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A THEOREM CONCERNING THE RESTRICTION 
OF THE ^-STRUCTURE OF A SEMIGROUP S 

TO A SUBSEMIGROUP OF S 

FRANCIS PASTIJN 

N o t a t i o n s . By J£, 0fc, :ff', Q) we mean Green's relations for a semigroup S 
and JS?', 8%', Jf, Q' will be the relations of Green lor the subsemigroup S' of S. 
The JS?-class [resp. J§?'-class] containing a will be denoted by La [resp. L'a] and 
analogously for what concerns the other relations of G r e e n (1). 

Xa [resp. Qa] denotes an inner left [resp. right] translation (2). 
FS' (H'a) means the Schiitzenberger group of Ha in the semigroup $ ' and 

r'S' (H'a) its dual Schiitzenberger group (3). TV (H'a) denotes the set {t e S' || 
H'at c H'a} and TS' (H'a) denotes the set {t e S' \\ tH'a c H'a). 

We shall use the following lemmas, which are mentioned in (4) and (5). 
The first one is a direct consequence of Green's lemma. 

Lemma. Let a and b be elements of S' such that aMb; then Sl contains elements x 
and x' such that ax = b and bx' = a. The mappings QX \ L'a and QX' | L'b are 
mutually inverse 0l-cla3s preserving one-to-one mappings between L'a and Lb. 
If a0l'b, then QX \LaC\ S' and QX> \ L0 n S' are mutually inverse M'-class pre
serving one-to-one mappings between La n S' and L? n S''; in this case QX> \ La C\ S' 
and QX' \ Lb n S' map ££'-classes onto ££"-cla3ses and ^'-classes onto £F'-classes. 

Lemma. If a is any regular element of S', thm H'a = Da n Ha. 
Now we prove our main theorem. 

Theorem. Let D be a regular &-cla3s such tha) the J§f'-classes and ^-classes 
which have a non-void intersection with D n S', contain at lea3t one idempotent 
in D C\ S'. Then the following conditions are equivalent: 

(i) If aeDn S', then DanHa= H'a. 

(ii) If e, f are idempotents in D C\ S', a e Lc n B/ n S', and a' e Rj n Lf 
is an inverse of a in S, then the mappings 

0 : H'e -> H'f, x -> axa' 
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and 

0':H'f ->H;, y ->a'ya 

are mutually inverse isomorphisms. 

(iii) If a, ag e Ra n S', with g eS, then H'ag = H'ag, and, if b, qb e Lb n Sf 

ivith q e S, then qH'h = H'qh. 

(iv) If e is an idempotent of D n S', and a e Le n S', b e Re n S', then aH'h 

= H'ab = H'aH'h = H'ah. 

( v ) If e> f a r e idempotents in D n S\ and a e Le n Rf n S', then IV (H[) 
= Ts> (H'a) and T'»> (H'f) = T's> (H'a). 

(vi) If e, f are idempotents in D n S', a e Lt n Rf n S', and af e R> n Lf 

is an inverse of a in S, then the mappings 

<P : Гs' (II;,) ->r;-(II;), h 1 II; * K'Ы II;, 

and 

<P''Гls :- (II;.) ->Iy (II;,), Ås III; 'чtm III;, 

W : IV (II;)-> I x I I ; ) , Qv III; " ^ Qaiчľ II;> 

and 

y> : 1 s' (II;) -*ГS'(K), Qw III; Qa')ra iII;, 

are pairs of mutually inverse isomorphisms. 

P r o o f . 
(i) implies (ii). Since aS£e, with ae = a and a'a = e, the left inner translation 

Xa | Re is a one-to-one mapping of 22' upon 22,. Moreover, this mapping /« i? 
is JS?-class preserving (4). D'a r\ Ha = Ha implies Rar\La — H'a, and 
D'e n He = H'e implies R'e n La = H'e. Thus Aa | H'e is a one-to-one mapping 
of H; upon H;. Since a^ / , with aa' = f and fa = a, the inner right translation 
qa' | L; is a one-to-one mapping of L'a upon L'f. Moreover, this mapping is 
^-class preserving (4). D'a n Ha = H'a implies L'a n Ra = Ha, and D'f n H, 
= H'f implies LfnRa = H'f. Thus Qa> | Ha is a one-to-one mapping of H,', 
upon H'f. We conclude that @ = (/a | H'e) Q (ga' \ H'a) is a one-to-one mapping 
of H; upon H'f. Dually, 0' = (ga \ H'f) o (.V | H'a) is a one-to-one mapping 
of H'f upon H'e. Clearly &' is the inverse of 0. If a; and y are elements of H'e 

then (xy)0 = axya' = axeya' = axa'aya' = (x)0(y)0. We conclude that 6> 
and 0' are mutually inverse isomorphisms. 

