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ON MONOTONE SOLUTIONS OF THE FOURTH ORDER 

ORDINARY DIFFERENTIAL EQUATIONS 

MARIA TOTHOVA and OLEG PALUMBINY, Trnava 

(Received April 11, 1994) 

1. INTRODUCTION 

The purpose of the paper is to study the existence of monotone solutions of the 
linear differential equation of the fourth order with quasi-derivatives 

(L) L(y) = L4y + P(t)L2y + Q(t)y = 0, 

where 

Liy(t) = Pi(t)y'(t) = pi(t) dy(t)/dt, 

L2y(t) = p2(t)(Pl(t)y
f(t)y = p2(t)(LlV(t)y', 

Lsy(t) =P3(t)(p2(t)(pi(t)yf(t)yy = p3(t)(L2y(t))', 

L,y(t) = (P3(t)(p2(t)(pi(t)yf(t))fyy = (L3y(t))', 

P(t), Q(t), Pi(t), i = 1,2,3, are real-valued continuous functions on an interval 
I = [a, oo), —oo < a < oo. It is assumed throughout that 

(A) P(t) ^ 0, Q(t) ^ 0, pi(t) > 0, i = 1,2,3, for all t e I and 
Q(t) not identically zero in any subinterval of I. 

Similar problems for the third order ordinary differential equations with quasi-
derivatives were studied in several papers ([2], [3], [5], [6]). The equation (L), where 
Pi(t) = 1, i = 1,2,3, was studied for example in ([1], [9], [10]). The equation of 
the fourth order with quasi-derivatives was also studied, for instance, in ([7], [8]). 
Therefore some results achieved in the papers mentioned above are special cases of 
ours. 
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Theorem 1 and Theorem 2 give sufficient conditions for the existence of mono­

tone solutions of (L) and their quasi-derivatives as welL Theorem 3 deals with the 

uniqueness of such solutions (with the exception of constant multiples). 

A nontrivial solution of a differential equation of the n-th order is called oscillatory 

if its set of zeros is not bounded from above. Otherwise, it is called nonoscillatory. 

A differential equation of the n-th order will be called nonoscillatory, when all its 

solutions are nonoscillatory; oscillatory, when at least one of its solutions (except the 

trivial one) is oscillatory. Let C(I) denote the set of all real-valued functions which 

are continuous on I. 

2. PRELIMINARY RESULTS 

We start by a generalization of Svec's result from [4]. 

Lemma 1. Let p(t) > 0, p(t), q(t), f(t) be functions of class C([t0, oo)), let the 

differ en tial equa tion 

(1) (p(t)w'(t))' + q(t)w(t)=0 

be nonoscillatory. If f(t) does not change the sign in [t0, oo), then also the differential 

equation 

(2) (p(t)z'(t))'+q(t)z(t) = f(t) 

is nonoscillatory in [t0, oo). 

P r o o f . If y(t) and z(t) are solutions of (1) and (2), respectively, then the 

function 
y(t) z(t) 

p(t)y'(t) p(t)z'(t) 
W(z,y) = 

fulfils the equation 

/ ' W(z,y)=c+ / f(x)y(x)dx, 

where c is a constant. Let equation (1) be nonoscillatory. Then its solution y(t) is 
t 

a nonoscillatory function. Let y(t) > 0 eventually Then the function f f(x)y(x) dx 
U) 

as well as the function W(z,y) do not change the sign for all t > t\ ^ t0. This fact 

implies the existence of such t\ that W is a nonoscillatory function on (t\, oo). Now, 

the function 
z(t)\' 1 W(z,y) 

Jj(t)J P(t) yЦt) 
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as well as the function W(z,y) have the same sign for all t > t\. This fact implies 
that z(t)/y(t) is either an increasing function or a decreasing one, i.e. there exists 
t2 ^ li such that either 

a) the function z/y is still negative on [t2, oo) or 
b) the function z/y is still positive on [£2, 00). 
In both cases it is obvious that z(t) is nonoscillatory, i.e. equation (2) is nonoscil-

latory • 

Lemma 2, [1]. Let A(t,s) be a nonnegative and continuous function for t0 ^ 
5 ^ t (nonpositive for a ^ t ^ s ^ t0). If g(t), (p(t) (ip(t)) are continuous functions 
in the interval [t0,oo) ([a, to)) and 

(f(t)^g(t)+ A(t,s)y(s)ds forte [t0,00) 
Jt{) 

(*l>(t) > g(t) + [ A(t,s)4>(s)dsforte[a,t0]), 
J t() 

then every solution y(t) of the integral equation 

(3) y(t)=9(t)+ [ A(t,s)y(s)ds 
Jto 

satisfies the inequality 

y(t) ^ <p(0 in [*o,oo) 

(2/(0 ^il>(t) in [a, t0]). 

