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ORDINARY DIFFERENTIAL EQUATION 

JOHN R. G R A E F and PAUL W. SPIKES, Mississippi 

(Received November 30, 1993) 

Dedicated to Professor Jaromir Vosmansky on the occasion of his sixtieth birthday 

1. INTRODUCTION 

In this paper we obtain results on the asymptotic behavior of the solutions of the 

second order nonlinear differential equation 

(*) (a(t)x')' + h(t, x, x') + q(t)f(x)g(x') = e(t, x, x'). 

We give conditions which ensure that the solutions of (*) are continuable, conditions 
which imply that all solutions are bounded, and conditions ensuring that all ov 

certain classes of solutions tend to zero as t -» oo. We also include some examples 
to illustrate our results. Sets of conditions which guarantee these same conculusions 
for special cases of (*) can be found in numerous places in the literature (see [1-9, 
11-30]). In addition to being for a more general equation, the results here are new 
even when (*) is specialized to the forms previously studied. 

2 . BOUNDEDNESS AND CONTINUABILITY 

Consider the equation 

(1) (a(t)x')' + h(t,x,x')+q(t)f(x)g(x') = e(t,x,x') 
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where a, q: [t0,oo) -> R, / , g: R -> R, h,e: [£0,oo)xR2 -> R are continous, a(t) > 0, 
q(t) > 0, and g(x') > 0. We will write (1) as the system 

x' = y, 
(2) y 

y' = (-a'(t)y - h(t,x,y) - q(t)f(x)g(y) + e(t,x,y))/a(t). 

For any function Q we let Q(t)+ = max{Q(t),0} and Q(t)- = max{-Q(t),0} so 
that Q(t) = Q(t)+ - Q(t).. We define G(y) = JQ

y[s/g(s)] ds, F(x) = f* f(s) ds and 
assume that 

(3) xf(x) > 0 for x ?- 0. 

In addition, we assume that there are nonnegative continuous functions k,b,r,w: 

[to, oo) —r R and constants 0 ^ m ^ 1, Ki ^ 0, K2 ^ 0, and C\ > 0 such that 

(4) \e(t,x,y)\<^k(t)Fl*(x)+ b(t)G^(y)+r(t), 

(5) -w(t)y2 <^yh(t,x,y), 

(6) 3 ( y ) £ C i , 

and 

(7) y2/g(y)<KiG(y) + K2. 

We first give a continuability result for (2). 

Theorem 1. If (3)-(7) hoid and G(y) -> oo as |H| -> oo, then aii solutions of 

(2) can be defined for all t^to-

P r o o f . Suppose there is a solution (x(t),y(t)) of (2) and T > to such that 

ljm_[\x(t)\ + |y(*)|] = oo. 

Define 

V(t) = a(t)G(y(t))/q(t) + F(x(t)); 

then differentiating and applying (3)-(5) and (7) we have 

V'(t) = a(t)y(t)y'(t)/q(t)g (y(t)) + G (y(t)) (a(t)/q(t))' + y(t)f (x(t)) 

= - a'(t)y2(t)/q(t)g (y(t)) + G (y(t)) (a(t)/q(t))' 

+ y(t) [e(t, x(t),y(t)) - h(t, x(t),y(t))} /q(t)g (y(t)) 

< Kla'(t)-G(y(t))lq(t)+G(y(t))(a(t)/q(t))'+w(t)y2(t)/q(t)g(y(t)) 

+ k(t)\y(t)\Fi(x(t))/q(t)g(y(t)) + b(t)\y(t)\G^ (y(t))/q(t)g(y(t)) 

+ \y(t)\r(t)/q(t)g(y(t)) + K2a'(t)_/q(t). 
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Prom (7), 

w(t)y2(t)/q(t)g(y(t)) < w(t)[K1G(y(t)) + K2]/q(t) 

< J.i (w(t)/a(t)) V(t) + K2w(t)/q(t). 

Clearly, 

(8) |y(t)| [a(t)F(x(t))/q(t)g(y(t))]i ^ (Ii\ + l)V(t) + K2a(t)/q(t). 

Next, we have 

(9) 

b(t)\y(t)\G^(y(t))/q(t)g(y(t)) 

= [6(t)/(a(t)g(t)0(y(t)))i][a-(t)|y(t)|/(g(t)o(y(t)))-] 

x[aHt)GHy(t))/qHt)]m(q(t)/a(t))^ 

^ [b(t)/(a(t)q(t)g(y(t)))^(q(t)/a(t))^{a(t)y2(t)/q(t)g(y(t)) + [a(t)G(y(t))/q(t)]m} 

< [b(t)/(a(t)q(t)g(y(t)))- ](g(t)/a(t))?{(a(t)/g(t))[J_iG(y(t)) + A'2] 

+ l + a(t)G(y(t))/g(t)} 

< [6(t)/(a(t)g(t))-](g(t)/a(t))*(/_i + lW ( t ) /C f 

+ [6(t)/(a(t)g(t))-](g(t)/a(t))*(/.2a(t)/g(t) + l j / c j . 

Also, 

(10) |y(t)|r(t)/g(%(y(t)) < r(t) [a(t)y2(t)/g(t) + l] /a(y(t))(a(t)g(t))-

< r(t) [a(t)(/.iG(y(t)) + K2)/q(t)] /(a(i)g(t))-

+ r(t)/a(y(t))(a(t)g(t))-

</- ir( t )V(t) / (a( t)g(t))-

+ r(t) [K2a(t)/q(t) + l/g(y(t))] /(a(t)g(t)) - . 

