Mathematic Slovaca

Michal Krupka
Orientability of higher order Grassmannians

Mathematica Slovaca, Vol. 44 (1994), No. 1, 107--115

Persistent URL: http://dml.cz/dmlcz/128620

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ORIENTABILITY OF HIGHER ORDER GRASSMANNIANS

MICHAL KRUPKA
(Communicated by Július Korbaš)

Abstract

Let $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right), n \leq m$, be the set of r-jets of immersions with source $0 \in \mathbb{R}^{n}$ and target $0 \in \mathbb{R}^{m}$. The r-order Grassmannian with indices m, n is the quotient space $G_{m, n}^{r}=\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) / L_{n}^{r}$, where L_{n}^{r} is the r th differential group of \mathbb{R}^{n} which acts on $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ to the right. We prove that $G_{m, n}^{r}$ is orientable if and only if the number $\binom{n+r}{r}+$ $(m-n)\binom{n+r}{r-1}$ is odd.

1. Introduction

The aim of this short remark is to study the orientability of the higher order Grassmann manifolds $G_{m, n}^{r}$, which generalize the classical notion of a (first or(der) Grassmann manifold $G_{m, n}$. The geometric structures of this type have been introduced by Ehres mann [2] and are also used as underlying structures for the geometric theory of partial differential equations (see [3]; the manifold N_{m}^{k} of k-jets of n-dimensional submanifolds of a manifold N from $[3 ; 7.1]$ is a fibre bundle with base N and type fibre $\left.G_{n+m, n}^{k}\right)$.

The Grassmann manifold $G_{m, n}$ consists of n-dimensional vector subspaces of \mathbb{R}^{m}; these subspaces can be canonically identified with some equivalence classes of 1 -jets of immersions from \mathbb{R}^{n} to \mathbb{R}^{m} with source and target at the origin 0 . We understand $G_{m, n}$ as a manifold of such equivalence classes. The r th order Grassmann manifold $G_{m, n}^{r}$ is then defined as a manifold of equivalence classes of r-jets of immersions from \mathbb{R}^{n} to \mathbb{R}^{m}.

Using the methods of algebraic topology one can easily see that $G_{m, n}$ is orientable if and only if m is even. In this paper, we find by an elementary method a condition of orientability of $G_{m, n}^{r}$ for arbitrary r.

[^0]
2. Higher order Grassmannians

In this section, we define the manifold $G_{m, n}^{r}$. Our method is analogous to a method used in $[1 ; 16.11 .10]$ in the special case $r=1$.

Let r, n, and m be positive integers, $n \leq m$. Denote by L_{n}^{r} the r tin differential group of \mathbb{R}^{n}, i.e. the group of invertible r-jets with source and target at $0 \in \mathbb{R}^{n}$. Consider the manifold $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ of regular r-jets with source $0 \in \mathbb{R}^{n}$ and target at $0 \in \mathbb{R}^{m}$ and the following canonical right action of L_{n}^{r} on $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$:

$$
\begin{equation*}
\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \times L_{n}^{r} \ni\left(J_{0}^{r} g, J_{0}^{r} \alpha\right) \rightarrow J_{0}^{r} g \circ \alpha \in \operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n} . \mathbb{R}^{m}\right) \tag{2.1}
\end{equation*}
$$

An orbit of this action containing an r-jet $J_{0}^{r} g$ will be denoted by $\left[J_{0}^{r} g\right]$. the orbit space $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) / L_{n}^{r}$ by $G_{m, n}^{r}$, and the canonical projection of $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ onto $G_{m, n}^{r}$ by π.

For fixed m and n we shall denote by I, J, K, etc., multi-indices of the form $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq m$. For a multiindex $I=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ we denote $\left\{i_{n+1}, i_{n+2}, \ldots, i_{m}\right\}=\{1,2 \ldots, m\}-I$. where $i_{n+1}<i_{n+2}<\cdots<i_{m}$, and define mappings $\tau_{I}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\prime \prime}$ and $\kappa_{I}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-n}$ by

$$
\begin{align*}
\tau_{I}\left(x^{1}, \ldots, x^{m}\right) & =\left(x^{i_{1}}, \ldots, x^{i_{n}}\right) \\
\kappa_{I}\left(x^{1}, \ldots, x^{m}\right) & =\left(x^{i_{n+1}}, \ldots, x^{i_{m}}\right) \tag{2.2}
\end{align*}
$$