P r o o f . See [1]. • 

00 

Lemma 3. Let (A) and J(l/p\(t)) dt — 00 hold. Then for every nonoscillatory 
solution y(t) of (L) there exists a number t0 ^ a such that either 

(y(t)LlV(t) > 0, y(t)L2y(t) > 0) or (y(t)LlV(t) < 0, y(t)L2y(t) > 0) 

or 

(y(t)LlV(t) > 0, y(t)L2y(t) < 0) for all t > t0. 

P r o o f . Let y(t) be a nonoscillatory solution of (L). Then there exists a number 
ti ^ a such that y(t) 7- 0 in [l-1,00). Without loss of generality we can assume that 
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y(t) > 0 on [ii,oo). The substitution z(t) = L2y(t) into (L) leads to the differential 
equation 

(5) (p3(t)z'(t))' + P(t)z(t) = -Q(t)y(t). 

Since P(t) ^ 0, the equation (p3z
1)1 -f Pz = 0 is nonoscillatory on [t1, oo). Then the 

fact that Q(t)y(t) does not change the sign in [li,oo) implies that equation (5) is 
nonoscillatory by Lemma 1. 

Hence, there exists a number t2 ^ £i such that z(t) ^ 0, i.e. L2y(t) 7- 0. This fact 
implies the existence of a number t0 ^ t2 such that Liy(t) ^ 0 for all t ^ t0. The 
following four cases may occur for t ^ t0: 

a) y(t)Liy(t) > 0, y(t)L2y(t) > 0, 

b) y(t)Liy(t) < 0, y(t)L2y(t) > 0, 

c) y(t)LlV(t) > 0, y(t)L2y(t) < 0, 

d) y(t)Liy(t) < 0, y(t)L2y(t) < 0. 

We prove that the case d) is impossible. Without loss of generality we can assume 
that y(t) > 0, Liy(t) < 0, L2y(t) < 0. It follows that Liy(t) = Pi (£)?/(£) is a negative 
and decreasing function and hence there exists a constant k 7- 0 such that pi (t)y'(t) ^ 

t 

-k2 for £ ^ t0. This implies that u(l) ^ y(t0) - J(k2/p1(r)) dr. According to the 
U) 

assumptions of the lemma we have y(t) —•> —00, t -> 00, which contradicts the fact 
that y(t) > 0. This completes the proof of the lemma. • 

Lemma 4. Suppose that (A) holds and let y(t) be a nontrivial solution of (L) 
satisfying the initial conditions 

y(t0) = yo ^ 0, Liy(to) = y'o ̂  0, 

L2y{to) = y'o > ^ L3y(t0) = y0 > 0 

(t e I arbitrary and y0 + y'o + y'o + 2/o" ^ °)- T i ] e j l 

y(t) > 0, LlV(t) > 0, L2y(t) > 0, L3ij(t) > 0 for all t > t0. 

P r o o f . The initial-value problem L4y + P(t)L2y + Q(t)y = 0, y(t0) = g0, 
Liy(t0) = g0, L2y(t0) = go, L3y(t0) = g0" is equivalent to the following Volterra 
integral equation: 

(6) 
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where 

dт + y'0 o [ (1/PiC 
Jt0 

т))dт + y0. 

9(t) = Vo - Vo [ P(s) d* - Vo [ Q(s)G(to, s) ds - [ Q(s)(y'0h(t0, s) + y0) ds, 
J to J to J U) 

A(t,r) = I ((-P(s) - Q(s)G(T,S))/p3(T))dS, 

G(T,S) = J'(h(Z,s)/p2(0)dZ, 

h(Z,s) = J'(l/Pl(t))dt. 

