Mathematic Slovaca

Francis J. Pastijn

A theorem concerning the restriction of the \mathcal{D}-structure of a semigroup S to a subsemigroup of S

Mathematica Slovaca, Vol. 26 (1976), No. 1, 19--22

Persistent URL: http://dml.cz/dmlcz/128669

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A THEOREM CONCERNING THE RESTRICTION OF THE \mathscr{D}-STRUCTURE OF A SEMIGROUP S TO A SUBSEMIGROUP OF S

FR.INCIS PASTIJN

Notations. By $\mathscr{L}, \mathscr{R}, \mathscr{H}, \mathscr{D}$ we mean Green's relations for a semigroup S and $\mathscr{L}^{\prime}, \mathscr{R}^{\prime}, \mathscr{H}^{\prime}, \mathscr{D}^{\prime}$ will be the relations of Green for the subssmigroup S^{\prime} of S. The \mathscr{L}-class [resp. \mathscr{L}^{\prime}-class] containing a will be denoted by L_{a} [resp. $\left.L_{n}^{\prime}\right]$ and analogously for what concerns the other relations of Green (1).
λ_{a} [resp. ϱ_{a}] denotes an inner left [resp. right] translation (2).
$I_{s^{\prime}}\left(H_{a}^{\prime}\right)$ means the Schützenberger group of H_{a}^{\prime} in the semigroup S^{\prime} and $\Gamma_{S^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$ its dual Schützenberger group (3). $T_{S^{\prime}}\left(H_{a}^{\prime}\right)$ denotes the set $\left\{t \in S^{\prime} \|\right.$ $\left.H_{a}^{\prime} t \subseteq H_{a}^{\prime}\right\}$ and $T_{s^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$ denotes the set $\left\{t \in S^{\prime} \| t H_{a}^{\prime} \subseteq H_{a}^{\prime}\right\}$.

We shall use the following lemmas, which are mentioned in (4) and (5). The first one is a direct consequence of Green's lemma.

Lemma. Let a_{0} and b be elements of S^{\prime} such thà $a \mathfrak{R} b$; then S^{1} contains elements x and x^{\prime} such that $a x=b$ and $b x^{\prime}=a$. The mappings $\varrho_{x} \mid L_{a}^{\prime}$ and $\varrho_{x^{\prime}} \mid L_{b}^{\prime}$ are mutually inverse \mathscr{R}-class preserving one-to-one mappings between L_{a}^{\prime} and L_{b}^{\prime}. If $a \mathscr{R}^{\prime} b$, then $\varrho_{x} \mid L_{a} \cap S^{\prime}$ and $\varrho_{x^{\prime}} \mid L_{0} \cap S^{\prime}$ are mutually inverse \mathscr{R}^{\prime}-class preserving one-to-one mappings between $L_{a} \cap S^{\prime}$ and $L_{,} \cap S^{\prime} ;$ in this case $\varrho_{x^{\prime}} \mid L_{a} \cap S^{\prime}$ and $\varrho_{x^{\prime}} \mid L_{b} \cap S^{\prime}$ map \mathscr{L}^{\prime}-classes onto \mathscr{L}^{\prime}-classes and \mathscr{H}^{\prime}-classes onto \mathscr{H}^{\prime}-classes.

Lemma. If a is any regular element of S^{\prime}, then $H_{a}^{\prime}=D_{a}^{\prime} \cap H_{a}$.
Now we prove our main theorem.
Theo:am. Let D be a regular \mathscr{D}-class such tha: the \mathscr{L}-classes and \mathscr{R}-classes which have a non-void intersection with $D \cap S^{\prime}$, contain at least one idempotent in $D \cap S^{\prime}$. Then the following conditions are equivalent:
(i) If $a \in D \cap S^{\prime}$, then $D_{a}^{\prime} \cap H_{a}=H_{a}^{\prime}$.
(ii) If e, f are idempotents in $D \cap S^{\prime}, a \in L_{c} \cap R_{f} \cap S^{\prime}$, and $a^{\prime} \in R_{z} \cap L_{f}$ is an inverse of a in S, then the mappings

$$
\Theta: H_{e}^{\prime} \rightarrow H_{f}^{\prime}, x \rightarrow a r a^{\prime}
$$