Therefore, 

where 

Pl(t) = -_i(a'(t)_ + t_(t))/a(t) + (a(t)/q(t))'+/ (a(t)/q(t)) 

+ (/.! + l)*(t)/[a(t)g(f)Ci]- + [6(t)/(a(t)g(t))-](g(t)/a(t))*(7.i + 1)/C? 

+ / . i r( t) /(a(t)g(t))-

665 



and 

P2(t) = K2(a'(t)_ +w(t))/q(t) +K2k(t)[a(t)/q3(t)Cl}
L 

+ [b(t)/(a(t)q(t))L}(q(t)la(t))^(K2a(t)/q(t) + 1)/Cf 

+ r(t)[K2a(t)/q(t) + l/Cl}l(a(t)q(t))L. 

Now ft P2(s)ds = K3 for some positive constant K3, so by Gronwall's inequality 
we have 

V(t) ^ [V(t0) + K3] exp / P1(s) ds *C [V(t0) + K3] exp / Px(s) ds. 
J to Jt0 

Hence, we see that a(t)G(y(t))/q(t) is bounded on [to,T) and since q(t)/a(t) is 
bounded on [to,T] we have G(y(t)) is bounded on [to,T). But this implies that 
y(t) is bounded on [to,T). An integration shows that x(t) is also bounded on [to,T) 
contradicting the assumption that (x(t), y(t)) is a solution of (2) with finite escape 

time. D 

To obtain a boundedness result for solutions of (1) we will ask that 

/•OO 

(11) / [a'{s)-/a(s)] ds < 00, 
J t0 

(12) 

(13) 

(14) 

(15) 

(16) 

and 

(17) 

/•OO 

/ Hs)/a(s)] 
Jto 

/•oo 

/ [k(s)/(a(s)q(s))L\ ds 
J to 

/ \b(s)/(a(s)q(s)ý (q(s)/a(s))^ ds 
Jt0

 l J 

/•oo 

/ r(s)/(a(s)q(s))^ ds 
Jto L J 

/•OO 

/ [(aW/9(s))V/(«(*)/9(*))] 
Jř0 

d/5 < 00, 

< 00, 

< 00, 

ds < 00, 

СІ5 < 00, 

F(x) ->ooas \x\ -> oo. 

Theorem 2. If (3)-(7) and (11)—(17) hold, then every continuable solution of 

(1) is bounded. 
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P r o o f . Let x(t) be a continuable solution of (1) and define V as in the proof 
of Theorem 1. Then, from the proof of Theorem 1 we have 

(18) V'(t)^P\(t)V(t) + P2(t). 

Notice that (11) implies that a(t) is bounded from below and (16) implies that 

a(t)/q(t) is bounded from above. Hence, a(t) ^ a\ and q(t) ^ K^a(t) ^ K±a\ for 

some positive constants a\ and K4. This implies that 

P2(t) ^ K5(a'(t)- +w(t))/a(t) +K6k(t)/(a(t)q(t))i 

+ K7[b(t)/(a(t)q(t)) ^](q(t)/a(t)) * + K8r(t)/(a(t)q(t)) * 

for some positive constants Kj, j = 5,6, 7,8. By (11)—(16) we have /t°° Pi(s) ds < 00 

for i = 1,2. Hence, integrating (18) and applying Gronwall's inequality we obtain 

that V(t) is bounded. Thus, F(x(t)) is bounded and so by (17) x(t) is bounded. • 

Corollary 3. If, in addition to (3)-(7) and (11)-(17), G(y) -> 00 as \y\ -> 00, 
then all solutions of (1) are bounded. 

P r o o f . By Theorem 1 all solutions of (1) are continuable, so by Theorem 2, all 
solutions of (1) and bounded. • 

Remark. When comparing boundedness results such as Theorem 2 above to 

similar results of other authors, some care must be taken in comparing individual 

hypotheses. For example, conditions (15) and (16) imply that 

poo 

(19) / [r(s) /g(s)]ds<oo, 
Jt„ 

but do not imply that 

(20) / [r(s)/a(s)]ds<oo. 
POO 

/ [r(s)/a(s)]< 

On the other hand, conditions (19) and (20) together imply (15), and (16) and (20) 
imply (19). Other such subtle interrelationships also exist. In this same spirit, if 
k(0 = 0 and 6(0 = 0, then it is possible to drop condition (6), i.e., g(y) ^ C\. 
In this case, condition (15) in Theorem 2 would be replaced by (20). Thus, the 
conditions on r (0 would not be quite as good as those in Theorem 2, but (6) would 
be dropped. The verification of this follows from the the fact that (7) implies that 

\y\/g(y)^KiG(y) + K2, 
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holds for all y, and then replacing (10) by the estimate 

r(t)\y(t)\/q(t)g(y(t)) ^ r(t)[l + K1G(y(t)) + K2]/q(t) 

^ Kir(t)G(y(t))/q(t) + (l + K2)r(t)/q(t). 

Remark. Due to the generality of the form of the damping term h(t,x,x') and 
the perturbation term e(t, x, x') as well as the form of the conditions imposed on the 
coefficient functions, the continuability and boundedness results above extend many 
previously known results of this type for equation (1), such as those in [1-9, 11-30]. 
For example, the above results show that all solutions of the equation 

(t2x'y + t1x' sin(:r') + 4tbx*[(x')2 + 1] = tx2 tanh(ar') + [t \n((x')2 + l)]i + *§, t > 1, 

are continuable and bounded, but it is not possible to conclude this fact from previ
ously known results. 

