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ON SMALL SYSTEMS AND COMPACT FAMILIES 
OF BOREL FUNCTIONS 

ELIZA WAJCH 

The main purpose of the paper is to generalize K i s y n s k i ' s result of [6] 
and to prove that a family F of Borel functions defined on a compact perfectly 
normal space is compact in the sense of the convergence with respect to an upper 
semicontinuous small system {Sfn) of Borel sets if and only if, for each positive 
integer n, there exists a uniformly compact family F* of continuous functions 
having the property that, for any fe F, there is an f* e F* such that 
{x:f{x)¥>f*(x)}eSZ. 

To begin with, let us recall the most important definitions and establish some 
useful facts. 

In what follows, X denotes a compact perfectly normal space. The symbol 
${X) stands for the a-field of Borel subsets of X (i.e. the smallest cr-field 
containing all open sets). By a small system on 0b{X) we mean a sequence {Sfn) 
of non-empty subfamilies of &{X), satisfying the following conditions: 

(I) for any neN, there exists a sequence (k,) of positive integers such that if 

Ate&ki for /GIV, then ( J A,e% ; 
/ = i 

(II) for any neIV, AeSfn and Be0S{X) such that B cz A, we have BeSfn ; 
00 

(III) for any weN, Ae5£ and Be (~) % we have A u B e ^ ; 
/ = 1 

(IV) ^ D ^ + 1 for each n eN 
(cf. [2, 5, 7, 8, 9]). If, in addition, {Sfn) has the following property: 
(V) if {An) is a non-increasing sequence of Borel sets for which there exists i e IV 

00 00 

such that An$£fi for any neN, then Q An$ f] <S£, 
n = 1 m = 1 

then it is called an upper semicontinuous small system (cf. [7; Definition 18.29]). 
Now, let us give some serviceable characterization of upper semicontinuous 
small systems on @){X). 

Proposition. A small system {Sfn) on 3#{X) is upper semicontinuous if and only 
if each Borel subset A of X has the following property: 
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(R) for any n e IV, there exist a closed subset D ofX and an open subset U of 
X, such that D c A <= U and U\DeSfn. 

Proof. Necess i ty . Without any difficulties one can check that if (Sfn) is 
upper semicontinuous, then, since each open set in JSfis of type FG, the family of 
these subsets of X which have the property (R) forms a a — field containing all 
open sets (cf. [9; proof of Theorem 2]). 

Sufficiency. Suppose that (S%) is not upper semicontinuous but every 
Borel set has the property (R). By virtue of (HI) and (V), there exist a positive 

oo 

integer i and a non-increasing sequence (An) of Borel sets, such that f] An = 0 
« = i 

but A„<£S/? for any n e N. Take a sequence (kn) of positive integers such that 
00 

( J EneSf{ whenever Ene Sfkn for n e N. There exists a closed set D, c A, such that 
« = i 

Ax\DxeSfk. We can inductively define a sequence (Dn) of closed sets such that 
Dn+X c:DnnAn + - and (DnnAn+])\Dn+l eSin+l for neIV. Then An + ]a(Dnn 

n 

<^An + i ) u \J [ (DmnAm + 1 ) \Dm + 1 ]u(A , \D 1 ) , so D„nA„+1^+2 for any 
m = 1 

neN (otherwise, An + ] would belong to <9f). In this way, we have obtained a 
non-increasing sequence (Dn) of non-empty closed subsets of X such that 

00 

Dn <= An for any neN. The compactness of X yields f] Dn ^ 0, which con-
n= 1 

tradicts the fact that f] An = 0. 
« = i 

The above proposition points out that the notions of upper semicontinuity 
and regularity (cf. [7; Definition 18.35]) are equivalent for small systems of Borel 
sets in perfectly normal compact spaces. 