Further we set

$$
\begin{align*}
\rho_{I}\left(J_{0}^{r} g\right) & =\left(J_{0}^{r} \tau_{I} g, J_{0}^{r} \kappa_{I} g\right), \\
T_{I} & =\left\{J_{0}^{r} g \in \operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \mid J_{0}^{r} \tau_{I} g \in L_{n}^{r}\right\} \tag{2.3}
\end{align*}
$$

ρ_{I} is a diffeomorphism from $J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ to $J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \times J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m-n}\right)$. and the restriction $\left.\rho_{I}\right|_{T_{I}}$ is a diffeomorphism from T_{I} to $L_{n}^{r} \times J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m-n}\right)$. Then T_{I} is an open (obviously L_{n}^{r}-invariant) submanifold of $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n} . \mathbb{R}^{m}\right)$.

LEMMA. The canonical action of the differential group L_{n}^{r} defines on lmm $J_{(0,0)}^{r}\left(\mathbb{R}^{\prime \prime}, \mathbb{R}^{\prime \prime}\right)$ the structure of a principal L_{n}^{r}-bundle.

Proof. We have to show that the graph Graph \mathcal{R} of the equivalence relation \mathcal{R} on $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ associated with the group action (2.1) is a closed submanifold of $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \times \operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, and that the action (2.1) is free (see [1]).

Consider for any multi-index I the graph Graph Γ_{I} of the mapping $\Gamma_{I}: T_{I} \times L_{n}^{r} \ni\left(J_{0}^{r} g, J_{0}^{r} \alpha\right) \rightarrow J_{0}^{r} \kappa_{I} \circ J_{0}^{r} g \circ\left(J_{0}^{r} \tau_{I} \circ J_{0}^{r} g\right)^{-1} \circ J_{0}^{r} \alpha \in J_{(0,0)}^{r}\left(\mathbb{R}^{m}, \mathbb{R}^{m-n}\right)$. Since this mapping is smooth, Graph Γ_{I} is a closed submanifold of $T_{l} \times L_{n}^{r} \times J_{(0,0)}^{r}\left(\mathbb{R}^{m}, \mathbb{R}^{m-n}\right)$. But

$$
\begin{aligned}
& \text { Graph } \mathcal{R} \cap\left(T_{I} \times \operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)\right) \\
& \quad=\left(\operatorname{id}_{T_{I}} \times \rho_{I}^{-1}\right)\left(\operatorname{Graph} \Gamma_{I}\right) \cap\left(T_{I} \times \operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)\right)
\end{aligned}
$$

Since $\bigcup T_{I}=\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, the set Graph \mathcal{R} is a closed submanifold of $\operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \times \operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.

To complete the proof, we have to show that the action (2.1) is free. Choose for any multi-index I two jets, $J_{0}^{r} g_{1} \in T_{I}$ and $J_{0}^{r} g_{2} \in \operatorname{Imm} J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. and suppose that there exists $J_{0}^{r} \alpha \in L_{n}^{r}$ such that $J_{0}^{r} g_{2}=J_{0}^{r} g_{1} \circ J_{0}^{r} \alpha$. Since $J_{0}^{r} \tau_{I} \circ J_{0}^{r} g_{2}=J_{0}^{r} \tau_{I} \circ J_{0}^{r} g_{1} \circ J_{0}^{r} \alpha$, we have $J_{0}^{r} \alpha=\left(J_{0}^{r} \tau_{I} \circ J_{0}^{r} g_{1}\right)^{-1} \circ\left(J_{0}^{r} \tau_{I} \circ J_{0}^{r} g_{2}\right)$, which completes the proof.

From Lemma it follows that there exists a unique smooth structure on $G_{m, n}^{r}$ such that the mapping π is a smooth surjective submersion. Considered with this smooth structure, $G_{m, n}^{r}$ is called the rth order Grassmannian (with indices m, n).