and

$$
\Theta^{\prime}: H_{f}^{\prime} \rightarrow H_{e}^{\prime}, y \rightarrow a^{\prime} y a
$$

are mutually inverse isomorphisms.
(iii) If $a, a g \in R_{a} \cap S^{\prime}$, with $g \in S$, then $H_{d}^{\prime} g=H_{n g}^{\prime}$, and, if $b, q b \in L_{b} \cap S^{\prime}$ with $q \in S$, then $q H_{b}^{\prime}=H_{q b}^{\prime}$.
(iv) If e is an idempotent of $D \cap S^{\prime}$, and $\alpha \in L_{e} \cap S^{\prime}, b \in R_{e} \cap S^{\prime}$, then a H_{b}^{\prime} $=H_{a}^{\prime} b=H_{a}^{\prime} H_{b}^{\prime}=H_{a l}^{\prime}$.
(v) If e, f are idempotents in $D \cap S^{\prime}$. and $a \in L_{e} \cap R_{f} \cap S^{\prime}$, then $T_{S^{\prime}}\left(H_{\prime}^{\prime}\right)$ $=T_{S^{\prime}}\left(H_{a}^{\prime}\right)$ and $T_{S^{\prime}}^{\prime}\left(H_{f}^{\prime}\right)=T_{S^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$.
(vi) If e, f are idempotents in $D \cap S^{\prime}, a \in L_{\epsilon} \cap R_{f} \cap S^{\prime}$, and $a^{\prime} \in R, \cap L_{f}$ is an inverse of a in S, then the mappings.
$p: \Gamma_{s^{\prime}}^{\prime}\left(H_{\|}^{\prime}\right) \rightarrow \Gamma_{s^{\prime}}^{\prime}\left(H_{\rho}^{\prime}\right), \quad \lambda_{t} \mid H_{\|}^{\prime} \rightarrow \lambda_{\|^{\prime \prime \prime \prime}} \quad H_{\prime^{\prime}}^{\prime}$,
and
$\varphi^{\prime}: \Gamma_{s^{\prime}}^{\prime}\left(H_{e}^{\prime}\right) \rightarrow I_{S^{\prime}}^{\prime}\left(H_{u}^{\prime}\right), \quad \lambda_{s}\left|H_{e}^{\prime} \rightarrow \lambda_{a s a^{\prime}}\right| H_{a}^{\prime}$,
$\psi: \Gamma_{S^{\prime}}\left(H_{a}^{\prime}\right) \rightarrow \Gamma_{S^{\prime}}\left(H_{f}^{\prime}\right), \quad \varrho_{v} \mid H_{a}^{\prime} \rightarrow \varrho_{a r u^{\prime}} \quad H_{f}^{\prime}$,
and
$\psi^{\prime}: \Gamma_{S^{\prime}}\left(H_{f}^{\prime}\right) \rightarrow \Gamma_{S^{\prime}}\left(H_{a}^{\prime}\right), \quad \varrho_{w}\left|H_{f}^{\prime} \rightarrow \varrho_{a^{\prime} \ldots a}\right| H_{a}^{\prime}$,
are pairs of mutually inverse isomorphisms.
Proof.
(i) implies (ii). Since $a \mathscr{L} e$, with $a e=a$ and $a^{\prime} a=\rho$, the left inner translation $\lambda_{a} \mid \boldsymbol{R}_{e}^{\prime}$ is a one-to-one mapping of \boldsymbol{R}^{\prime}, upon $\boldsymbol{R}_{a}^{\prime}$. Moreover, this mapping $\lambda_{a} \quad R^{\prime}$ is \mathscr{L}-class preserving (4). $D_{a}^{\prime} \cap H_{a}=H_{a}^{\prime}$ implies $R_{a}^{\prime} \cap L_{a}-H_{a}^{\prime}$, and $D_{e}^{\prime} \cap H_{e}=H_{e}^{\prime}$ implies $R_{e}^{\prime} \cap L_{a}=H_{e}^{\prime}$. Thus $\lambda_{a} \mid H_{e}^{\prime}$ is a one-to-one mapping of H_{e}^{\prime} upon H_{a}^{\prime}. Since $a \mathscr{R} f$, with $a a^{\prime}=f$ and $f a=a$, the inner right translation $\varrho_{a^{\prime}} \mid L_{a}^{\prime}$ is a one-to-one mapping of L_{a}^{\prime} upon L_{f}^{\prime}. Moreover, this mapping is \mathscr{R}-class preserving (4). $D_{a}^{\prime} \cap H_{a}=H_{a}^{\prime}$ implies $L_{a}^{\prime} \cap R_{a}=H_{a}^{\prime}$, and $D_{j}^{\prime} \cap H_{f}$ $=H_{f}^{\prime}$ implies $L_{f}^{\prime} \cap \boldsymbol{R}_{a}=H_{f}^{\prime}$. Thus $\varrho_{a^{\prime}} \mid H_{a}^{\prime}$ is a one-to-one mapping of H_{a}^{\prime} upon H_{j}^{\prime}. We conclude that $\Theta=\left(\hat{\jmath}_{a} \mid H_{e}^{\prime}\right) \circ\left(\varrho_{a^{\prime}} \mid H_{a}^{\prime}\right)$ is a one-to-one mapping of H_{e}^{\prime} upon H_{f}^{\prime}. Dually, $\Theta^{\prime}=\left(\varrho_{a} \mid H_{j}^{\prime}\right) \circ\left(\lambda_{a^{\prime}} \mid H_{a}^{\prime}\right)$ is a one-to-one mapping of H_{f}^{\prime} upon H_{e}^{\prime}. Clearly Θ^{\prime} is the inverse of Θ. If x and y are elements of H_{p}^{\prime} then $(x y) \Theta=a x y a^{\prime}=a x e y a^{\prime}=a x a^{\prime} a y a^{\prime}=(x) \Theta(y) \Theta$. We conclude that Θ and Θ^{\prime} are mutually inverse isomorphisms.