From now on, (Sfn) will denote a fixed upper semicontinuous small svstem on 
@(X). 

oc 

Let # = p) Sfn. Obviously, / forms a a-ideal on S%(X). One says that a 
n= 1 

property holds ^-almost everywhere (abbr. ^-a.e.) on X if the set of points not 
having this property belongs to / . Denote by M(f) the family of all ,/-a.e. 
finite ^(X)-measurable real functions defined on X. 

Definition 1 (cf. [8]). A sequence (fn) of functions from M(f) converges with 
respect to the small system (Sfn) to a function fe M(f) if for any e > 0 and any 
meN, there exists n0eN such that {xeX: \fn(x) -f(x)\ > z}eSfm whenever 
n ^ n0. 

Definition 2 (cf. [5]). A family F c M(f) is compact in the sense of the 
convergence with respect to the small system (Sfn) (abbr. (Sfn)-compact) if each 
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sequence of functions from F contains a subsequence converging with respect to 
(Sfn) to some function from M(f). 

By a partition of X is meant a finite family 9 of Borel sets such that 
\]{P: Pe0>} = X. 

Definition 3 (cf. [5]). A family F <= M ( / ) is called: 
(a) (Sfn)-equibounded iff for any neN9 there exists a positive integer t such that 

{xeX: \f(x) > t}eSfn wheneverfeF. 
(b) (^)-equimeasurable if for any 8 > 0 and neNf there exist a partition &> 

of X and a collection {Af:fe F} cz Sfn9 such thatffor each Pe0> andfe F, we have 
|f(x) — f(y)| < £ whenever x9yeP\Af. 

In [5] we obtained the following abstract version of Frechet's theorem charac
terizing compactness in the sense of the convergence with respect to a finite 
measure (cf. [1, 3, 4]): 

Theorem 0. A family F cz M(f) is (Sfn)-compact if and only if it is (Sfn)-equi-
bounded and (S^)-equimeasurable (cf. [5; Proposition 1 and Theorem 1]). 

J. K i syhsk i gave in [6; Theorem 1] an elegant characterization of com
pact families of measurable real functions defined on a compact interval of the 
real line by approximating them to uniformly compact families of continuous 
functions. Here we shall extend the above mentioned result of Kisyhski to 
(^)-compact subfamilies of M(f). To do this, we need some lemma. 

Denote by C(X) the space of all continuous real functions defined on X with 
the topology of uniform convergence. 

Lemma. If a family F cz M(f) is (S^)-equimeasurablef then, for any e > 0 and 
neNf there exist a closed subset D of Xf a family {Af:feF} of Borel sets, a 
continuous function h: X-* [0,1] and a real number 5 > 0, such that the following 
conditions are satisfied: 

(a) (X\D)KJ AfeSfn for any fe F; 
(b) for any feF and x9yeD\Af9 we have 

\f(x) — f(y)l ^ 8 whenever \h(x) — h(y)\ ^ 5. 
Proof. Let us fix 8 > 0 and n0eN. Take a sequence (k,) of positive in

tegers such that if AJES^. for ieN9 then ( J Ate9^. Since F is (^)-equimeasur-
/ = i 

able, there exist a family {P,, Pl9 ..., Pm} of pairwise disjoint Borel subsets of .X 
m 

and a family {Af:feF} cz Sfk such that [J Pf = X and, moreover, for anyfe F 
/ = I 

and / = 1, 2, ..., m9 we have |f(x) — f(y)| ^ 8 whenever x9yePj\Af. By virtue 
of our Proposition we can find closed subsets DX9 Dl9 ..., Dm of X such that 
Dt c: p. and Pi\DieS/?

k for / = 1, 2, ..., m. It follows from the normality of X 
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that there exists a continuous function h: X-+ [0,1] such that h(D{) = <-> for 7} 
m j 

/ = 1, 2, ..., m. Let us put D = ^J Z>, and 8 = . Then, for any feF, 
, = 1 2m(m — 1) 

the set (X\D)v Afa Afu \J (Pi\D{) is a member of $fn . To complete the 
/ = 1 

proof, it suffices to observe that if x9yeD and |h(x) — h(y)\ ^ 8, then x9yeDt 

for some /e{l, 2, ..., m). 
Now we are in a position to prove the main theorem of the paper. 