It follows from (L) that L4y = —P(t)L2V — Q(t)y. Integrating the last equation we 

get 

( ? ) 

L3y(t)=y'0"-y'0' f P(s)ds- f P(s)\ f'(L3iy(r)/p3(r))dr| ds- I Q(s)y(s)ds. 
J to J U) L J to J J to 

If we express y(s) by L\y and L2y we get 

y{s) = f \\ [T(L2y(0/p2(0)^]/Pi(r) 
J to IIJ U) J J 

Exchanging the limits of integration and denoting 

h(t0,s) = / ( l / p i ( r ) ) d r 
•1*0 

we get 

y(s)= [ ( L 2 y ( O f t « , 5 ) / p 2 ( 0 ) d C + yoft(*o,s) + yo. 
J U) 

If we express L2y by L3H, we obtain 

V(s) = f \ [ (L3y(T)lP3(T))dT\h(i,s)/p2(i)d^ 
Jti) I J to 

+ Vo [ (h(Z,s)/p2(0)dZ + y'0h(to,s)+yo. 
J tl} 

Exchanging the limits of integration and denoting 

G(t0,s) = [\h(Z,s)/P2(0)dt; 
't„ 
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we get 

y(s)= / (G(T,s)L3y(T)lp3(T))c\T + y'^G(t0,s)+y'0h(t0,s)+y0. 

We substitute this expression for y(s) into (7) obtaining 

L3y(t) = y'o" - y'0' [ P(s) As - f P(s) \ f' (L3V(T)/P3(T)) drj ds 
J to J to L J U) 

- f Q(s) f (G(T,s)L3y(T)/p3(r))dT + y'i;G(to,s)+y'0h(to,s) + 
J tn LJ to 

2/0 da. 
'to L J to 

After little arrangements we get 

L3y(t) = y'o"-yo f P(s)ds-yt
0' f Q(s)G(t0,s)ds - f Q(s)(y'0h(t0,s) +y0)ds 

J t{) J to J to 
+ / f" (S((P(s) + Q(s)G(T,s))L3y(T)/p3(T))dT\ds. 

Jt0 L Jto 

Exchanging the limits of integration and rearranging the equation we obtain the 
Volterra integral equation (6). The hypotheses of the lemma imply that -4(t,r) ^ 0 
and g(t) > 0 for all t E (t0,oo). According to Lemma 2 we get L3y(t) ^ <p(t) = 
g(t) > 0 for all t € (t0, oo). Integrating this inequality over [t0, oo) we obtain (owing 
to the initial conditions) the assertion of Lemma 4. • 

Lemma 5. Suppose that (A) holds and let y(t) be a nontrivial solution of (L) 
satisfying the initial conditions 

y(to) = 2/o^0, LlV(to) = 2/o < 0i L2y(t0) = 2/0 > 0, ^32/(̂ o) = 2/o" < 0, 

(t0 G / arbitrary, y2 + y'2 + H0'
2 + y'0

n2 > 0). Then 

y(t) > 0, LlV(t) < 0, L2H(t) > 0, L3y(t) < 0 for a1i t e [a,t0). 

Proof. The initial-value problem is equivalent to the Volterra integral equation 
(6), where 

9(t) = y'o + y'o [ P(s) ds + y'0' f " Q(s)[G(s, t0) - y'0h(s, t0) + y0] ds, 
Jto Jt 

G(b,a)= [(h(b,0/p2(0)dt, 

A(UT) = f[(P(s) + G(s,T) Q(S))/P3(T)} ds, 

h(s,Q = J (1/Pl(r))dr. 
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The hypotheses of the lemma imply that g(t) < 0, A(t, r) ^ 0 for a ^ t ^ r ^ t0. 
Then by Lemma 2 we have L3y(t) < 0 for all t G [a,t0). Hence the assertion of 
Lemma 5 follows from the initial conditions. • 

3. T H E EXISTENCE OF MONOTONE SOLUTIONS 

Let z0, z\, z2, z3 be solutions of (L) on [a,oo) which fulfil the initial conditions 

f l , i = 0, f l , i = l, 
Zi(a) = { LiZi(a) = < 

[0 , i = l ,2 ,3 , [ 0 , i = 0,2,3, 

f 1, i = 2, f 1, i = 3, 
L2Zi(a) = < L3Zi(a) = < 

[ 0 , z = 0 , l ,3 , [O. i = 0,1.2. 

We want to show the existence of solutions y(t) and z(t) such that ?/(£) > 0, 
Lxy(t) > 0, L2H(t) > 0, L3y(t) > 0 for t G I and z(£) > 0, Li*(*) < 0, L2z(t) > 0, 
L3z(£) < 0 for t G I. 