(ii) implies (iii). Since a£ffag, the right inner translation qg \ La is a one-to-one 
mapping of L'a upon Lag, and since this mapping is ^-class preserving, 
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(L'a n Ba)g = (L'ag n Ba). D n S' contains the idempotents e and / such tha t 
aeLenBfr\S'. We know that HeC\D'e = H'e and Hf r\ D'f = H'f (4). 
Let a' be the inverse of a contained in B3 n Lf. Let b be an element of L'ar\Ba. 
The inner right translation qa \ L'f is a one-to-one mapping of 2>̂  upon L'a. 
More precisely, Da | L'f will map L, n i?a upon L'ar\Bx. We can put L'f r\ Ba = 
= H'f, since Hf n Df = IIf. Thus b = xa for some xeH'f. By (ii) a'b = 
= a'xa e H'e. The inner left translation A« | I?; is a one-to-one mapping of i ^ 
upon i j ; . More precisely, Xa \ B\ maps JR! n L a upon Bdr\La. Since a'xa G 
G i j ; n i a , we have a(a'xa) eB'a n La, or, fxaeB'dnLa, or b= x^Gi? ; . 
We conclude that L'ar\ Ba = H'a. In a similar way we can prove L' n Ba = 
= H^. Hence H^ = H;^. The rest follows dually. 

(hi) implies (iv). If e is an idempotent of D n S', and a e Le n S', b G Be n S', 
then aHb = IIab = HaHb = Hab (6). Evidently ab e Ba n Lb n # ' , and there
fore, by (iii) H;b = aH'b = H'ab. Let c e H'a, then cH; = H;6 by the same 
argument. Since cb e H'ab = H'ab we must have H'cb = H'ab, and so cHb = H'ab 

for any c e H'a. We conclude that H;H^ = ( J cH; = Hab. 
ceH'« 

(iv) implies (v). Let t eTs>(H'a). Then Q> \ La n S' is a ^ ' -class preserving 
one-to-one mapping of K« n S' upon itself (4). If e is an idempotent contained 
in La n $' , we must have i^; n La = H'e, and hence e£ G H;. The element £ 
therefore belongs to Ts>(H'e), and we can put Ts>(H'a) ^ Ts>(H'e). 

If in (iv) b = e, then aH; = H;, This implies H'aTs(He) = aH'eTs(H'e) = 
= e»H; = H;, and so Ts>(H'e) c ?V(H ; ) . 

We conclude that ?V(H;) = Ts>(H'a). The rest follows dually. 
(v) implies (vi). If a e Le n S' and e e D n S', a' is any inverse of a in Be, 

we know that Xa \ He is a one-to-one mapping of He upon Ha, and .V | Ha 

is its inverse. Furthermore, ae = a. By (v) azTs>(H'e) = aTs>(H'a), or, aH; = 
= H;. Hence, Xa \ H'e and .V | H'a are mutually inverse one-to-one mappings 
between H'e and H'a. If Xt \ H'a e r's'(H'a) and x e H'e, then 

(x)2a o ft | H;) o A«' = (ax) (h | H;) o Xa, 
= (tax)Xa, 
= a ' t e G H;. 

Thus, ft, | /<) o (Xt I H;) o (X^ | HJ = ^ , t e I H; G r ^ (H ; ) . This implies 
r's>(H'a)(p <= Fs"(H;). Analogously r's>(H'e)(p' c r's>(H'a). I t should be clear tha t 
ft \H'a)(p(p' = V w | H; = A* | H;, and consequently w ' is the identity 
mapping of r's,(H'a). Similarly, (p'(p is the identity mapping of r's>(He), and 
so (p and <p' are mutually inverse one-to-one mappings between rs,(H'a) and 
r's.(H'e). Let us now assume that Xtl \ H'a and Xt2 | H; are elements of rs,(Ha). 
Then 

(ftx i H'a) o ft, i H'a))(p = ( ^ i H;} o (xh i H;) o ft21H;) o (*.. i ira) 
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=- (la | H'e) o (A„ II.) , (X'a. ! K) (la | H't) o (lh K) (la. H'u) 

= (K i K)f (4 ! K)v-
Therefore cp and oj' are group morphisms. We conclude that cp and cp' arc 
mutually inverse isomorphisms. The rest follows dually. 

(vi) implies (i). If e is an idempotent of D n S', and a G Le n £', then &l 

contains an element a' such that a'a = e. Then /rt | I?' n La Aa H^' and 
},a> \ B'aC\ La are mutually inverse one-to-one mappings between H'e and 
B'a n La (4). Let c be an element of B'a n Fa, then &1 contains a t such that 
fa = c. Consequently a'ta e H'e and A0/^ | H'e eF's>(H'e). By (vi) 

( ^ , I KW = fa- I K) ° {h'ta ' # ) > (^ # ) e ' U K ) > 
or, 

'*(«('tan' I II « G I ,s"(IIw) • 

Therefore 
(aa'taa')a e H'a, 

or 
aa'ce G H,', , 

a«'c G H^ . 

Since Aa> | I^J n K« and la \ He are mutually inverse one-to-one mappings 
between B'aC\La and H',, we must l ave aa'c ~ c e H'a. We lmve 
B'a C\ La = Ha. Dually we can prove that L'a n Ba — H'a. We conclude that 
DanHa = Ha. 
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