Theorem 1. A family F cz M ( / ) is (^-compact if and only if, for any neN, 
there exists a compact subset F* ofC^) having the property that, for any fe F, 
there is an f* e F* such that {x e X: f(x) ?-= f*(x)} e 5£. 

Proof. Necess i ty . Let us fix n0eN. There exists meN such that 
AKJ Be6^n whenever A9 Be£fm. Take a sequence (kt) of positive integers such 

that ifAtsSi. for ieN9 then \J A^eSf^. By Theorem 0, the family F is (^)-equi-
1 = 1 

bounded, so there exists teN such that {xeX: |f(x)| > t}eifm whenever fe F. 
The Lemma, along with Theorem 0, implies that, for ieN9 there exist closed sets 
D{ c X9 collections {A}:fe F} cz 3fl(X)9 continuous functions h{: X-> [0,1] and 
real numbers 8j > 0, such that, for any fe F, the following conditions are 
satisfied: 

(a) (X\Di)^jA}e^9 

(b) \f(x) -f(y)\ ^ - whenever x9yeD,\A} and \h,(x) - ht(y)\ ^ 8,. 
/ 

00 

We may assume that 8 / + 1 < 8, for ieN. Denote D = f] Df and Af= {xeX: 
i= 1 

x 

|f(x)| > t}u Q ^ ; for feF. Clearly, (X\D)uAfe^ for any feF . Let us 
/ = 1 

consider the pseudometric h(x9y) = £ — . For anyfe F and ieIV, 
/ = 1 z 

1 ^ 

we have |f(x) — f(y)| ^ -7 whenever x, yeD\Af and h(x9y) -$ —\ It is not 

difficult to construct a non-decreasing bounded uniformly continuous function 
1 /R R ~l 

g: [0, + 00) -» /? having the properties that g(0) = 0, g(e) ^ - for 8 e ( - ^ , — 
2 

and g(e) >- 2t for є > —. Then, for any/є F, we have 
2 
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\f(x) -f(y)\ < g(h(x9y)) whenever x9yeD\Af. 

Following [6; proof of Lemma 1], we define 

f*(x) ==- sup{f(y) - g(h(x9y)): yeD\Af} forfe F and xeX. 

lfx9yeD\Af9 thenf*(x) ^ f (x ) ^ f ( y ) - g(h(x9y))9 so {xeX:f(x) *f*(x)} c= 
c (X\D)vA/9 hence {xeX: f(x) ^f*(x)}e^ for any feF. Obviously, the 
family {f* :fe F} is equibounded. In view of Ascoli's theorem, it suffices to show 
that {f*: fe F} is evenly continuous. Bearing this in mind, let us define 

G(e) = sup{\g(zi) - g(e2)|: 8,,e2^ 0 and |e, - 82| ^ e}. 

Consider any 8 > 0 and xeX. There exists e0 > 0 such that G(e) < 8 for 
0 ^ 8 < e0. We can find a neighbourhood U of x such that h(x9y) < 80 for any 
yeU. Arguing similarly as in the proof of Lemma 1 in [6], one checks that 

\f*(x)-f*(y)\^G(h(x9y)) for any feF and yeX. 

All this implies that |f*(x) —/*(y)| < 8 for anyfe F and yeU; therefore the 
family {f*: fe F} is evenly continuous. 

