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ON PROPERTY K IN F-SPACES 

JÓZEF BURZYK — ANDRZE J KAMINSKI 

(Communicated by Michal Zajac) 

ABSTRACT. The following property of K-subspaces in an arbitrary F-space 
X of dimension c is obtained without the Cont inuum Hypothesis by means of a 
transfinite construction: given an arbitrary Fa -subspace E of X of dimension c 
and infinite codimension and an arbitrary Ka -subspace F of X such tha t FnF = 
{0} there exist dense K-subspaces Yx and Y2 such tha t E®Y1 = E®Y2=X 
and Y! H Y2 = F. A generalization of this result and various consequences are 
proved in this paper. 

1. Introduction 

Let us start with two definitions. We say that a topological linear space X 

1° has property K or is a K -space if every sequence convergent to 0 in X 
contains a subsequence which is summable in X, 

2° has property N or is an N-space if every sequence convergent to 0 in X 
contains a subsequence every subsequence of which is summable in X. 

Clearly, property N implies property K. The converse is not true; an appro
priate example is given in [15]. Every F-space (i.e. a complete metrizable linear 
space) is an N-space, but there exist non-complete metrizable linear spaces 
which are if-spaces (see [14] and [15]) and even iV-spaces (see [4]). 

Property K was introduced by S. M a z u r and W. O r l i c z [17] (see also 
[1]) as a substitute for completeness in various theorems of functional analysis. 
In the seventies, it was considered (under the present name) at the seminar of 
Professors J. M i k u s i n s k i and P. A n t o s i k in Katowice and subsequently 
studied by various authors (see e.g. [14], [15], [2], [13], [16], [3], [4], [12], [6]). 
Property N was studied by A. A l e x i e w i c z in [1] and then in [9], [19], [4] 
and [6]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 46A16, 40A05; Secondary 15A03, 46A35. 
K e y w o r d s : F-space, property K , property N, F^-subspace, Ka-subspace, dense algebraic 
complement. 
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According to the known theorem of J. Lindenstrauss and L. Tzafriri, in every 
infinite-dimensional Banach space nonisomorphic to a Hilbert space, there exist 
closed subspaces without closed algebraic complements. In contrast, the following 
nice property was proved in [6] (see [6; Theorem l(ii)]) for F-spaces X of 
dimension c: given an F^-subspace (i.e. a countable union of closed sets) E of 
infinite codimension and a Ka -subspace (i.e. a countable union of compact sets) 
F in X such that E D F = {0} there exists an enlargement of F to a dense 
algebraic complement of E with property K. 

In the case d i m F = c, the above result can be strengthened as follows: if 
the space X and subspaces E and F satisfy the above mentioned assumptions, 
then there exist two dense algebraic complements Yx and Y2 of E with property 
K such that Y1nY2= F (see Theorem 2 in Section 2). 

On the other hand, the following observation in a negative direction was made 
in [16]: the intersection of two If-spaces is not generally a if-space, i.e. property 
K is not multiplicative (the same is true for the product of two if-spaces). 

This result will also be strengthened in the paper as follows: given a subspace 
E of X, where X and E are as before, and a subspace H such that EC\H = {0} 
and dimH < c there are two dense algebraic complements Yx and Y2 of E 
with property K such that YlC\Y2 = H (see Theorem 3 in Section 2). Thus the 
structure of K-spaces is not preserved under intersection (see also Propositions 2 
and 3 in Section 2 and [7; Corollary]). 

The results mentioned have a common generalization which is the main as
sertion of this paper (see Theorem 1 in Section 2). 

For precise formulations of the results of the paper see the next section and 
for their proofs see Section 4. 

The proof of Theorem 1 is based on a transfinite construction and several 
lemmas given in Section 3. We follow the ideas of [6]. It should be emphasized 
that the Continuum Hypothesis is not assumed in the paper. 

2. Formulation of the results 

By an F -space we mean a complete metrizable topological linear space (over 
either the real or complex field) or, equivalently, a linear space equipped with a 
complete F-norm\ let us recall that for a given F-norm in a linear space there 
exists an equivalent non-decreasing F-norm (see e.g. [18; pp. 1-8]). 

Suppose that two F -norms are given in a linear space X and that the topolo
gies generated by them satisfy the property K (resp. property IV), introduced 
in Section 1. One may ask whether the topology generated by the sum of these 
F-norms satisfies property K (resp. property IV) as well. 
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The following straightforward assertion (Proposition 1) gives a partial answer 
to this question under the assumption that the given F-norms are compatible. 

We say that two F-norms || • \\x and || • ||2 in a linear space X are compatible 
whenever the following implication holds: if ||£n - £||j -» 0 and ||£n - 77||2 -> 0 
as n -> oo, then £ = rj for arbitrary £n, £, rj £ X . In particular, if there exists a 
HausdorfT topology in X weaker than each of the topologies generated by given 
F-norms || • ||x and || • | |2, then these F-norms are compatible. 

PROPOSITION 1. Let X be an arbitrary linear space, let \\ • ||x and \\ • ||2 

be compatible F-norms in X and let || • ||3 := || • ||x + || • | |2 . The following 
implications hold: 

( a j / / ( X J I ' l l j ) and (X, ||-| |2) are N-spaces, then (X, ||-| |3) is an N-space; 

(a2) If (X, || • \\x) is a K-space and (X, || • ||2) is an N-space, then (X, || • ||3) 
is a K-space. 