We shall introduce an important example of a smooth atlas on the manifold $G_{m, n}^{r}$. Set for any multi-index I

$$
\begin{equation*}
U_{I}=\pi\left(T_{I}\right) \tag{2.4}
\end{equation*}
$$

and consider the mapping

$$
\begin{equation*}
\Phi_{I}: U_{I} \ni\left[J_{0}^{r} g\right] \rightarrow J_{0}^{r} \kappa_{I} \circ J_{0}^{r} g \circ\left(J_{0}^{r} \tau_{I} \circ J_{0}^{r} g\right)^{-1} \in J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m-n}\right) \tag{2.5}
\end{equation*}
$$

Since $\Phi_{I} \circ \pi$ is smooth, and

$$
\begin{equation*}
\left(\Phi_{I}^{-1}\right)\left(J_{0}^{r} h\right)=\pi\left(J_{0}^{r}\left(\tau_{I}, \kappa_{I}\right)^{-1} \circ J_{0}^{r}\left(\mathrm{id}_{\mathbb{R}^{n}}, h\right)\right), \tag{2.6}
\end{equation*}
$$

Φ_{I} is a diffeomorphism. We set

$$
\begin{equation*}
\varphi_{I}=\chi \circ \Phi_{I} \tag{2.7}
\end{equation*}
$$

where λ is the canonical global system of coordinates on $J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m-n}\right)$. If $J_{(1)}^{r} h \in J_{(0,0)}^{r}\left(\mathbb{R}^{n}, \mathbb{R}^{m-n}\right), h=\left(h^{n+1}, \ldots, h^{m}\right)$, then

$$
\begin{equation*}
\lambda\left(J_{0}^{r} h\right)=\left(\frac{\partial^{s} \bar{h}^{\sigma}}{\partial x^{k_{1}} \ldots \partial x^{k_{s}}}(0)\right) \tag{2.8}
\end{equation*}
$$

where $1 \leq s \leq r, n+1 \leq \sigma \leq m$, and $1 \leq k_{1} \leq \cdots \leq k_{s} \leq n$. The pair $\left(U_{I}, \varphi_{I}\right)$ is a chart on $G_{m, n}^{r}$ and the system $\left(\left(U_{I}, \varphi_{I}\right)\right)$ is a smooth atlas.

In the next paragraph we shall use the mapping

$$
\begin{equation*}
\Psi: L_{m}^{r} \times G_{m, n}^{r} \ni\left(J_{0}^{r} \alpha,\left[J_{0}^{r} g\right]\right) \rightarrow\left[J_{0}^{r} \alpha \circ g\right] \in G_{m, n}^{r} \tag{2.9}
\end{equation*}
$$

It is easily seen that this mapping is defined correctly, and defines a smooth left action of L_{m}^{r} on $G_{m, n}^{r}$.

3. Higher order Grassmannians orientability theorem

The following theorem clarifies the orientability of the higher order Girassmannians.

Theorem. The rth order Grassmannian $G_{m, n}^{r}$ is orientable if and only if the number $\binom{n+r}{r}+(m-n)\binom{n+r}{r-1}$ is odd.

Proof. We shall use indices σ, μ, k, t, s, and $k_{1}, \ldots k_{s}$. where $n+1 \leq$ $\sigma \leq m, n+2 \leq \mu \leq m, 1 \leq k \leq n, 1 \leq t \leq n-1.1 \leq s \leq r$. and $1 \leq k_{1} \leq \cdots \leq k_{s} \leq n$.

The proof can be divided into three steps. In the first step, we derive the transformation formula (3.7) between charts $\left(U_{I}, \varphi_{I}\right)$, ($\left.U_{J, \not, J}\right)$. where $I=\{1, \ldots, n\}$, and $J=\{1, \ldots, n-1, n+1\}$. We note that if the maniifold $G_{m, n}^{r}$ is orientable, then for any two points $x, \bar{x} \in U_{I} \cap U_{I}$ it holds $\operatorname{sgn} \operatorname{det} D\left(\varphi_{I} \circ \varphi_{J}^{-1}\right)(x)=\operatorname{sgn} \operatorname{det} D\left(\varphi_{I} \circ \varphi_{J}^{-1}\right)(\bar{x})$. In the second step, we show that this formula considered for specially chosen points $x, \bar{x} \in U_{I} \cap U_{J}$ is equiralent to saying that the number $\binom{n+r}{r}+(m-n)\binom{n+r}{r-1}$ is odd. This will prove the first implication of the theorem. In the third step, we prove that from the same formula it follows that the manifold $G_{m, n}^{r}$ is orientable.