(ii) implies (iii). Since $a \mathscr{R} a g$, the right inner translation $\varrho_{g} \mid L_{a}^{\prime}$ is a one-to-one mapping of L_{a}^{\prime} upon $L_{a g}^{\prime}$, and since this mapping is \mathscr{R}-class preserving,
$\left(L_{a}^{\prime} \cap \boldsymbol{R}_{a}\right) g=\left(L_{a g}^{\prime} \cap \boldsymbol{R}_{a}\right) . D \cap S^{\prime}$ contains the idempotents e and f such that $a_{a} \in L_{e} \cap R_{f} \cap S^{\prime}$. We know that $H_{e} \cap D_{e}^{\prime}=H_{e}^{\prime}$ and $H_{f} \cap D_{f}^{\prime}=H_{f}^{\prime} \quad$ (4). Let a^{\prime} be the inverse of a contained in $\boldsymbol{R}_{3} \cap L_{f}$. Let b be an element of $L_{a}^{\prime} \cap \boldsymbol{R}_{a}$. The inner right translation $\varrho_{a} \mid L_{f}^{\prime}$ is a one-to-one mapping of L_{f}^{\prime} upon L_{a}^{\prime}. More precisely, $\varrho_{a} \mid L_{f}^{\prime}$ will map $L_{f}^{\prime} \cap \boldsymbol{R}_{a}$ upon $L_{a}^{\prime} \cap \boldsymbol{R}_{\boldsymbol{x}}$. We can put $L_{f}^{\prime} \cap \boldsymbol{R}_{a}=$ $=H_{f}^{\prime}$, since $H_{f} \cap D_{f}^{\prime}=I I_{f}^{\prime}$. Thus $b=x a$ for some $x \in H_{f}^{\prime}$. By (ii) $a^{\prime} b=$ $=a^{\prime} x a_{a} \in H_{e}^{\prime}$. The inner left translation $\lambda_{a} \mid R_{e}^{\prime}$ is a one-to-one mapping of R_{e}^{\prime} upon $\boldsymbol{R}_{a}^{\prime}$. More precisely, $\lambda_{a} \mid \boldsymbol{R}_{\rho}^{\prime} \operatorname{maps} \boldsymbol{R}_{,}^{\prime} \cap L_{a}$ upon $\boldsymbol{R}_{a}^{\prime} \cap L_{a}$. Since : $a^{\prime} x a_{a} \in$ $\in \boldsymbol{R}_{e}^{\prime} \cap L_{a}$, we have $a_{(}\left(\sigma_{b}^{\prime} x a_{a}\right) \in \boldsymbol{R}_{a}^{\prime} \cap L_{a}$, or, $f x a \in \boldsymbol{R}_{a}^{\prime} \cap L_{a}$, or $b=x a \in \boldsymbol{R}_{a}^{\prime}$. We conclude that $L_{a}^{\prime} \cap \boldsymbol{R}_{a}=H_{a}^{\prime}$. In a similar way we can prove $L_{a g}^{\prime} \cap R_{a}=$ $=H_{a g}^{\prime}$. Hence $H_{a}^{\prime} g=H_{a g}^{\prime}$. The rest follows dually.
(iii) implies (iv). If e is an idempotent of $D \cap S^{\prime}$, and $a_{t} \in L_{e} \cap S^{\prime}, b \in R_{2} \cap S^{\prime}$, then $a H_{b}=H_{a} b=H_{a} H_{b}=H_{a b}$ (6). Evidently $a b \in R_{a} \cap L_{b} \cap S^{\prime}$, and therefore, by (iii) $H_{a}^{\prime} b=a H_{b}^{\prime}=H_{a b}^{\prime}$. Let $c \in H_{a}^{\prime}$, then $c H_{b}^{\prime}=H_{c b}^{\prime}$ by the same argument. Since $c b \in H_{a}^{\prime} b=H_{a b}^{\prime}$ we must have $H_{c b}^{\prime}=H_{a b}^{\prime}$, and so $c H_{b}^{\prime}=H_{a b}^{\prime}$ for any $c \in H_{a}^{\prime}$. We conclude that $H_{a}^{\prime} H_{b}^{\prime}=\bigcup_{c \in H_{a}^{\prime}} c H_{b}^{\prime}=H_{a b}^{\prime}$.
(iv) implies (v). Let $t \in T_{S^{\prime}}\left(H_{a}^{\prime}\right)$. Then $\varrho_{\dot{\prime}} \mid L_{a} \cap S^{\prime}$ is a \mathscr{R}^{\prime}-class preserving one-to-one mapping of $L_{a} \cap S^{\prime}$ upon itself (4). If e is an idempotent contained in $L_{a} \cap S^{\prime}$, we must have $R_{e}^{\prime} \cap L_{a}=H_{e}^{\prime}$, and hence et $\in H_{e}^{\prime}$. The element t therefore belongs to $T_{S^{\prime}}\left(H_{e}^{\prime}\right)$, and we can put $T_{S^{\prime}}\left(H_{a}^{\prime}\right) \subseteq T_{s^{\prime}}\left(H_{e}^{\prime}\right)$.