3 . CONVERGENCE TO ZERO 

We now impose additional conditions on the functions in equation (1) that are 
sufficient to ensure that all continuable solutions of (1) tend to zero as t -» oo. 
Assume that there exist nonnegative continuous functions a,w\: [to, oo) —•> IR and a 
positive constant C<i such that for all bounded x and every constant B\ > 1 

(21) \h(t,x,y)\^wx(t)\y\, 

(22) I(t) = / a(s) ds -> oo as t ->• oo, 
Jt0 

POO 

(23) / [2qf(s)/q(s) - (a(s)q(s))'/a(s)q(s) - Bla(s)/I(s)}_ ds < oo, 
Jto 

(24) a(t) [a(t)/q(t)]b = o(I(t)), t -> oo, 

(25) f \(a(s)/q(s))'\ (a(s)q(s))1 ds = o(I(t)), t -> oo, 
Jto 

(26) f {[wx(s) + b(s)(q(s)/a(s))^}/(a(s)q(s))L 

Jto L 

+ [a(s) + k(s) + r(s)]/q(s)| a(s) ds = O(I(*)), t -> oo, 

and 

(27) g(y)^c2. 
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Theorem 4. If conditions (3)-(6), (11)-(17), and (21)-(27) are satisfied, then 

every solution x(t) of (1) satisfies x(t) -> 0 as t —•> oo. 

P r o o f . Let x(t) be a solution of (1) and let e > 0 be given. First observe that 
conditions (6) and (27) imply (7) with Kx = 2C2/Ci and K2 = 0, i.e., 

(28) y2/g(y) <: K9G(y) 

for all y where K9 = 2C2/C\. Condition (3), together with the arguments given by 

Karsai [14] or Scott [23], shows that there exists a positive constant E such that 

(29) F(x(t))-Ex(t)f(x(t))<e 

for t ^ t0. Let E — C2E/C\\ then V(t), as defined in the proof of Theorem 1, can 
be rewritten in the form 

V(t) = a(t)G(y(t))/q(t) + Ey2(t)a(t)/q(t)g(y(t)) 

- Ey2(t)a(t)/q(t)g(y(t)) + F(x(t)). 

By (28), there exists a positive constant E\ such that 

Ey2(t)a(t)/q(t)g(y(t)) ^ Ea(t)KQG(y(t))/q(t) ^ Eia(t)G(y(t))/q(t). 

Also, it follows from (27) that 

-Ey2(t)a(t)/q(t)g(y(t)) < -Ey2(t)a(t)/C2q(t), 

so 

V(t) < (1 + E1)a(t)G(y(t))/q(t) - Ey2(t)a(t)/C2q(t) + F(x(t)). 

Then, from the identity (a(t)x(t)y(t))' = a(t)y2(t) + x(t)(a(t)y(t))', 

V(t) ^ (1 + E1)a(t)G(y(t))/q(t) + F(x(t)) 

- E[(a(t)x(t)y(t))' - x(t)(a(t)y(t))'}/C2q(t) 

= (1 + E1)a(t)G(y(t))/q(t) - E(a(t)x(t)y(t))'/C2q(t) 

+ Ex(t)[e(t, x(t), y(t)) - h(t,x(t), y(t))]/C2q(t) 

+ F(x(t)) - Ex(t)f(x(t))g(y(t))/C2. 

By (6), (29), and the definition of E, 

(30) V(t) < (1 + E1)a(t)G(y(t))/q(t) - E2(a(t)x(t)y(t))'/q(t) 

+ E2x(t)[e(t, x(t), y(t)) - h(t, x(t), y(t))]/q(t) + e 
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where Ei = E/C2- Also, from the proof of Theorem 1, we have 

V'(t) = -a'(t)y2(t)/q(t)g(y(t))+G(y(t))(a(t)/q(t))' 

+ y(t)[e(t, x(t),y(t)) - h(t, x(t), y(t))]/q(t)g(y(t)). 

Observe that 

G(y(t))(a(t)/q(t))' = a(t)G(y(t))[(a(t)q(t))'/a(t) - 2q'(t)]/q2(t), 

and that (28) implies 

-a'(t)y2(t)/q(t)g(y(t)) ^ K9V(t)a'(t)_/a(t). 

Thus, we have 

(31) V'(t) < K9V(t)a'(t)-/a(t) + a(t)G(y(t))[(a(t)q(t))'/a(t) - 2q'(t)]/q2(t) 
+ y(t)[e(t, x(t),y(t)) - h(t, x(t), y(t))]/q(t)g(y(t)). 

Now define H(t) = V(t)I(t) so that 

H'(t) = V'(t)I(t)+V(t)a(t). 

Then from (30) and (31) we have 

H'(t) < - [2q'(t)/q(t) - (a(t)q(t))'/a(t)q(t) 

(32) - (1 + E1)a(t)/I(t)]a(t)G(y(t))I(t)/q(t) 

- E2(a(t)x(t)y(t))'a(t)/q(t) + ea(t) + K9V(t)I(i)a'(t)-/a(t) 

+ I(t)y(t)[e(t, x(t), y(t)) - h(t, x(t),y(t))]/q(t)g(y(t)) 

+ E2a(t)x(t)[e(t,x(t),y(t)) - h(t,x(t),y(t))]/q(t). 

