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ON THE DISTRIBUTION OF ZEROS 
OF EXPONENTIAL POLYNOMIALS 

A. J. van der POORTEN 

1. Introduction 

We employ a generalisation of the method described in P. Turan's book Erne 
neue Methode in der Analysis undderen Anwendungen [3] and find a lower bound 
for 

max iGfc—'Uo)! 

Where G(z) is a function of the shape 

G(z)=%kZ
a* . 

k = \ 

As an illustration of the technique of generalisation by particularisation [5] we 
show that this result implies a similar lower bound for functions of the shape 

*F(z)=ffa^nzy-lz^ 
k = \ s = \ 

Jensen's Theorem now permits the estimation of an upper bound for the number of 
zeros of F(z) in discs in the complex plane. By writing z = e" we obtain upper 
bounds for the number of zeros of exponential polynomials in certain regions of the 
complex plane. We show that: 

m rt(fc) 

Theorem. Let E(z)= 2 ^j~kPzp~leakZ be an exponential polynomial and let 
k = \ p = \ 

m 

o= ^\n(k) A =max |a, — ak\ 
k=\ >»•* 

Then in any disc of radius R in the complex plane E(z) has less than 

3(o-l) + 6RA 

zeros. 
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The problem of analysing the distribution of zeros of exponential polynomials is 
of considerable importance in many fields of pure and applied mathematics. The 
results mentioned therefore have some intrinsic interest. Our principal purpose 
however is to illustrate a useful technique and to show that methods previously only 
applied to exponential polynomials or power sums are applicable in somewhat 
more general contexts.' For this reason we do not directly consider exponential 
polynomials (see [4]) though to do so would have produced results similar to those 
of this paper. 

2. We consider a function G(z) of the form 

k-\ p = l 

where the quantities fkp are described below, and the akp are complex numbers-
Further let a be the sum n(l) +... + n(m) of the non-negative integers n(k). 
Finally let z0 be distinct from zero. Denote by A the a x a determinant 

Л m z°kp 

where the notation implies that rows are indexed by the pairs (k, /?), l^k^m; 
1 ^p^n(k), arranged lexicographically, whilst columns are indexed by A, 1 ^ A ^ 
a. Further, denote by A^kp the cofactor of the (kp, A) element of A. 

Then we have immediately, 

±G^\zo)Ak,kp = fkpA, 
A = l 

whence, for any Zi^O 

±G^\Z0) § nfAx,kpZ>= J nffkpz>A - G(Zl)A , 
A = l * = 1 p-\ k-\ p = \ 

and thus 

f ,.._, ( q - Л ) ' , n , ҳ ,_(Л „ ( g - 1 ) ! 
"Л1,(^І)!ŽP?,^.^=G(z,)Л. A-i ( a - 1 ) ! 

Taking absolute values, we obtain immediately: 

Lemma 1. There is an integer [i, l^fi^o, such that 

7» ' І£. äІL Cт<.ľ-»(7 \ 
(ст-1)! K ' 

G(zö f ( g - l ) ! L <л-
í-1(a-A)!Г0 

nf n(k)Л 

І-Є т?*, 

*=-l p 1 

3. We adopt the notation, that for non-negatrve integers n 

xn-x(x-l). .(x-n + l)9 x'°=l . 
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Then we see that the determinant A may be expressed in the form 

A — | r y ! ( A - l ) r « f c p - ( A - l ) | 
- - - \Ukp -Co P \kp,k 

whence it follows that the cofactors Ak,kp satisfy: 

Zo 2,ahq .Ax,kp.z0 [A {htq) = {ktp) 

Hence we obtain by summing over (k,p) 
a m n(k) A 

(1) 2 ^ " ° E S T z>a%'» = (zJzoY* 
A = l k = \ p = l --» 

Now let 

P(z)=2^z , ( A - 1 ) 

A = l 

be the unique polynomial of degree o — 1 defined by the o conditions 

P(ahq) = (z1/z0)
ah« , ...l^h^m; l^q^n(h) 

Then by uniqueness, the equations (1) imply 

(2) so""-" t "f - V • *> ='»; 1 ̂ A^a . 
>t = l p = l - - -

If we write P(z) as an interpolation series 
m n(k) 

(3) -*(*)=!£ 2-»», n (*-«*<), 
A: = l p = l (*..7)<<*.p) 

then the interpolation coefficients blp are given by the contour integrals 

b*p=TZ$(zJzoy n (c-«/.<,)-'dC 
-~"71'* Jr (h,q)^(k,p) 

where the closed contour r may be taken as a circle about the origin of sufficiently 
large radius to contain all the points xkp. 

We assert that, with the notation as above: 

Lemma 2. 

S=t{7^-%\c^t"f\bkp\ n (a-l + kJ). 
A = l \U A ) . fc = l p = l (h,q)^(k,p) 

To see this, observe that our claim is trivial when all the ck are real and positive, 
since then the left hand side is simply P(o— 1), and by (3) the right hand side is 
assuredly as large as P(o— 1). Since the cA are expressible as a polynomial 
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combination of the bkp and the (-akp) with positive coefficients (apply the 
difference operator, which sends f(z) to f(z + X)—f(z), A — 1 times to P(z) in order 
to obtain (A - 1)!CA), the assertion remains, a fortiori, true in general. 