Set

$$
\begin{equation*}
I=\{1, \ldots, n\}, \quad J=\{1, \ldots, n-1 . n+1\} \tag{3.1}
\end{equation*}
$$

and denote $\varphi_{I}=\left(x_{k_{1} \ldots k_{s}}^{\sigma}\right)$, and $\varphi_{J}=\left(\bar{x}_{k_{1} \ldots k_{s}}^{\sigma}\right)$. For fixed indices s. σ. and k_{1}, \ldots, k_{s} define

$$
\alpha\left(\sigma, s, k_{1}, \ldots, k_{s}\right)= \begin{cases}1 & \text { if } \sigma=n+1 \\ 0 & \text { if } \sigma>n+1\end{cases}
$$

and denote by $\beta\left(\sigma, s, k_{1}, \ldots, k_{s}\right)$ the number of indices $k_{1} \ldots \ldots k_{s}$ which are equal to n, in the special case of $\sigma=n+1, s=1$, and $k_{1}=n$ set

$$
\begin{aligned}
& \alpha(n+1,1, n)=0 \\
& \beta(n+1,1, n)=2 .
\end{aligned}
$$

If there is no danger of confusion, we write α, β instead of $\alpha\left(\sigma, s, k_{1}, \ldots, k_{s}\right)$, $\beta\left(\sigma, s, k_{1}, \ldots, k_{s}\right)$.

The set of polynomials in the variables $\left(x_{t_{1}}^{\nu}\right),\left(x_{t_{1} t_{2}}^{\nu}\right), \ldots,\left(x_{t_{1} \ldots t_{s-1}}^{\nu}\right)$, $\left(. r_{t_{1} \ldots t_{s-1} n}^{\prime \prime}\right)\left(\nu \in\{\sigma, n+1\},\left\{t_{1}, \ldots, t_{s-1}\right\} \subset\left\{k_{1}, \ldots, k_{s}, n\right\}, t_{1} \leq \cdots \leq t_{s-1}\right)$, each non-zero member of which is independent of the variable x_{n}^{n+1} and is at least of second degree, will be denoted by $P_{k_{1} \ldots k_{s}}^{\sigma}$. The set of functions of the form

$$
q=p_{0}+\frac{p_{1}}{x_{n}^{n+1}}+\frac{p_{2}}{\left(x_{n}^{n+1}\right)^{2}}+\cdots+\frac{p_{s+1}}{\left(x_{n}^{n+1}\right)^{s+1}},
$$

where $p_{0}, p_{1}, \ldots, p_{s-1} \in P_{k_{1} \ldots k_{s}}^{\sigma}$, will be denoted by $Q_{k_{1} \ldots k_{s}}^{\sigma}$.
Let $x \in U_{I} \cap U_{J}, \Phi_{I}(x)=J_{0}^{r} h$. Since, by our choice of I and J,

$$
\frac{\partial h^{n+1}}{\partial x^{n}} \neq 0
$$

then there exists a mapping \bar{h} such that, on a neighbourhood of $0 \in \mathbb{R}^{n}$, we have

$$
\begin{align*}
& h^{n+1}\left(x^{1}, \ldots, x^{n-1}, \bar{h}^{n+1}\left(x^{1}, \ldots, x^{n}\right)\right)=x^{n} \\
& \bar{h}^{\mu}\left(x^{1}, \ldots, x^{n}\right)=h^{\mu}\left(x^{1}, \ldots, x^{n-1}, \bar{h}^{n+1}\left(x^{1}, \ldots, x^{n}\right)\right) \tag{3.2}
\end{align*}
$$