Next, observe that: (5) and (28) imply 

-y(t)h(t,x(t),y(t))/q(t)g(y(t)) *C K9w(t)V(t)/a(t); 

(4), (6), and (28) imply 

\y(t)e(t,x(t),y(t))\/q(t)g(y(t)) 

^(K9 + l)k(t)V(t)/[a(t)q(t)g(y(t))]^ 

+ [b(t)/(a(t)q(t))i](q(t)/a(t))'*(K9 + l)V(t)/C$ 

+ [b(t)l(a(t)q(t))^](q(t)/a(t))'^ICi + K9r(t)V (t) / (a(t)q(t))± 

+ r(t)/(a(t)q(t))h(y(t)Y 
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(21), (27), and (28) imply 

\h(t,x(t),y(t))\/q(t) < \y(t)\wi(t)/q(t) 

< wi(0[oW»2(0/«W + -l/MMO)* 

< C2w1(t)[a(t)y2(t)/q(t)g(y(t))]+w1(t)/(a(t)q(t)^ 

^ K9C2w1(t)V(t)/(a(t)q(t))^+w1(t)/(a(t)q(t))^, 

and (4) implies 

\e(t,x(t),y(t))\/q(t) ^ k(t)F?(x(t))/q(t) + b(t)G*(y(t))/q(t) + r(t)/q(t) 

< k(t)F*(x(t))/q(t) + (b(t)/q(t))V^(t)(q(t)/a(t))^+r(t)/q(t). 

As noted in the proof of Theorem 2, a(t) >- a\ > 0 and q(t) >- Kta(t) >- J."4ai > 0. 
Hence, we have 

\y(t)e(t,x(t),y(t))\/q(t)g(y(t)) 

< (K0 + l)k(t)V(t)/(a(t)q(t)d)i + Kl0[b(t)/(a(t)q(t))12](q(t)/a(t))^V(t) 

+ / f i i [6 («) / (a(09(0) i ] («(0M0) ¥ +^9r(<)^(0 / (o( t )«W)-

+ r(t)/(a(t)q(t))1*Cl, 

and 

\e(t,x(t),y(t))\/q(t) 

^h(t)FHx(t))/q(t)+b(t)V^(t)(q(t)/a(t))^ 

where K10 = (Iv9 + 1)/Cf and ATn = 1/Cf. Notice, next, that (28) implies G(y) -> 
oo as u —r oo, so x(^) is continuable and V(t) and x(t) are bounded. Therefore, we 
have 

KgV(t)I(t)a'(t)_/a(t) + I(t)y(t)[e(t,x(t),y(t)) - h(t,x(t),y(t))]/q(t)g(y(t)) 

^ {Esa'(t)./a(t) + E4k(t)/(a(t)q(t))l + E,[b(t)/(a(t)q(t))^](q(t)/a(t))^ 

+ E6r(t)/(a(t)q(t))1* + E7w(t)/a(t)}l(t), 

and 

E2a(t)x(t)[e(t,x(t),y(t)) - h(t,x(t),y(t))]/q(t) 

< [E8(k(t) + r(t))/q(t) +E0[b(t)(q(t)/a(t))V + w1(t)]/(a(t)q(t))i]a(t) 
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for some positive constants E{, i = 3 ,4 , . . . , 9. Now let 

P3(t) = [2q'(t)/q(t) - (a(t)q(t))'/a(t)q(t) - (1 + Ex)a(t)/I(t)}_, 

PA(t) = E8(k(t) +r(t))/q(t) + E9[b(t)(q(t)/a(t))^ + iu1(t)]/(a(t)q(t))i 

and 

P5(t) = E3a'(t)-/a(t) + [E4k(t) + E5b(t)(q(t)/a(t))^)/(a(t)q(t))^ 

+ E6r(t)/(a(t)q(t))2 + E7w(t)/a(t). 

Then, from (32) we have 

H'(t) ^ P3(t)H(t) - E2(a(t)x(t)y(t))'a(t)/q(t) + P4(t)a(t) + ea(t) + P5(t)I(t). 

Notice next that (11)—(15) imply that Jf° P5(s)ds < oo, so there exists T > t0 so 

that J™ P5(s)ds < e. Therefore, JTP5(s)I(s) ds ^ I(t) J^P5(s)ds < el(t). Also, 

JTa(s)ds ^ I(t), so 

(33) H(t) ^ H(T) + f P3(s)H(s) ds - E2 f [(a(s)x(s)y(s))'a(s)/q(s)} ds 
JT JT 

+ / P4(s)a(s)ds + 2el(t). 

An integration by parts yields 

J [(a(s)x(s)y(s))'a(s)/q(s)}ds 

= a(t)x(t)y(t)a(t)/q(t) - a(T)x(T)y(T)a(T)/q(T) 

- a(s)x(s)y(s)[a(s)/q(s)]' ds. 

