ^ m —1; then (7m_i) implies that 
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Q G c5̂ ; therefore n — 1 ^ m — 1, which is a contradiction. Thus d(xj+\,Xj+n) = m. 
This means that d(xj+\,Xj+n+\) = m - 1. There exists ^ G ^ ( G ) such that 

o ; j + i ^ a ; j + n + i X j + n G ^ . 

Similarly to 1A, put ui = Xj+iipXj+n+i. Then ||o;|| = m — 1. It follows from (6m) 
that cDTj+n G «^. Since (j G ^ , Axiom B\ implies that XjUJXj+n G S#. According 
to (3), XJUJ G Stf. Since J(xj,Xj+n+i) = m — 1, (7m_i) implies that XJUJ G ^ . But 
||XJU;|| = m > d(xj,Xj+n+\), which is a contradiction. 

We have proved that ( G y . This means that (7m) holds. 
Summarizing the results of 1.1 and 1.2, we see that (5) holds. 

Section 2. Denote 

Q = {(t, z);t,ze V(G) such that SH{ttZ) 7- 0}. 

We want to prove that Q fulfils Axioms I-IV. 

Consider arbitrary u,v,x,y G V(G). Suppose (u,v) G Q. Then S#(UiV) ^ 0. 

According to (5), St(UyV) = ^%,t,)-

(Verification of Axiom I) It follows from Axiom A\ that S$(ViU) ^ 0. We get 

(v,u) G Q. 

(Verification of Axiom II) Suppose d(u,v) = d(u,x) + d(x,v). If x = v, then 
it is obvious that (u,x) G Q. Let x ^ v. Then there exist a,/3 e W(G) such 
that arr/rv G c5^(u.v). Hence ax/ru G «^(u,v). It follows from (3) that ax G «^(u,x). 
Therefore, &(u,x) 7- 0. We get (u,.r) G Q. 

(Verification of Axiom III) Suppose {u,x}, {v,y} G E(G) and d(x,D) = d(u,v) — 

1 = d(x,y). Clearly, x ^ v. There exists a G 2^(G) such that uxav G <5̂ . Since 

d(x,v) = d(x,y), we have zaUy £ ^ . Since wxav G y , we have u:raL> G S#,. Since 

rraUy ^ ^ , (5) implies that xavy £ SP. It follows from (4) that S#(UiV) 7- 0. We get 

(u,y) G Q. 

(Verification of Axiom IV) Suppose {u,x},{v,y} G E(G) and <1(x,U) = d(u,v) — 

1 ^ 1 . There exists a G W(G) such that HxaU G ^ . Hence wxaU G < \̂ If TaUy G SP, 

then ^(X|y) # 0- Let xavy £ St.. If there exists (5 G ̂ ( G ) such that ux(3y G ̂ , then 
(3) implies that x/3y G S?, and thus <^(x,y) 7-- 0. Let ux(Dy G S? for any (D G W(G). 

Axiom A3 implies that there exists 7 G W(G) such that ^ 7 ^ G ^ . Since uxav G ^ , 
Axiom A4 implies that «^(x,y) 7̂  0- We get (x,y) G Q. 

We have proved that Q is a visibility in G. 
The proof of the theorem is complete. • 
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The following corollary is similar to the result which was (under the condition that 
G is finite) originally proved in [2]: 

Corollary. Let G be a connected graph, and let & C &>(G). Then & = 5?(G) if 
and only if ffi fulfils Axioms A\ -A3, Bi -B3 and the following Axiom AQ (for arbitrary 
u,v,x,ye V(G) and a , /? , 7 ,S £ W(G)): 

A0 &(u,v) 7- 0. 

P r o o f . Let @. = y(G). Then Sf. fulfils Axiom A0. Our theorem implies that 
Sf. fulfils Axioms A1-A3 and B1-B3. 

Conversely, let ffi fulfil Axioms AQ-A3 and B1-B3. Axiom AQ implies that & 
fulfils Axiom A4. According to our theorem, there exists a visibility Q in G such 
that (1) holds. Axiom AQ states that &(UyV) / 0 for every pair of vertices u, v of G. 
Combining this fact with (1), we get & = y(G), which completes the proof. • 

Remark. Let G be a finite connected graph. The set y(G) is closely related to 
the interval function of G in the sense of H.M. Mulder [1]. An "almost non-metric" 
characterization of the interval function of G was given in [3]. 
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