If in (iv) $b=e$, then $a H_{\rho}^{\prime}=H_{a}^{\prime}$, This implies $H_{a}^{\prime} T_{S^{\prime}}\left(H_{e}^{\prime}\right)=a H_{e}^{\prime} T_{S^{\prime}}\left(H_{e}^{\prime}\right)=$ $=a H_{e}^{\prime}=H_{a}^{\prime}$, and so $T_{s^{\prime}}\left(H_{e}^{\prime}\right) \subseteq T_{s^{\prime}}\left(H_{a}^{\prime}\right)$.

We conclude that $T_{S^{\prime}}\left(H_{\rho}^{\prime}\right)=T_{S^{\prime}}\left(H_{a}^{\prime}\right)$. The rest follows dually.
(v) implies (vi). If $a \in L_{e} \cap S^{\prime}$ and $e \in D \cap S^{\prime}, a^{\prime}$ is any inverse of a in R_{e}, we know that $\lambda_{a} \mid H_{e}$ is a one-to-one mapping of H_{e} upon H_{a}, and $\lambda_{a^{\prime}} \mid H_{a}$ is its inverse. Furthermore, $a_{e}=a$. $\mathrm{By}(\mathrm{v}) a_{e} T_{S^{\prime}}\left(H_{e}^{\prime}\right)=a T_{S^{\prime}}\left(H_{a}^{\prime}\right)$, or, $a_{a} H_{e}^{\prime}=$ $=H_{a}^{\prime}$. Hence, $\lambda_{a} \mid H_{e}^{\prime}$ and $\lambda_{a^{\prime}} \mid H_{a}^{\prime}$ are mutually inverse one-to-one mappings between H_{ρ}^{\prime} and H_{a}^{\prime}. If $\lambda_{t} \mid H_{a}^{\prime} \in \Gamma_{S^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$ and $x \in H_{e}^{\prime}$, then