Now by (27) and (28), 

(34) a(t)y(t)/q(t) ^ a1 (t)[a(t)y2 (t) / q(t) + l]/qi(t) 

< a'(t)[C2a(t)IUG(y(t))/q(t)\/q-(t) + (a(t)/q(t))i 

^K9C2(a(t)/q(t))kV(t) + (a(t)/q(t))k 

^(E10V(t) + l)[a(t)/q(t)]k 

for some positive constant Ei0. Then, 

H(t) ^ En + E2\x(t)\(E10V(t) + l)a(t)[a(t)/q(t)}^ 

+ E2 J \x(s)\(E10V(s) + l)\(a(s)/q(s)y\(a(s)q(s))i ds 

+ f P3(s)H(s)ds+ [ P4(s)a(s)ds + 2el(t), 
JT JT 
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and from the boundedness of V(t) and x(t) we have 

H(t) ^ En + E12a(t)[a(t)/q(t)]li + J E13\(a(s)/q(s)),\(a(s)q(s))^ ds 

+ f P4(s)a(s)ds + 2el(t)+ f P3(s)H(s)ds =.P6(t) + f P3(s)H(s)ds 
JT JT JT 

where P6(t) is the sum of the first five terms in the right member of the last inequality 
and Ei, i = 11,12,13, are positive constants. We then have from (22)-(26) that 
lim sup P6(t)/1 (t) ^ 2e and f™ P3(s) ds ^ N < oo. Applying a generalized version 

t-+oo 

of Gronwall's inequality (see for example [10; Lemma 6]) we obtain 

H(t) ^ P6(t) + f P6Cs)Ps(s)exp (j P3(u)duj ds 

= P6(t) + [exp f P3(s)ds] i P6(s)P3(s)exp (- f P3(u)du) ds 

^P6(t)+eN f P6(s)P3(s)ds 
JT 

^P6(t)+eN\ sup P6(s)] f P3(s)ds 
lT^s^t J JT 

^P6(t) + NeN\ sup P6(s)l, 
lT^s^t J 

and hence 
V(t) = H(t)/I(t) <^3e + NeN2e 

for all sufficiently large t. Since s is arbitrary, this implies that V(t) -> 0 as t —> oo. 
Thus, from (3) and the definition of F(x), we have x(t) -> 0 as t —> oo. D 

If a and q are such that (a/q) G C2[to, oo), then by modifying the proof of Theo
rem 4 we obtain the following result. 

Theorem 5. Let (3)-(6), (11)-(17), (21)-(24), (26), and (27) hold. If, in addi
tion, (a/q) e C2[t0, oo), 

(25') a(t)\(a(t)/q(t))'\ = o(I(t)), t -> oo, 

and 

(25") f\[a(s)(a(s)/q(s)y]')- ds = o(I(t)), t -> oo, 
Jt() 
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hold, then every solution x(t) of (I) satisfies x(t) -> 0 as t -» oo. 

P r o o f . Let x(t) be a solution of (1); then Theorem 1 implies that x(t) is 
continuable. Proceed exactly as in the proof of Theorem 4 until inequality (33) is 
obtained. Then, integrating the second integral in (33) by parts as in the proof of 
Theorem 4, we have 

(35) H(t) <: E1A - E2a(t)x(t)y(t)a(t)/q(t) + E2 f a(s)x(s)y(s)[a(s)/q(s)]' ds 

+ f P3(s)H(s)ds+ f P4(s)a(s)ds + 2el(t) 
JT JT 

for some constant E1A > 0. Now integrate the first integral in the right member of 
(35) by parts to obtain 

H(t) ^ E13 - E2a(t)x(t)y(t)a(t)/q(t) + ^E2a(t)[a(t)/q(t)]'x2(t) 

-l-E2 f [a(s)(a(s)/q(s))']'x2(s)ds+ f P3(s)H(s) ds 
-- JT JT 

+ f PA(s)a(s)ds + 2eI(t) 

where F15 is a positive constant. Then, from (34) we have 

(36) H(t) ^ E15 + E2\x(t)\(E10V(t) + l)a(t)[a(t)/q(t)]* 

+ l-E2x
2(t)a(t)\[a(t)/q(t)]'\ + l-E2 j\2(s)[a(s)(a(s)/q(s))']'_ds 

+ f P3(s)H(s)ds+ f PA(s)a(s)ds + 2eI(t). 
JT JT 

The remainder of the proof is the same as the latter part of the proof of Theorem 4 
except for using using (25') and (25") in place of (25). • 

If we restrict our attention to the solutions of (1) that are not eventually mono-
tonic, condition (24) is not needed to obtain the conclusions of Theorems 4 and 5. 
Specifically, we have the following result. 

Theorem 6. Let (3)-(6), (11)-(17), (21)-(23), and (26)-(27) hold and let x(t) 
be a solution of (1) that is not eventually monotonic. If either (i) (25) holds, or (ii) 
(a/q) G C2[l0,oo) and (25') and (25") hold, then x(t) -> 0 as t -> 00. 

P r o o f . Let x(t) be a solution of (1) that is not eventually monotonic. First, 
recall that by (18) and the proof of Theorem 2, 

V'(t)^Pl(t)V(t) + P2(t) 
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and f™ Pi(s)ds < oo for i = V2. But V(_), P_(£), and P2(t) are nonnegative, so 
clearly 

V(t) -s: [Py(t) + P2(t)][V(t) +1] < P(.)[V(0 + l] 

where P(t) = P\(t) + P2(t). The boundedness of V(t) was also established in the 

proof of Theorem 2, so V(t) ^ p for some positive constant p. Hence, 

(V(t) + l ) ' < ( p + l ) P ( t ) , t>t0. 