Recalling (2) we note that Lemma 1 has now become: There is an integer \i, 
l^/i^o, such that 

(4) \G<»-»(zo)\&\zo\ ' " " " { f r ^ r - M G U . ) ! . 

with Lemma 2 providing a convenient lower bound for 5 \ Writing 

A = max I аk, 
(k л) 

we obtain 

IlЛ,,^ т Ь f l г . / z o Һ ' П ( C - A ) - d C 
^ J l L JГ (h, q)=£(k,p) 

with the + or - sign being selected according as \zi\ ^ |z0| or |^.| *< |Zo|. Hence by 
Lemma 2, 

fťi \Zm ) , 
. ( a - l + Л) / + 1-^ 

Then if 

(5) 

= ±(±\f^f~l \zJz0\**(o-l + Ay-. 

zJzo\ is close to 1, we obtain the tidy estimate 

5=Sexp { ±(log|z,/z0|)(<y- 1+ 2A)} = \Zl/z0\
+"-l+2^ 

A more precise estimate may be produced as follows: we write 
x = ±\og\zi/z0\(o-l + 2A) = k(o- 1) and assume k>l. Then 

Z (7=1)!= 2^ JW_R V 1 " ( f ) ) e* J~H = 2~ti !,.« te*'"'^1) e* p 
Hence taking R—x/k — o—1 we obtain 

^ÍI -
\ (]>>' l W * *£(k/k - I)*"-1 e""1 = (k/k - i)ea -logA:)(a-l) 

rf(/-l)!| 

whence finally 

(6) ?-|/./.., | . (A/A- l . -' +<",*Ko ' 

4. We employ a subterfuge to finally obtain the result we requjre Thus we 
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choose the coefficients fkp of G(z) as functions of the akp so that, if the akp are 
constants, not all zero, 

"itU"* = f(P - 1)! fe | z'ft (r - a*,)"* dC 
P = i P = I -""T-7* J r q = i 

where the closed contour F contains all the akp. If we now identify the akp 

according to, say 

akP = ak\ = ak , l^k^m; l^p^n(k) , 

then the function G(z) becomes 

F(z)=fj
nfJakp(\ogz)p-lz^ . 
k = \ p = \ 

Hence, by (4) we obtain the principal auxiliary result 

Lemma 3. There is an integer //, l ^ ^ ^ a , such that 

lE""1^)! 2* k„|-<"-» £ ^ j s-|F(z,)l 

where upper bounds for S are given by (5) or (6). 

This result is an analogue of the Main Theirems of P. Turan [2, 3, 5]. From it we 
immediately derive a further auxiliary result by Cauchy's inequality and the 
maximum modulus principle. 

5. Thus let 0 < Ru R2 < \z0\. By the maximum modulus principle the maximum of 
\F(z)\ on the disc \z-z0\^R\ occurs at some point Z\ on the circle \z-z0\ = R\. 
We observe that \z\\ ̂  \z \- R\. Hence by Lemma 3 we obtain 

(7) max |PTz)| = |F(z1)l^max ^f~% koM-F^CzcOl-S 
U - z o l ^ R i \^ti*z<7 {O — l) ! 

where S is given by (5) or (6) with \zjz0\
±l replaced by |z0|/|z0| - /?,.. Further, by 

Cauchy's inequality and the maximum modulus principle there is a point z2 on the 
circle \z - z0\ = R2 so that for | ^ { i ^ o 

(*\ l^-^Uo)! = Qi - 1) W-" , max |F(z)| = (fi - 1) !/?;<- »\F(z2)\ 
yO) \Z Z 0 I^«2 

Thus we obtain by combining (7) and (8) that: 

Lemma 4. IfO<Ru R2<\z0\ then there is a point z2 on the circle \z- z0| = R2so 
that 

max «jTO/^oi-ss.m«{(izbi/-?-)'«/(j;:j)}= 
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= s(\Zo/R2y-1 

An application of Jensen's Theorem now suffices to give us our final results. 
Denote by N(w, R,F) the number of zeros of the function F(z) in the disc 
{z: \z—w\<R}. Then if F is holomorphic on the disc {z: \z~ w\^SR} and 
F(w)^0, Jensen's Theorem asserts: 

fsRN(w,r,F)dr= 1 p l o g | F ( H , + j / ? e ^ ) | d^-log|F(w)| . 