$$
\begin{aligned}
(x) \lambda_{a} \circ\left(\lambda_{t} \mid H_{a}^{\prime}\right) \circ \lambda_{a^{\prime}} & =(a x)\left(\lambda_{t} \mid H_{a}^{\prime}\right) \circ \lambda_{a^{\prime}} \\
& =(\operatorname{tax}) \lambda_{a^{\prime}} \\
& =a^{\prime} \operatorname{tax} \in H_{e}^{\prime} .
\end{aligned}
$$

Thus, $\quad\left(\lambda_{a} \mid H_{e}^{\prime}\right) \circ\left(\lambda_{t} \mid H_{a}^{\prime}\right) \circ\left(\lambda_{a^{\prime}} \mid H_{a}^{\prime}\right)=\lambda_{a^{\prime} t a} \mid H_{e}^{\prime} \in \Gamma_{S^{\prime}}^{\prime}\left(H_{e}^{\prime}\right)$. This implies $\Gamma_{s^{\prime}}^{\prime}\left(H_{a}^{\prime}\right) \varphi \subseteq \Gamma_{s^{\prime}}^{\prime}\left(H_{e}^{\prime}\right)$. Analogously $\Gamma_{S^{\prime}}^{\prime}\left(H_{e}^{\prime}\right) \varphi^{\prime} \subseteq \Gamma_{S^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$. It should be clear that $\left(\lambda_{t} \mid H_{a}^{\prime}\right) \varphi \varphi^{\prime}=\lambda_{a a^{\prime} t a a^{\prime}}\left|H_{a}^{\prime}=\lambda_{t}\right| H_{a}^{\prime}$, and consequently $\varphi \varphi^{\prime}$ is the identity mapping of $\Gamma_{S^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$. Similarly, $\varphi^{\prime} \varphi$ is the identity mapping of $\Gamma_{S^{\prime}}^{\prime}\left(H_{e}^{\prime}\right)$, and so φ and φ^{\prime} are mutually inverse one-to-one mappings between $\Gamma_{S^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$ and $\Gamma_{S^{\prime}}^{\prime}\left(H_{\rho}^{\prime}\right)$. Let us now assume that $\lambda_{t_{1}} \mid H_{a}^{\prime}$ and $\lambda_{t_{2}} \mid H_{a}^{\prime}$ are elements of $\Gamma_{S^{\prime}}^{\prime}\left(H_{a}^{\prime}\right)$. Then

$$
\left(\left(\lambda_{t_{1}} \mid H_{a}^{\prime}\right) \circ\left(\lambda_{t_{2}} \mid H_{a}^{\prime}\right)\right) \varphi=\left(\lambda_{a} \mid H_{e}^{\prime}\right) \circ\left(\lambda_{t_{1}} \mid H_{a}^{\prime}\right) \circ\left(\lambda_{t_{2}} \mid H_{a}^{\prime}\right) \circ\left(\lambda_{a^{\prime}} \mid H_{a}^{\prime}\right)
$$

$$
\begin{gathered}
=\left(\lambda_{a} \mid H_{e}^{\prime}\right) \circ\left(\lambda_{t_{1}} H_{a}^{\prime}\right) \cdot\left(\lambda_{a^{\prime}}^{\prime} \mid H_{a}^{\prime}\right) \quad\left(\lambda_{a} \mid H_{e}^{\prime}\right) \circ\left(\lambda_{t_{1}} H_{a}^{\prime}\right) \quad\left(\lambda_{a} \quad H_{a}^{\prime}\right) \\
=\left(\lambda_{t_{1}} \mid H_{a}^{\prime}\right) \varphi \quad\left(\lambda_{t_{2}} \mid H_{a}^{\prime}\right) \varphi .
\end{gathered}
$$