Therefore, 

V'(t)+^(p+l)P(t), 

and so 

/ V ' ( s ) + d s ^ ( p + l ) / P(s)ds. 
Jt„ J to 

Since V'(t)+ = V'(t) + V'(t)-t 

f V'(s)- ds = V(t0) + / V'(s)+ ds - V(t) < V(.0) + (p + 1) / P(s) ds. 

Thus, we have 
pt poo 

/ |V ,(5)|d;s^V(^o) + 2 ( p + l ) / P(s)ds, 
JtQ Jt0 

and therefore V(t) is of bounded variation. Hence, V(t) has a finite limit as t —> oo. 

To complete the proof of the theorem, we will show that V(t) —> 0 as t —> oo. Since 

V(t) has a finite limit as t —> oo, it suffices to show that there exists a sequence {tn} 

such that tn —> oo and V(tn) —> 0 as n -> oo. Now x(_) is not eventually monotonic, 

so choose {tn} such that y(tn) = 0. For the proof of (i), proceed exactly as in the 

proof of Theorem 4 until (33) is obtained with t replaced by tn ^ T. Then integrate 

the second integral on the right hand side of (33) by parts to obtain 

J"[(a(s)x(s)y(s))'a(s)/q(s)]ds 

= -a(T)x(T)y(T)a(T)/q(T) - f" a(s)x(s)y(s)[a(s)/q(s)}' ds. 
JT 

As in the proof of Theorem 4, (27) and (28) imply that 

_ Ѓ" 
H(tn)<:P6(tn)+ / P3(s)H(s)ds 

Jт т 
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where 

Pe(tn) = En + E12a(t)[a(t)/q(t)}L2 + J " E13\(a(s)/q(s))'\(a(s)q(s))i ds 

+ P4(s)a(s)ds + 2el(tn). 

It then follows, as in the last part of the proof of Theorem 4, that V(tn) -> 0 as 
n —.> oo. 

To prove (ii), proceed as in the proof of Theorem 5 obtaining 

(36') H(tn) ^E^ + \E2x
2(tn)a(tn)\[a(tn)/q(tn)]'\ 

Ĺ J Ţ 

+ 

\E_ J" x\s)[a(S)(a(s)/q(s))'tdS 

í P3(s)H(s) ds+ í " P4(s)a(s) ds + 2el(tn) 
JT JT 

in place of (36). The remainder of the proof that V(tn) -> 0 as n -> oo is the same 
as the latter part of the proof of (i) except for using (25') and (25/;) in place of (25). 

• 
Before continuing, it will be convenient to classify the solutions of (1) as follows. 

A solution x(t) of (1) will be called nonoscillatory if there exists t\ ^ to such that 
x(t) ^ 0 for t ^ t\; the solution will be called oscillatory if for any t\ ^ to there 
exist t2 and £3 such that t\ < t2 < £3 and ^(^2)^(^3) < 0; and it will be called a 

Z-type solution if it has arbitrarily large zeros but is eventually either nonnegative 

or nonpositive. 

If we further restrict our consideration to only the class of oscillatory solutions 

of (1), then we can eliminate one of the hypotheses in Theorem 6 (ii). 

Theorem 7. Suppose that (a/q) e C2[l0,oo). If (3)-(6), (11)-(17), (21)-(23), 

(26)-(27), and (25") hold; then every oscillatory or Z-type solution x(t) of(l) satisfies 

x(t) —r 0 as t —•> 00. 

P r o o f . Let x(t) be an oscillatory or Z-type solution of (1). As in the proof of 

Theorem 6, lim V(t) exists and is finite. Choose a sequence {tn} —> 00 as n —> 00 
t-+oo 

such that x(tn) — 0 for all n. Then as in the proof of part (ii) of Theorem 6, we 

obtain 

H(tn) ^E7s + \E2 j " x2(s)[a(s)(a(s)/(J(s))'}'_ ds 

+ / " Pг(s)H(s) ds + / " PĄ(s)a(s) ds + 2єl(tn) 
Jт Jт 
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in place of (36'). That V(tn) —> 0 as n —> oo follows by an argument similar to the 
one used in the latter part of Theorem 6 except that (25') is not needed. • 

Remark . Results similar to the conclusions of the foregoing theorems and 
corollary have been obtained for special cases of (1) in [1-9, 11-30]. However, because 
of different hypotheses and a more general perturbation term, the results here are 
new even when the left hand side of (1) is specialized to the forms previously studied. 

Remark. As indicated in the first remark following Corollary 3, there are some 
interchanges in hypotheses that can be made. For example, if k(t) = 0 and b(t) = 0 
in Theorems 4-7, then condition (6) can be dropped provided (15) is replaced by 
(20) and condition (7) is added. 

Consider 

(Ei) (txj + t2x5[(x')2 + l}/[(x')2 + 2} = e(t,x,x') 

for t ^ 1 with 

e(t,x,x') = \x\3/y/6- \sin3t\/y/6t3 + (sint - tcost - t2 sint)/t2 

+ [t4 + (tcost - sint)2] sin5 t/t3[2t4 + (tcost - sint)2] . 

Here a(t) = t, q(t) = t2, f(x) = x\ h(t,x,x') = 0, and g(x') = [(xf)2 + l]/[(x')2+ 2}. 