(inverse function theorem): Then $\Phi_{J}(x)=J_{0}^{r} \bar{h}$.
There is the following relation between the mappings h, and \bar{h} :

$$
\begin{align*}
\frac{\partial^{s} \bar{h}^{\sigma}}{\partial x^{k_{1}} \ldots \partial x^{k_{s}}} & =(-1)^{\alpha} \frac{\frac{\partial^{s} h^{\sigma}}{\partial x^{k_{1}} \ldots \partial x^{k_{s}}}}{\left(\frac{\partial h^{n+1}}{\partial x^{n}}\right)^{\alpha+\beta}} \tag{3.3}\\
& +q\left(\frac{\partial h^{\nu}}{\partial x^{t_{1}}}, \frac{\partial^{2} h^{\nu}}{\partial x^{t_{1}} \partial x^{t_{2}}}, \ldots, \frac{\partial^{s-1} h^{\nu}}{\partial x^{t_{1}} \ldots \partial x^{t_{s-1}}}, \frac{\partial^{s} h^{\nu}}{\partial x^{t_{1}} \ldots \partial x^{t_{s-1}} \partial x^{n}}\right),
\end{align*}
$$

where $q \in Q_{k_{1} \ldots k_{n}}^{\sigma}, v \in\{\sigma, n+1\},\left\{t_{1}, \ldots, t_{s-1}\right\} \subset\left\{k_{1}, \ldots, k_{s}, n\right\}, t_{1} \leq \ldots$ $\cdots \leq t_{s-1}$. This formula can be verified by induction; by a direct calculation
with the help of (3.2), we obtain

$$
\begin{array}{rlrl}
\frac{\partial \bar{h}^{n+1}}{\partial x^{n}} & =\frac{1}{\frac{\partial h^{n+1}}{\partial x^{n}}}, & \frac{\partial \bar{h}^{n+1}}{\partial x^{t}} & =-\frac{\frac{\partial h^{n+1}}{\partial x^{t}}}{\frac{\partial h^{n+1}}{\partial x^{n}}}, \\
\frac{\partial \bar{h}^{\mu}}{\partial x^{n}} & =\frac{\frac{\partial h^{\mu}}{\partial x^{n}}}{\frac{\partial h^{n+1}}{\partial x^{n}}}, & \frac{\partial \bar{h}^{\mu}}{\partial x^{t}} & =\frac{\partial h^{\mu}}{\partial x^{t}}-\frac{\frac{\partial h^{\mu}}{\partial x^{n}} \frac{\partial h^{n+1}}{\partial x^{t}}}{\frac{\partial h^{n+1}}{\partial x^{n}}}, \tag{3.4}\\
\frac{\partial^{2} \bar{h}^{n+1}}{\partial\left(x^{n}\right)^{2}} & =-\frac{\partial^{2} h^{n+1}}{\partial\left(x^{n}\right)^{2}} \\
\left(\frac{\partial h^{n+1}}{\partial x^{n}}\right)^{3}
\end{array}, \quad \frac{\partial^{2} \bar{h}^{n+1}}{\partial x^{t} \partial x^{n}}=-\frac{\frac{\partial^{2} h^{n+1}}{\partial x^{t} \partial x^{n}}}{\left(\frac{\partial h^{n+1}}{\partial x^{n}}\right)^{2}}+\frac{\frac{\partial h^{n+1}}{\partial x^{t}} \frac{\partial^{2} h^{n+1}}{\partial\left(x^{n}\right)^{2}}}{\left(\frac{\partial h^{n+1}}{\partial x^{n}}\right)^{3}} .
$$

which satisfies (3.3), and by differentiation of the ($s-1$) -order formula

$$
\begin{align*}
& \frac{\partial^{s-1} \bar{h}^{\sigma}}{\partial x^{k_{1}} \ldots \partial x^{k_{s-1}}}=(-1)^{\alpha} \frac{\frac{\partial^{s-1} h^{\sigma}}{\partial x^{k_{1}} \ldots \partial x^{k_{s-1}}}}{\left(\frac{\partial h^{n+1}}{\partial x^{n}}\right)^{\alpha+\gamma}} \tag{3.5}\\
& \qquad+q\left(\frac{\partial h^{\nu}}{\partial x^{t_{1}}}, \frac{\partial^{2} h^{\nu}}{\partial x^{t_{1}} \partial x^{t_{2}}}, \ldots, \frac{\partial^{s-2} h^{\nu}}{\partial x^{t_{1}} \ldots \partial x^{t_{s-2}}}, \frac{\partial^{s-1} h^{\nu}}{\partial x^{t_{1}} \ldots \partial x^{t_{s-2}} \partial x^{n}}\right) \\
& \left(q_{1} \in Q_{k_{1} \ldots k_{s-1}}^{\sigma}, \nu \in\{\sigma, n+1\},\left\{t_{1}, \ldots, t_{s-2}\right\} \subset\left\{k_{1}, \ldots, k_{s-1}, n\right\}, t_{1} \leq \ldots\right. \\
& \left.\ldots \leq t_{s-2}, \text { and } \gamma=\beta\left(\sigma, s-1, k_{1}, \ldots, k_{s-1}\right)\right) \text { with respect to } x^{k_{s}}, \text { we obtain } \\
& (3.3)
\end{align*}
$$