Sufficiency. Let n0eN and 8 > 0 be fixed. Take a compact set 
F* c= C(X) having the property that to eachfe F one can assign somef*e F* 
such that the set Bf= {xeX:f(x) #f*(x)} is a member of «$£ . The equiboun-
dedness of F* implies the (<9£ )-equiboundedness of F. Since F* is evenly con
tinuous, there exists, for any xeX, an open neighbourhood Ux of x such that 
|f*(x) — f*(y)\ ^ 8 whenever fe F and ye Ux. If SP is a finite subcover of the 
cover {Ux: xeX} of X, then, for anyfe F and Pe0>9 we have |f(x) — f(y)\ ^ 8 
whenever x9yeP\Bf\ hence F is (9*n )-equimeasurable. Theorem 0 completes the 
proof. 

An immediate consequence of Theorem 1 is the following 

Corollary. A family F c M (f) is ( ^ )-compact if and only if for any neN and 
8 > 0, there exists a finite set F* c: C(X) with the property that t for any fe F, 
there is anf*eF* such that {xeX: |f(x) - f * ( x ) | > 8}e<9£. 

Finally, let us formulate Theorem 1 in terms of the a-ideal f. 
A family F c= M(f) is called compact in the sense of the convergence with 

respect to the G-ideal f (abbr. /-compact) provided each sequence of functions 
from F contains a subsequence converging ^-a.e. on X to some function 
fe M(f) (cf. [5; Definition 2(b)]). Since (5£) is upper semicontinuous, ^-com
pactness is equivalent to (<S£ )-compactness, as observed before in [5]. 

Theorem 2. A family F <= M(J^) is /-compact if and only if there exists a 
sequence (F*) of compact subsets ofC(X) with the property that 9 for any sequence 
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(f) of functions from F, there exists a sequence if*) of continuous functions such 

that f] Q {xeX:fn(x) *fn\x)}ef andf*e ?*for any neN. 
m = 1 n = m 

Proof. Necess i ty . Lemma 1 of [8] implies the existence of a sequence 
00 

(kn) of positive integers such that if A„eSfk for neN, then \J Ane£m for any 
n = m 

meIV. In view of Theorem 1, there exists a sequence (F*) of compact subsets of 
C(X) having the property that, for any neN andfe F, there is a n f * e F* such 
that {xeX:f(x) ^f*(x)}e£%n. It is evident that (F*) is the required sequence. 

Sufficiency. Using similar arguments as in the proof of Theorem 1, we 
00 00 

find a sequence (tn) of positive integers such that f] [J {xe X: \fn(x)\ > tn}ef 
m=In—m 

for any sequence (fn) of functions from F. Therefore, by Proposition 2(b) of [5], 
F is (^)-equibounded. 

Let us fix e > 0. According to the proof of Theorem 1, one can show without 
any difficulties that there exists a sequence (£Pn) of partitions of X having the 
property that, for any sequence (fn) of functions from F, there exists a sequence 

00 00 

(An) of Borel sets such that f] [J Anef and, furthermore, for any neN and 
m — 1 n = m 

Petf?, we have \fn(x) — fn(y)\ ^ e whenever x, yeP\An. Following the proof of 
Proposition 4(b) in [5], we show that F is ( ^ )-equimeasurable. By virtue of 
Theorem 0, F is ^/-compact. 

Let us note that Theorems 1 and 2, together with the Corollary, remain true 
if we assume that A" is a compact HausdorfF space (not necessarily perfectly 
normal) and (£%) is a regular small system on @I(X) (i.e. every Borel set has the 
property (R)). 
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МАЛЫЕ СИСТЕМЫ И КОМПАКТНЫЕ МНОЖЕСТВА 
БОРЕЛЕВСКИХ ФУНКЦИЙ 

ЕНха \Уа1сЬ 

Р е з ю м е 

Главная цель работы доказать, что семейство Р борелевских функций, опрелеленных на 
компактном совершенно нормальном пространстве, является компактным по сходимости 
по непрерывной сверху малой системе (/5̂ ) борелевских множеств в том и только в том 
случае, когда для произвольного натурального числа п существует такое компактное в 
топологии равномерной сходимости семейство Р* непрерывных функций, что для каждого 

/ е Р найдется такое/*еР*, что {х:/(х) #/*(*)}е5^. 
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