It is not difficult to verify that (E\) satisfies all the hypotheses of Corollary 3 and 
Theorems 1, 2, and 4 by taking r(t) = | sin3 t\/y/6t3 + [(t2 + l)\ sint\+t\ cos t\]/t2 + [t4 + 

(t cos t - sin t)2]\ sin5 t\/t3[2t4 +(tcost-sint)2}, k(t) = 1, b(t) = w(t) = wx(t) = 0, and 
a(t) = 2\nt/t. Thus, we can conclude that that all solutions of (Ei) are continuable 
and tend to zero as t —> oo. This conclusion cannot be obtained from any of the 
results in [1-9] or [11-30]. Notice that x(t) = sint/t is an oscillatory solution of (Ei) 

on [Voo). 

4 . NONOSCILLATORY AND Z-TYPE SOLUTIONS 

Notice that condition (23) cannot be satisfied if 

(a(t)/q(t))(q(t)/a(t))' = q'(t)/q(t) - a'(t)/a(t) 

= W(t)/q(t) - (a(t)q(t))'/a(t)q(t) = 0 

and consequently Theorems 4-7 would not hold if this were true. In particular, this 
would be the case if a(t) = Czq(t) for some constant C3 > 0. We can avoid this 

677 



difficulty if we restrict our attention to only the nonoscillatory and Z-type solutions 

of( l ) . 

Theorem 8. Suppose that (3)-(6), (11)-(17), (21), and (27) hold. If f(x) is 
bounded away from zero whenever x is bounded away from zero and 

/»oo PS 

(37) / [l/a(s)] / [C4k(u) + C5b(u)(q(u)/a(u))^ 
J to Jt() 

+ r(u) + CeW\(u)q(u)/a(u) - C^q(u)]duds 
/•OO 

+ / [C8/a(s)]ds = -oo 

for any positive constants C{, i = 4 , . . . , 8, then every nonoscillatory or Z-type solu
tion of (1) tends to zero as t —> oo. 

P r o o f . Let x(t) be a nonoscillatory or Z-type solution of (1), say x(t) ^ 0 for 

t ^ t\ ^ to; by the proof of Theorem 2, there exists a constant L > 0 such that 

V(t) ^ L2. We first show that liminf x(t) = 0. If this is not the case, there exist 
t—>oo 

t2 ^ t\ and a constant L\ > 0 such that f(x(t)) > L\ for t ^ t2. Notice first that (6) 
and (27) imply (28) which in turn implies \y\/g(y) ^ B\G(y) + B2 for some positive 
constants B\ and B2. Now from (1), (4), (6), (21) and (27), we have 

(a(t)x'(t))' ^ k(t)FHx(t)) + b(t)G^(y(t)) + r(t) + \y(t)\w\(t) - L\C\q(t) 

^ Lk(t) + Lmb(t)(q(t)/a(t))^ + r(t) + C2iv\(t)\y(t)\/g(y(t)) - L\C\q(t) 

<: Lk(t) + Lmb(t)(q(t)/a(t))^ + r(t) + [C2B\L2q(t)/a(t) + C2B2]w\(t) 

~L\C\q(t). 

Since (16) implies that q(t)/a(t) is bounded from below, we have 

(a(t)xf(t))f ^ Lk(t) + Lmb(t)(q(t)/a(t))^ + r(t) + L2w\(t)q(t)/a(t) - L\C\q(t) 

for some L2 > 0. Integrating the last inequality twice gives 

x(t) ^ x(t2)+a(t2)\x'(t2)\ f [l/a(s)]ds 
Jt2 

+ f[\/a(s)\ [[Lk,(u) + Vnb(u)(q(u)/a(u))'-$ + r(u) 
Jt2 Jt2 

+ L2iv\(u)q(u)/a(u) — L\Ciq(u)] duds 

which contradicts (37). Hence, we conclude that liminf x(t) = 0. 
t—>CG 
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To complete the proof, notice that from the proof of Theorem 2, (18) holds and 
/°° Pi(s) ds < oo for i = 1, 2. Let e > 0 be given. If x(t) is nonoscillatory and not 
eventually monotonic, then liminfrr(f) = 0 implies there exists £3 > t\ such that 

£—•00 

y(t3) = 0, F(x(t3)) < e, / ~ Px(s) ds < 1, and / ~ P2(s) ds < e. If x(t) is a Z-type 
solution, choose t3 so that y(t3) = F(x(t3)) = 0 and so that the other inequalities 
are satisfied. Then integrating (18) we have 

V(t)^V(t3)+ f P1(s)V(s)ds+ f P2(s)ds^2e + f P1(s)V(s)ds, 
J £3 J £3 J ts 

and by Gronwall's inequality we have V(t) ^ 2eexp(/t°° P\(s) ds) ^ 2eexp(l). Since 
e is arbitrary, it follows that F(x(t)) —> 0 as t -> 00 which, in view of (3), implies 
that x(t) -> 0 as t —> 00. Now if x(t) is eventually monotonic, then liminf x(£) = 0 

t—?»00 

implies that x(£) -> 0 as t —> 00. This completes the proof for the case when x(t) is 

eventually nonnegative. The proof in case x(t) is eventually nonpositive in similar 

and will be omitted. • 
Theorem 8 puts the somewhat severe restriction on O(H) that it be bounded from 

above and from below. In the next theorem we relax the condition that g(y) be 
bounded from above by modifying condition (21) on h(t,x,y) and adding condition 
(7). As described in the second remark following Theorem 7, the requirement that 
g(y) be bounded from below can be dropped in both Theorem 8 and the following 
theorem in case k(t) = 0 and b(t) = 0. 