Since

$$
\begin{equation*}
x_{k_{1} \ldots k_{s}}^{\sigma}(x)=\frac{\partial^{s} h^{\sigma}}{\partial x^{k_{1}} \ldots \partial x^{k_{s}}}(0), \quad \bar{x}_{k_{1} \ldots k_{s}}^{\sigma}(x)=\frac{\partial^{s} \bar{h}^{\sigma}}{\partial x^{k_{1}} \ldots \partial x^{k_{s}}}(0) \tag{3.6}
\end{equation*}
$$

(see (2.8)), formula (3.3) has in $0 \in \mathbb{R}^{n}$ the form

$$
\begin{equation*}
\bar{x}_{k_{1} \ldots k_{s}}^{\sigma}=(-1)^{\alpha} \frac{x_{k_{1} \ldots k_{s}}^{\sigma}}{\left(x_{n}^{n+1}\right)^{\alpha+\beta}}+q\left(x_{t_{1}}^{\nu}, x_{t_{1} t_{2}}^{\nu}, \ldots, x_{t_{1} \ldots t_{s-1}}^{\nu}, x_{t_{1} \ldots t_{s-1} n}^{\nu}\right), \tag{3.7}
\end{equation*}
$$

which is the transformation formula between the charts $\left(U_{I}, \varphi_{I}\right) .\left(U_{J, \varphi_{J}}\right)$.

Now let us consider two specially chosen points $x, \bar{x} \in U_{I} \cap U_{J}, x=\left[J_{0}^{r} g\right]$, $\bar{x}=\left[J_{0}^{r} \bar{g}\right]$, where $g\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n}, x^{n}, 0, \ldots, 0\right)$, and $\bar{g}\left(x^{1}, \ldots, x^{n}\right)=$ $\left(x^{1}, \ldots, x^{n},-x^{n}, 0, \ldots, 0\right)$. According to (2.5), there holds $\Phi_{I}(x)=\Phi_{J}(x)$ $=J_{0}^{r} h$, and $\Phi_{I}(\bar{x})=\Phi_{J}(\bar{x})=J_{0}^{r} \bar{h}$, where $h\left(x^{1}, \ldots, x^{n}\right)=\left(x^{n}, 0, \ldots, 0\right)$, and $\bar{h}\left(x^{1}, \ldots, x^{n}\right)=\left(-x^{n}, 0, \ldots, 0\right)$. From (2.7) and (2.8) it immediately follows that

$$
\begin{align*}
& x_{k_{1} \ldots k_{s}}^{\sigma}(x)=\bar{x}_{k_{1} \ldots k_{s}}^{\sigma}(x)= \begin{cases}1 & \text { for } \sigma=n+1, s=1, k_{1}=n \\
0 & \text { in all other cases }\end{cases} \\
& x_{k_{1} \ldots k_{s}}^{\sigma}(\bar{x})=\bar{x}_{k_{1} \ldots k_{s}}^{\sigma}(\bar{x})= \begin{cases}-1 & \text { for } \sigma=n+1, s=1, k_{1}=n \\
0 & \text { in all other cases }\end{cases} \tag{3.8}
\end{align*}
$$