Therefore φ and φ^{\prime} are group morphisms. We conclude that q and q^{\prime} are mutually inverse isomorphisms. The rest follows dually.
(vi) implies (i). If e is an idempotent of $D \cap S^{\prime}$, and $a \in L_{e} \cap S^{\prime}$, then S^{1} contains an element a^{\prime} such that $a^{\prime} a=e$. Then $\lambda_{a} \mid R_{,}^{\prime} \cap L_{a} \quad \lambda_{a} \quad H_{p}^{\prime}$ and $\hat{\lambda}_{a}, \mid \boldsymbol{R}_{a}^{\prime} \cap L_{a}$ are mutually inverse one-to-one mappings between H_{e}^{\prime} and $R_{a}^{\prime} \cap L_{a}(4)$. Let c be an element of $R_{a}^{\prime} \cap L_{a}$, then S^{1} contains a t such that $t a=c$. Consequently $a^{\prime} t a \in H_{\rho}^{\prime}$ and $\lambda_{a \prime t a} \mid H_{\rho}^{\prime} \in \Gamma_{S^{\prime}}^{\prime}\left(H_{\rho}^{\prime}\right)$. By (vi)

$$
\left(\lambda_{u^{\prime}+a} \mid H_{e}^{\prime}\right) \varphi^{\prime}=\left(\lambda_{a}, \mid H_{u}^{\prime}\right) \circ\left(\lambda_{u^{\prime} \not t u}{ }^{\prime} H_{e}^{\prime}\right) \circ\left(\lambda_{a} \quad H_{e}^{\prime}\right) \in I_{s^{\prime}}^{\prime}\left(H_{u}^{\prime}\right),
$$

or,

$$
\lambda_{u_{u \mu^{\prime} t u u^{\prime}}} \mid H_{a}^{\prime} \in I_{s^{\prime}}^{\prime}\left(H_{a \prime}^{\prime}\right)
$$

Therefore

$$
\left(a a_{b}^{\prime} t a a^{\prime}\right) a \in H_{a}^{\prime},
$$

or

$$
\begin{gathered}
a a^{\prime} c e \in H_{a}^{\prime}, \\
a a_{u}^{\prime} c \in H_{a}^{\prime} .
\end{gathered}
$$

Since $\lambda_{a}, \mid R_{a}^{\prime} \cap L_{a}$ and $\lambda_{a} \mid H_{e}^{\prime}$ are mutually inverse one-to-one mapping, between $R_{a}^{\prime} \cap L_{a}$ and H_{\bullet}^{\prime}, we must lave $a a^{\prime} c-c \in H_{a}^{\prime}$. We have $R_{a}^{\prime} \cap L_{a}=H_{a}^{\prime}$. Dually we can rove that $L_{a}^{\prime} \cap R_{a}=H_{a}^{\prime}$. We conclude that $D_{a}^{\prime} \cap H_{a}=H_{a}^{\prime}$.

REFERENCES

[1] GREEN, J. A.: On the structure of semigroups. Amm. Math., 54, 1951, 16:3 172.
[2] CLIFFORD, A. H.-PRESTON, G. B.: The Algebraic Theory of SemigroupVol. I., Providence, 1961, p. 9.
[3] SCHUTZENBERGER, M. P.: $\overline{\mathscr{D}}$-représentation des demi-groupes. C. R. Acad. Scı. Paris, 244, 1957, 1994-1996.
[4] PASTIJN, F.: \mathscr{D}-struktuur van een deelsemigroep ran cen gegeven semigrocp. Verh. Kon. Vl. Acad., Klasse Wet., 1973.
[5] PASTIJN, F.: De \mathscr{D}-struktuur van de deelsemigroepen van een semigroep. Doctoral Thesis, Rijksuniversiteit Gent, 1974.
[6] MILLER, D. D.-CLIFFORD, A. H.: Regular \mathscr{D}-classes in semigroups. Tram. Amer. Math. Soc., 82, 1956, 270-280.

Received December 5, 1973
Ro.
B-9930 Zomergem
Belgium