Theorem 9. Let (3)-(7) and (11)-(17) hold, G(y) -> 00 as \y\ -> 00, and f(x) 

be bounded away from zero whenever x is bounded away from zero. If there is a 

nonnegative continuous function w2 : [to, 00) —> (R such that 

(38) h(t,x,y)Z-\y\w2(t)/g{y) 

for all y and 

poo />S 

(39) / [l/a(s)] / [C9k(u) + Ciob(u)(q(u)/a(u))^ + r(u) + Cnw2^)q(u)/a(u) 
Jf-o J to 

rOO 

- CV2q(u)] dH ds + [C\3/a(s)] ds — -00 

for all positive constants C{, i — 9, . . . , 1 3 , then every nonoscillatory or Z-type 
solution x(t) of (1) satisfies x(t) —> 0 as t —> 00. 

The proof of Theorem 9 is the same as the proof of Theorem 8 with (38) and (39) 
used in place of (21) and (37) respectively. Another result in this direction is the 
following. 
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Theorem 10. Suppose that (3)-(6), (11)-(17), (21), and (27) hold, and that 

f(x) is bounded away from zero whenever x is bounded away from zero. If, in 

addition, 

(40) / \q'(S)\[a(S)/q
3(S))

LidS< oo 

and 

(41) 
/•OO 

/ {[Cuk(s) + Clbb(u)(q(u)/a(u))^ + r(s)]/q(s) + C16w1(s)/a(s)} ds < oo 
Jt0 

for all positive constants d, i = 14 , . . . , 16, then every nonoscillatory or Z-type 
solution of (1) tends to zero as t —> oo. 

P r o o f . Let x(t) be a nonoscillatory or zT-type solution of (1); then there exists 
ti ^ £o so that x(t) does not change sign on [£i,oo), say x(t) ^ 0 for t ^ t\. If 
liminf x(t) > 0, then there exist constants t2 ^ t\ and L3 > 0 such that f(x(t)) ^ 

t—)-oo 

2L3 for t ^ t2. Then, as in the proof of Theorem 8, 

(a(t)x'(t)Y ^ Lk(t) + Lmb(t)(q(t)/a(t))^ +r(t) + L2wl(t)q(t)/a(t) - 2L3Cxq(t). 

Multiplying by l/q(t) and integrating by parts gives 

a(t)x'(t)/q(t) < a(t2)x'(t2)/q(t2) + f [a(s)\x'(s)q'(s)\/q2(s)]ds 
Jt2 

+ [ P7(s)ds-2L3Cl(t-t2) 
Jt2 

where 

P7(t) = [Lk(t) + Lmb(t)(q(t)/a(t))^ + r(t))/q(t) + L2wx(t) / a(t). 

From the inequality 

\x'(t)\[a(t)lq(t))^[x'(t)fa(t)/q(t) + \, 

condition (27), the fact that (16) implies a(t)/q(t) is bounded from above, (28), and 
the boundedness of V(t), we have 

a(t)\q'(t)x'(t)\/q2(t) €_ L4[a(t)/q
3(t))"\q'(t)\ 
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for some positive constant L4. Hence (40) and (41) imply that there exists £3 ^ t2 

so that 

a(t)x'(t)/q(t) ^ -Lbt 

for t ^ ts and some L5 > 0. But q(t)/a(t) is bounded from below, so the last 

inequaltiy implies that x'(t) -» —00 as t —> 00 contradicting the assumption that 

x(t) ^ 0. Therefore, liminf x(t) = 0. The remainder of the proof is the same as the 
t—too 

last part of the proof of Theorem 8. • 

The equation 

( Í V ) ' + 
<4 + i 

+ 
(x1)2 + ln[(x')2 + 1] 

2[(x')2 + ln[(.т')2 + 1] + 1] 

(í4 + 1) ť 
ŕ(2ŕ4 + 1) 2(ŕ4 + 1) 

t2x3{(x')2 + 1] 
2[(x')2 + l] (x')2 + 2 

(x')2 + ln[(:r')2 + 1] 
2[(x')2 + ln[(x')2 + 1] + 1] 

X 

~2 

satisfies all the hypotheses of Theorems 1,2, and 8 and Corollary 3. Here G(y) — 
\[y2 + \n(y2 + 1)] and we can take k(t) = 1, b(t) = \t2(t4 + 1), m = | , and 
r(t) = (t4 + l)/t(2t4 + 1), w(t) = 0, and wx(t) = 3. Notice that (q(t)/a(t))' = 0 so 
(23) does not hold and therefore none of Theorems 4-7 apply to (E2). Furthermore, 
Theorem 10 does not apply since (40) is not satisfied. We can assert from Theorem 
1 and Corollary 3 that all solutions of (E2) are continuable and oscillatory solutions 
of (£2) are bounded, but we cannot determine if oscillatory solutions tend to zero 

as t —> 00. However, Theorem 8 implies that all nonoscillatory and Z-type solutions 

of (£2) tend to zero as t —> 00. Such a solution is x(t) = 1/t. 

The equation 

(Ez) (t2x')' + ^(t4 + l)x'/t4[(x')2 + 1] + t2x3[(x')2 + 1] = (tA + l)/t~ - ^x2 

for t ^ 1 satisfies all the hypotheses of Theorem 9. Notice that Theorems 5-8, and 

10 do not apply to (£3) since g is not bounded from above. Also, observe that 

x(t) = 1/t is a solution of (£3). None of the results in [1-9] and [11-30] apply to 

equations (£2) and (£3). 
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