Using (3.7) we get

$$
\begin{align*}
& \operatorname{det} D\left(\varphi_{J}^{-1} \circ \varphi_{I}\right)\left(\varphi_{I}(x)\right)=\prod_{\sigma, s, k_{1}, \ldots, k_{s}}(-1)^{\alpha} \\
& \operatorname{det} D\left(\varphi_{J}^{-1} \circ \varphi_{I}\right)\left(\varphi_{I}(\bar{x})\right)=\prod_{\sigma, s, k_{1}, \ldots, k_{s}}(-1)^{\alpha}(-1)^{\alpha+\beta} \tag{3.9}
\end{align*}
$$

which means that if the manifold $G_{m, n}^{r}$ is orientable, then

$$
\begin{equation*}
\prod_{\sigma, s, k_{1}, \ldots, k_{s}}(-1)^{\alpha}=\prod_{\sigma, s, k_{1}, \ldots, k_{s}}(-1)^{\alpha}(-1)^{\alpha+\beta} \tag{3.10}
\end{equation*}
$$

which is equivalent to saying that the number

$$
\sum_{\sigma, s, k_{1}, \ldots, k_{s}}(\alpha+\beta)
$$

is even. After some combinatorical calculations we get

$$
\begin{equation*}
\sum_{\sigma, s, k_{1}, \ldots, k_{s}}(\alpha+\beta)=\binom{n+r}{r}+(m-n)\binom{n+r}{r-1}-1 \tag{3.11}
\end{equation*}
$$

In the last part of the proof, we shall show that the condition (3.10) is sufficient for the manifold $G_{m, n}^{r}$ to be orientable. We shall need the following simple assertion, which can be proved by induction.

MICHAL KRUPKA

Let $G \dot{\text { be }}$ a smooth manifold, $\left(\left(U_{\iota}, \varphi_{\iota}\right)\right), \iota=1, \ldots, N$, a smooth atlas on G. Suppose that there is a point $x_{0} \in \bigcap U_{\iota}$, and that for any indices $1.1 .2 \in$ $\{1, \ldots, N\}$ the mapping $\operatorname{det} D\left(\varphi_{\iota_{1}}, \varphi_{\iota_{2}}^{-1}\right)$ has a constant sign on all its domain. Then the manifold G is orientable.

Let $I=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}, J=\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}$ be two arbitrary multi-indices. Denote again $\varphi_{I}=\left(x_{k_{1} \ldots k_{s}}^{\sigma}\right)$ and $\varphi_{J}=\left(\bar{x}_{k_{1} \ldots k_{s}}^{\sigma}\right)$. The set $U_{I}-U_{J}$ is given by

$$
\begin{equation*}
U_{I}-U_{J}=\left\{x \in U_{I} \mid \operatorname{det}\left(A_{t}^{j_{k}}(x)\right)=0, k, t \in\{1,2, \ldots, n\}\right\} \tag{3.12}
\end{equation*}
$$

where $A: U_{I} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}$ is a matrix such that $A_{t}^{i_{k}}(x)=\delta_{t}^{k}$, and $A_{t}^{i_{\sigma}}(x)==$ $x_{t}^{\sigma}(x)$. Then the set $U_{I} \cap U_{J}$ is non-connected and has two components. The set $U_{I}-U_{J}$, and therefore the set $G_{m, n}^{r}-U_{J}$ is of measure zero. Then there exists a point $x_{0} \in \bigcap U_{I}$.

If the function $\operatorname{det} D\left(\varphi_{I} \circ \varphi_{J}^{-1}\right)$ has a constant sign on all its domain. we write $\left(U_{I}, \varphi_{I}\right) \sim\left(U_{J}, \varphi_{J}\right)$. We shall prove that the relation \sim is transitive. Suppose $\left(U_{I}, \varphi_{I}\right) \sim\left(U_{J}, \varphi_{J}\right)$ and $\left(U_{J}, \varphi_{J}\right) \sim\left(U_{K}, \varphi_{K}\right)$ and choose two elements, $x_{1}, x_{2} \in U_{I} \cap U_{J} \cap U_{K}$ belonging to different components of $U_{I} \cap U_{K}$. Now