Theorem 1. Suppose that (A) holds. Then there exists a solution y(t) of (L) 
sucJi tJiafc 

2/(0 > 0, Liy(0 > 0, L2H(t) > 0, L3y(t) > 0 for aJJ t G I0 = (o,oo). 

P r o o f . The assertion of the theorem follows from Lemma 4 for *0 = o,. • 

Theorem 2. Suppose that (A) JioJds. TJien tJiere exists a solution y(t) of (L) 
such that 

y(t) > 0, LlV(t) < 0, L2y(t) > 0, L3y(t) < 0 for all t e I = [a,oo). 

P r o o f . Let (c0n, c i n , c27i, c3n) be a solution of the system (Sn) which consists 
of the relationships (8), (9), (10), (11) and (12): 

(8) c0n 4 % ) + clnz[0)(n) + c2nz
{
2

0)(n) + c3nzf](n) = 0, 

(9) c0nz
{1)(n) + c m ^ ^ n ) + c2nz

{1) (n) + c3nz
{1) (n) = 0, 

(10) c0nz
{
0
2)(n) + clnz[2)(n) + c2„42 )(n) + c3nz

{2) (n) = 0, 

(11) c0nz
{3)(n) + clnz[3)(n) + c2 n43 )(n) + c3„43 )(^) < 0, 

(12) C0n + C ? n + C L + C L = 1, 
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where n is an arbitrary integer, n > max{0,a}, z\3\n) = LjZi(n), Zi(t) form the 
fundamental system of solutions of (L) such that z\3\a) = 0 for i ^ j , z\3\a) = 1 for 
z =- j , z, j = 0,1,2,3. We will show that (Sn) admits a solution (con, Cin, C2n, c 3 n ) for 
all n > max{0,a}. Let W (z0(t), z\(t), z2(t), z3(t)) denote Wronski's determinant of 
Zi at the point t. Then at least one of all the four subdeterminants of the system of 
equations (8), (9), (10) is not equal to zero. Let it be, for instance, the determinant 

VVз = 

4°>(n), z[°\n), zi°\n) 

zgHn), z\l)(n), z£\n) 

4 2 ) (n) , z[2)(n), 4 2 ) (n) 

According to the Frobenius theorem, the system of equations (8), (9), (10) with 
the unknowns Con, Cin, C2n and the right hand side (—c3n;4 (n), —c3nZ3 (n), 
-c3nzf\n)) admits the only solution (c0 n ,cin ,c2 n) = (-4nc3n ,I?nc3n ,Cnc3n). Then 
(12) has the form c2

n + c\n + c\n + c\n = (A\ + Bn + C2
n + l)c2

n = 1. Therefore 
|c3 n | = l/(-4n + B2

n + C2 + l ) 1 / 2 + 0. The left hand side of (11) has the form 
(AnZQ \n) + Bnz[ (n) + Cnz\ (n) + z\ \n))c3n. The expression in the last paren­
theses is not equal to zero. If it were equal to zero, then the system consisting of (8), 
(9), (10) and (IV), where 

(IV) con43)(7i) + clnz[3\n) + c2nz
{3\n) + c3nz

{
3

3\n) = 0, 

would admit a nontrivial solution, which is impossible because W(z0(n), z\(n), z2(n), 
z3(n)) 7-- 0. Now it suffices to choose the sign of C3n for (11) to be valid. There-

3 

fore (Sn) admits a solution for all n > max{0,a}. Let us put yn(t) = Yl cinZi(t). 
i=0 

Because of (con,cin,C2n,c3n) ^ (0,0,0,0), yn(t) is not identically zero. According 
to Lemma 5, we have (-l)kLkyn(t) > 0 on [a,n) for k = 0,1,2,3. It is obvi­
ous that dn, i = 0,1,2,3 are bounded. For this reason, there exist subsequences 
drri of Cin which are convergent. Let cirr> —•> c; for n -> oo, i = 0,1,2,3. Let us 

3 

put y(t) = ^2 CiZi(t) = lim yn(t) for all t G [a, oo). Let n0 > max{0,a}. Then 
z=0 n ^ ° ° 

(-l)kLkyn(t) > 0 on [a,?i0) for n ^ n0 and so (~l)kLky(t) ^ 0 on [a,n0) for all 
n0 > max{0,a}. Therefore (-l)kLky(t) > 0 on [a,oo). Since y(t) is a nontrivial 

3 
solution of (L) on [a, oo) (because ^ c2 > 0), Q(t) ^ 0 and Q(t) is not identically 

i=0 

zero in any subinterval of I, we have L±y(t) ^ 0 with L^y(t) = 0 at most at isolated 
points of [a, oo). This implies that L3y(t) is increasing on I, so L3y(t) < 0 on [a, oo). 
Similarly, it can be proved that L2y(t) > 0, LiH(t) < 0, L0y(t) = y(t) > 0 on [a, oo). 

