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Math. Slovaca 32,1982, No 1, 89—92 

NOTE ON THE INTEGRAL WITH RESPECT 
TO THE PRE-MEASURE 

ANNA KOLESAROVA 

In [1] the integration process was defined with respect to the pre-measure 
(non-negative, monotone, in an empty set vanishing set function) and it was shown 
that the integrability of the function |/| implies the integrability of /. In [2] it was 
proved that the integrability of / and |/| is equivalent for a wide class of 
pre-measures, namely for strong submeasures (for definitions see below). The 
question arises whether this equivalence holds in the case of the general pre-measu
re too. We give an example which shows that the answer to this question is in 
general in the negative. Our pre-measure will be a continuous strong supermeasure. 

First we recall the definition of the integral given in [1]. Let (X, Sf) be 
a measurable space and let f ibea pre--measure onS^. Let rJbea family of all 
finite subsets of ( - oo, oo) which contain zero. Let Fe 9 with 

F={bmSfcm.1.§...^bo = 0 = ao^a1^.. .^an-1gan} 

and let / be an 5 -̂measurable function. 
We put 

S(f,F)= 2 (ai-ai.1M{x;f(x)^ai}) + 

+ 2 (&,-b,-0,«({*;/(*)^M) 
if the right-hand side expression contains no expression of the type oo - oo. 

Since 9 is directed by inclusion, the triple (S(/, F), 9, =->) is a net. We put 

Ifi/= (f dn = lim S(f,F) 
J Fe& 

if the limit exists. The function / is called integrable iff I[if is finite. 
The properties of I\if which we shall mainly use are: 

(1) I\i is a monotone functional. 
(2) If /+ and /" are integrable, then / is integrable and lyf = I\if+ + I\if'. 
(3) If the function |/| is integrable, then / is also integrable. 

Now we recall the definitions of a continuous pre-measure, a strong submeasure 
and a strong supermeasure. 
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Let (X, Sf) be a measurable space. The pre-measure \i defined on Sf is 

(a) a strong submeasure if 

li(AnB) + ix(AuB)^ii(A) + 11(B) 

(b) a strong supermeasure if 
li(AnB) + ii(AuB)^pi(A) + 11(B) 

for every A and B in Sf. 
We say that the pre-measure \i defined on Sf is continuous if it has the following 

two properties 

(1) An/A --> ix(An)/\i(A) 
(2) An\A,ii(Al)«» z> M(Aw)\fi(A) 

/or A e:? and AneSf, n = l, 2, 3, ... 

Further we shall need the following lemma, which is an easy consequence of 
Lemma 1 proved in [2]. 

Lemma 1. Let pi be a finite measure on Sf. Let f be a real valued, increasing, 
convex, continuous function with /(0) = 0. Then the set function v defined on Sf by 
v(A) = f(ii(A)) is a continuous strong supermeasure. 

Before we give the promised example we shall prove this lemma. 

Lemma 2. Let X = \-J^j)9 tet 53 (X) be the family of all Borel subsets 

of X and [i the Lebesgue measure on X. Let g be a function defined by 

g(x) = exp ( — j for x e (0, <») and g(0) = 0. Then the set function v defined 

on .33(X) by v(A) = g(fi(A)) is a continuous strong supermeasure on 33(X). 

Proof. It is clear that 0 ̂  JLI (A ) ̂  - for every A e S3 (X). Since g is a continuous, 

i convex, increasing real function on the interval (0, - ) with g(0) = 0, by Lemma 

we get that v = g(n) is a continuous strong supermeasure on S8(X). 
Now we give an example which shows that in the case of the integral with respect 

to the pre-measure the integrability of / and |/ | is in general not equivalent. 

Example. Let X = ̂ - i , ^V Put 

/(*) = < 0 x = 0 

l-M-a »H") 
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Let v be a continuous strong supetmeasure on 38 (X) from Lemma 2. Then the 
function f is integrable on X with respect to v and |/| is not integrable. 

Proof. Let ft be a function defined on ( 0 , | ) b y 

0 x = 0 

fcW-U + 1 ^21n( l + ir2ln-fc)fe = 8 

-8 xe\2to8'V 

The range of h is the set H- {0,8,9, . . .} . Since the function h is non-negative, Iyh 
exists. It is easy to see that 

Um*M{**))+t<(*2sfas>)]-
= 8exp(-4) + l im2exp/ 7 \ = 

k i -9 I 1 I 
\ 21n( i - l ) / 

=8exp<-4)+, i?l.((7^p)= 

= 8exp(-4) + 2 J ; - i ^ = 
k - 1 ^ fc«l /C 

= 8exp(-4) + | - i J i 

Hence ft is integrable on (0, j). 

Since in the interval (0, ^)f+ = f ̂ h and Iv is a monotone functional, /+ is also 

integrable on (0,7) . As /+ -= 0 on ( -j, 0), we get that /+ is integrable on X. 

The integrability of /" can be shown similarly. 
Since /+ and /" are integrable on X, by the property (2) of Iv we get that / is 

integrable on X. 
To show that |/| is not integrable it is enough to find a function q> defined on X 

with 0^qp^ l/l and Iyq> = 00. 
Put 
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Ф(*H 

7 ^(-i-i-tšMús-l) 
k Xe\ 2lnk' 2ln(k + í))U\2ln(k + iy2lnk) k~8 

O x = 0 

Since cp is non-negative, Ivcp exists. It is clear that 

L<p = lim 2 ( i - ( i - l ) )v ({x ; (p(x) i^}) = 
fc lSi^fc 

= 7exp(-2) + lim £ exP / T"^ = 
fc 8gi^fc I L 

V 2 In i / 

= 7exp( -2) + lim 2 ^ = 7 exP ( _ 2 ) + 2 T 
fc 8^i^fc I fc=8 * 

Using the fact that the series 2 "T *s divergent we have Ivqp = + oo, which means 
fc=8 k 

that (p is not integrable on X with respect to v. 
Thus we found a function cp defined on X with the properties 

OS (pig |/| and Iv(p=+oo. 

Hence we have Iv |/ | = + oo because Iv is a monotone functional. This implies that 
|/| is not integrable on X with respect to v. 
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ЗАМЕЧАНИЕ К ИНТЕГРАЛУ ПО ПРЕДМЕРЕ 

Анна Колесарова 

Резюме 

В статье приведен пример, кторый показывает, что для интеграла по предмере, введенного 
в [1], не верно, что функция / интегрируема тогда и только тогда, когда |/| интегрируема. 
Вышеприведенный пример показывает, что существует функция / и предмера \л, что интеграл от 
/ по у. существует, по функция |/| уже не интегрируема. 
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