$$
\begin{aligned}
& \operatorname{sgn} \operatorname{det} D\left(\varphi_{I} \circ \varphi_{K}^{-1}\right)\left(\varphi_{K}\left(x_{1}\right)\right) \\
= & \operatorname{sgn} \operatorname{det} D\left(\varphi_{I} \circ \varphi_{J}^{-1}\right)\left(\varphi_{J}\left(x_{1}\right)\right) \cdot \operatorname{sgn} \operatorname{det} D\left(\varphi_{J} \circ \varphi_{K}^{-1}\right)\left(\varphi_{K}\left(x_{1}\right)\right) \\
= & \operatorname{sgn} \operatorname{det} D\left(\varphi_{I} \circ \varphi_{J}^{-1}\right)\left(\varphi_{J}\left(x_{2}\right)\right) \cdot \operatorname{sgn} \operatorname{det} D\left(\varphi_{J} \circ \varphi_{K}^{-1}\right)\left(\varphi_{K}\left(x_{2}\right)\right) \\
= & \operatorname{sgn} \operatorname{det} D\left(\varphi_{I} \circ \varphi_{K}^{-1}\right)\left(\varphi_{K}\left(x_{2}\right)\right) .
\end{aligned}
$$

Thus, $\left(U_{I}, \varphi_{I}\right) \sim\left(U_{K}, \varphi_{K}\right)$.
Let S_{m} be the permutation group of m elements. Define a group homomorphism $F: S_{m} \rightarrow L_{m}^{r}$ by $F(\pi)=J_{0}^{r} \alpha_{\pi}$, where $\alpha_{\pi}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is given by $\alpha_{\pi}\left(x^{1}, \ldots, x^{m}\right)=\left(x^{\pi(1)}, \ldots, x^{\pi(m)}\right) . F$ is obviously injective. We denote $P_{m}^{r}=F\left(S_{m}\right)$. The mapping $\Psi_{p}, \Psi_{p}(x)=\Psi(p, x)$, (see (2.9)) is a diffeomorphism of $G_{m, n}^{r}$.

Let I, J, K, L be multi-indices such that the sets $I-J$ and $K-L$ have just one element. There evidently exists an element $p \in P_{m}^{r}$ such that $\left(\Psi_{p}\left(U_{I}\right), \varphi_{I} \circ \Psi_{p}\right)=\left(U_{K}, \varphi_{K}\right)$, and $\left(\Psi_{p}\left(U_{J}\right), \varphi_{J} \circ \Psi_{p}\right)=\left(U_{L}, \varphi_{L}\right)$. Hence. from $\left(U_{I}, \varphi_{I}\right) \sim\left(U_{J}, \varphi_{J}\right)$ it follows $\left(U_{K}, \varphi_{K}\right) \sim\left(U_{L}, \varphi_{L}\right)$. Finally, if I and J are arbitrary multi-indices, then there exists a sequence $I=K_{1}, \ldots, K_{N}=J$ such that the set $K_{\iota+1}-K_{\iota}$ has for any $\iota<N$ just one element. From the transitivit. of the relation \sim and from the above assertion it follows that, if there exists a pair of charts $\left(U_{I}, \varphi_{I}\right)$ and $\left(U_{J}, \varphi_{J}\right)$ such that $\left(U_{I}, \varphi_{I}\right) \sim\left(U_{J}, \varphi_{J}\right)$. thent

ORIENTABILITY OF HIGHER ORDER GRASSMANNIANS

the manifold $G_{m, n}^{r}$ is orientable. As we have proved, if the number $\binom{n+r}{r}+$ $(m-n)\binom{n+r}{r-1}$ is odd, then for $I=\{1, \ldots, n\}$ and $J=\{1, \ldots, n-1, n+1\}$, $\left(U_{I}, \varphi_{I}\right) \sim\left(U_{J}, \varphi_{J}\right)$. This proves our theorem.

REFERENCES

[1] DIEUDONNÉ, J.: Treatise on Analysis. Vol. III, Academic Press, New York-London, 1972.
[2] EHRESMANN, C.: Les prolongements d'une variété différentiable, C.R. Acad. Sci. Paris Sér. I Matb. 233 (1951), 598-600.
[3] VINOGRADOV, A. M.-KRASILŠČIK, I. S—LYČAGIN, V. V : Introduction to the Geometry of Nonlinear Differential Equations (Russian), Nauka, Moskva, 1986.

Received March 2, 1992
Revised December 7, 1992

Department of Mathematics
Silesian University at Opava
Bezručovo nám. 13
CZ-746 01 Opava
Czech Republic
E-mail: kru11um@decsu.fpf.slu.cz

[^0]: AMS Subject Classification (1991): Primary 53C42, 58A20.
 K゚と words: Immersion, r-jet, Differential group, Higher order Grassmannian.