Jo r IK J0 

Then, as in [2; p 54—5] we see that if s > 1 

fsRN(w,r,F)dj^^ f ' « " N(w,r,F)dr 
Jo r k-0 JRS

 k r 

* = ü 

S^N(w, Rs \ F)(\ogsRs~k -\ogRsk) 

= iogs-^N(w,Rs-k,F). 
k=0 

Hence it follows from Jensen's Theorem that: 

Lemma 5. 

f,N(w, ^ , I } ^ , m a x \og\F(z)/F(w)\ . 
j ^ Q iOgS \z-w\*isR 

We now apply Lemma 4 and Lemma 5 with the following parameters: Let u, s, 
t be positive numbers with s > 1, t< 1 and u >s +1. We select R such that \z0\ = uR 
and Rl9 R2 such that R, = (s + t)R, R2 = tR. Then according to (5) and (6) the 
quantity s is such that 

(9) l o g S ^ ( a - l + 2A) \og(u/u-s-t) 

or 

(10) logS^A log(w/ l / -s - / ) + l og (^ /k - l ) + ( l+ logk ) (c j - l ) 

with k given by: 

(a-l)k = (a-l+A)\og(u/u-s-t) . 

Moreover since the disc {z: \z~ z0\^R(l — t)} is contained in {z: \z-z2\^R} we 
see that 

N(z0, R(l ~ *), F)^N(z2, R, F)^N(z2, Rs k,F). 
*=-0 
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Hence by Lemma 4 and 5 and the estimate (9) for 5: 

iVfco, K(l " t), F)^~ max log|.Fl(z)/F(z2)| 
l O g s \z-z2\^sR 

(11) ^ r ^ - max log|F(z)/F(z2)| 
l O g s \z-z0\*Z(s+t)R 

^ ^ {(a- 1 + 2A) log(w/« - s -1) + ( a - 1) log(w/f)} 

Selecting, say, « = 20, s = 5,3, t = 0,2 we obtain 

(12) N(z0,R(l-t),F)z(().2)(o-l + 2A) + (2.8)(o-l) 

(more precisely, the constants are respectively 0,/93... and 2,762...). This result, 
which does not appear to have been observed previously, is perhaps of some 
incidental interest in its own right. For example, the the independence of the result 
on the value of R is at first sight startling. It is not difficult to see however why this 
should be so and we will observe a similar phenomenon on considering exponential 
polynomials. 

6. By replacing z by ez the function F(z) becomes the exponential polynomial 

m n(k) 

fc=»l p = l 

and the estimate (12) asserts that E(z) has at most (0.386)A+ (2.955)(<r-1) 
zeros in the region defined by {Z: |ez -zo |^(0.8).R} where |z0| = 20i?. But it is 
known that because the estimate is independent of the coefficients akp and only 
roughly dependent on the exponents ak and the degrees n(k) and independent of 
R, therefore it is valid for any convenient value of R and will hold for any affine 
transform of the region then obtained; for details see [4]. Selecting z0 = l so 
7? = 0.05, the region becomes {Z: |ez - 1 | ^ 0 . 0 4 } . But this region contains the 
circle {Z: |z| ^0.039}. So, when r = 0.039 it is the case that in the disc {z: \z\ ̂  r} 
the function E(z) has at most 

(13) 10Ar + 3 ( a - l ) . . . 

zeros. We assert that this result is valid for all r and indeed for discs with any 
centre, as a consequence of the invariance mentioned above; one can see this by 
observing that the transformation z*-±zl, ak*->akll (all k) leaves the estimate (13) 
invariant and affects only the coefficients of E(z) and similarly that the transforma
tion z*-*z- P affects only the coefficients of iB'(z). Finally, if A =max | a ; - a * | 

/ , k 

then there exists aeC such that max \ak-a\ = zwV3; observing that E(z) and 
k 
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e aE(z) have the same zeros, it is clear that in (13) we may replace A by AN3. 
Hence we have shown that the exponential polynomial E(z) has at most 

(14) 6AR + 3(o-\) 

zeros in any disc of radius R in the complex plane, which is the Theorem. 
7. There is of course no suggestion that the estimate (14) is optimal; indeed in 

asymptotic cases even our method provides better results. For example, suppose n 

is large and in (11) we select the parameters as S = 2"( 1 H— j 

u~sl\— s Vn. Then (12) becomes 

N(z^R(\-t),F)^(o-\ + 2A) + (\+^(o-\) 

and as the right-hand side of this neauality must be an integer we obtain 

N(z0, R(\-t), F)^o-\ if 2(A + o-\)<n 

It follows that if n satisfies this inequality then in any disc of rad us les than 
n e l2 n the exponential polynomial E(z) has at most o—\ zeros. This r suit is 
best possible in the sense that the exponential polynomial may have a zero of order 
o — 1 at any given point. 

Conversely it can be shown that for large R our estimates imply that in discs of 
radius R the number of zeros of the exponential polynomial E(z) is of order e RA. 
This result is non-optimal. Indeed, by other methods [1] it is known that the correct 
result is, order less than RA. 

I acknowledge the assistance of Mr. P. O'Sullivan in performing some of the 
calculations for this paper. 
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О РАСПРЕДЕЛЕНИИ НУЛЕЙ ПОКАЗАТЕЛЬНЫХ МНОГОЧЛЕНОВ 

А. Й. ван дер Поортен 
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