• 

The next theorem deals with the uniqueness of such a solution. 
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Theorem 3. Suppose that (A) holds, J°°(l/pi(t))dt = J°°(1 /p2(t)) dt = oo, 
and (L) is nonoscillatory. Then there exists at most one solution (with the exception 
of constant multiples) of (L) such that 

(13) (signu 7-signLi?/ ^ s ignL 2 u ^ s ignL 3 u o n I = [a,oo), lim y(t) = 0). 
t—too 

P r o o f . Suppose that there exists another solution z(t) linearly independent 
of y(t), which fulfils (13). Let r G [a, oo). Then there exists c € (—00,00) such 
that Z(T) + cy(T) = 0. The number r has been taken such that t/(r) 7- 0. We 
prove that such r exists. Suppose on the contrary that the required r does not 
exist. This implies that y(t) = 0 for all t > t* and that is why y'(t) = 0 = L\y(t), 
which contradicts (13). Let Y(t) = z(t) + cy(t). It is obvious that Y(T) = 0, 
limy(£) = limz(t) + c\imy(t) = 0 for t -> 00. According to Lemma 3 there exists 
to ^ a such that either 

(i) [(YLiY > 0, YL2Y > 0) or (YLXY > 0, YL2Y < 0)] 

or 

(ii) \YLXY<Q, YL2Y > 0] 

for all t ^ £o- Let £0 be taken such that to > r. Without loss of generality we can 
assume Y > 0 for all t ^ to- Suppose that (ii) holds, i.e. 

y > 0, LiY < 0, L2Y > 0. 

Since Y is a solution of (L) we have 

L4Y = -PL2Y -QY^O. 

This fact implies that the function L3Y is increasing (dF3y/d£ = L4y) because 
F4y = 0 at isolated points of the interval [a, 00) only. Two cases may occur now. 
Either 

(a) there exists ti ^ r0 such that F3y(£i) = 0 

or 

(b) L3Y(t) < 0 for all t G [fo.oo). 

If (a) is fulfilled then L3Y > 0 for all t > tx. Take t2 > h. This implies that 
L3Y(t2) = b > 0 and L3^) ^ b for all t ^ t2, i.e. dL2Y(t)/dt > b/p3(t). Let 
t > t2. Integrating the last inequality over [t2,t] we obtain 

L2Y(t) - L2Y{t2) > í (b/p3(s)) d.s > 0, 
Jt2 
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i.e. L2Y(t) > L2Y(t2) > 0 because of L2Y(t) > 0 for all t ^ t0 and t2 > t0. Hence 

dLiY(t)/ dt > L2Y(t2)/p2(t). Integration over [t2,t] yields 

LxY(t) > LxY(t2) + L2Y(t2) I (\/p2(s)) ds. 
Jt2 

It is obvious that £3 can be taken such that £3 > t2 and the right hand side of the 

last inequality is positive for all t ^ £3. This fact follows from the assumption 

/

00 

( i /p- tø) dt — 00. 

This implies that L{Y(t) = pi(t)Y'(t) > 0 for all t ^ i3, which is a contradiction. 

Therefore the case (a) is impossible, i.e. the case (b) occurs, i.e. Y > 0, L{Y < 0, 

L2Y > 0, L3Y < 0 for all t ^ t0. According to Lemma 5 we have Y(t) > 0 for 

all t £ [a,Co)- But r £ [a,£o). This implies that Y(r) > 0, which contradicts our 

assumptions. This contradiction implies impossibility of (ii). For this reason the 

condition (i) holds. It implies that Y(t) > 0, L{Y{t) > 0, i.e. Y'(t) > 0 for all t J> t0 

and so limY(t) 7-= 0 for t —> 00. This contradiction proves our theorem. • 
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