The next statement shows that the assumption of compatibility of the 
F-norms in Proposition 1 is essential and cannot be omitted even under the 
stronger assumption that the norms are complete. 

PROPOSITION 2. Let (X, || -1|x) ^e an arbitrary F-space of infinite dimension. 
Then there exists an F-norm \\ • ||2 in X such that 

( b ^ (X, || • ||2) is an F-space; 

(b2) {X, || • ||3) is not a K-space, where || • ||3 := || • ||x + || • | |2 . 

On the other hand, we observe that the assumption in the implication (a2) 
of Proposition 1 cannot be relaxed by assuming that (X, || • ||f) are K-spaces 
for i £ {1,2}. In fact, the following assertion is true: 

PROPOSITION 3 . Suppose that (X, || • ||) is an arbitrary F-space such that 
dim X = c and there exists a closed subspace of X of infinite dimension and 
infinite codimension. Then there exist F-norms \\ • 11x and || • ||2 which generate 
stronger topologies than || • || (and so || • ||x and \\ • ||2 are compatible) such that 

(cx) (XJ I - I I J are K-spaces for ie {1 ,2} ; 

(c2) (X, || • ||3) is not a K-space, where || • ||3 := || • 1̂  + || • | |2 . 

Proposition 1 is obvious and its proof will be omitted. The proof of Propo
sition 2 is based on a simple construction of an automorphism in an arbitrary 
linear space (see Lemma 9) and is given in the second part of Section 4. The third 
proposition is not at all obvious. We shall obtain it as a corollary of Theorem 3 
which is a particular case of Theorem 1, the main result of this note. 
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Before formulating the main theorems let us introduce Assumption A which 
will be in force throughout the paper. 

Recall (cf. [6]) that a subspace E of an F-space X is called an Fa-subspace 
oo 

of X if E = | J Ek, where the Ek are closed subsets of X for k G N, and a 
k=i 

oo 

Ka-subspace of X if E = \J Fk, where the Fk are compact subsets of X for 
k=i 

keN. 

ASSUMPTION A . Let X be an F-space and let E and F be its subspaces 
such that the following conditions are satisfied: 

(a) d i m X = c; 
(b) E is an Fa-subspace of X; 
(c) F is a Ka-subspace of X; 
(d) EHF = {0}; 
(e) codimJS > N0 ; 
(f) dim.E = c. 

The following is the main theorem of the paper: 

THEOREM 1. Suppose that X, E, F satisfy Assumption A and H is a sub-
space of X such that 

d i m . H < c , (E®F)nH = {0). (1) 

Then there exist dense K -subspaces Y1 and Y2 of X satisfying the identities: 

E®Y1=E®Y2=X, (2) 

Yx n Y2 = F © H. (3) 

Let us formulate two particular cases of Theorem 1. First, taking H := {0} 
in Theorem 1, we get: 

THEOREM 2. Suppose that X, E, F satisfy Assumption A. Then there exist 
dense K -subspaces Yx and Y2 of X such that (2) holds and 

Y^Y2 = F. 

Observe that Theorem 1 easily follows from Theorem 2 under the Continuum 
Hypothesis. In fact, if X , £7, F satisfy Assumption A and H satisfies (1), then 
En(FQ)H) = {0} and, since dim if < K0, F © H is a i^-subspace of X. Hence 
Assumption A is satisfied if F is replaced by F © H, so Theorem 1 follows from 
Theorem 2. 

When the subspace E satisfies condition (f), Theorem 2 strengthens the as
sertion (ii) of Theorem 1 in [6]. This and other results of [6] are proved under 
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the system of five assumptions called Hypothesis H. Due to [15; Corollary 2], 
Hypothesis H is equivalent to the system of conditions (a) - (e) above. Assump
tion A is thus stronger than Hypothesis H, because of the additional condition 
(f) assumed above. 

Now, taking F := {0} in Theorem 1, we obtain: 

THEOREM 3. Suppose that X and E satisfy conditions (a), (b), (e), (f) of 
Assumption A and H is a subspace of X such that E 0 H = {0}. Then there 
exist dense K -subspaces Yx and Y2 of X such that (2) holds and 

Y1nY2 = H. (4) 

The above theorem is related to Theorem 3 of [16], which says that in every 
topological linear space X of dimension c there exist K-subspaces Y1 and Y2 

satisfying equation (4). Recall that a subspace Y of an F-space X is said to 
be a K -subspace if every linearly independent sequence convergent to 0 in X 
contains a subsequence which is summable in Y \ for the general definition in 
topological linear spaces see [10] or [16]. 

In general, the assertions of Theorems 1-3 cannot be extended to the case 
of K;-subspaces. However, they can under the additional assumption that both 
E and F are aiV-subspaces and this result can be proved in a way similar to 
that demonstrated in this paper. Recall that a subspace E of an F-space X is 
said to be an aN-subspace if every linearly independent sequence convergent to 
0 in E contains a subsequence which is summable in X \ E (see [6]). 

The proofs of Theorem 1 and Propositions 2 and 3 are given in Section 4 and 
all auxiliary results are collected in Section 3. 

3. Lemmas 

Let us introduce the basic notation. In what follows X denotes a fixed 
F-space. Elements of X will be denoted by Greek letters £, v, £. etc. (with 
or without indices) and sequences in X by the corresponding Latin letters, i.e. 
x := {£n}, y := {^n}, z := {Cn}> etc. According to the context, the symbol 0 
will mean the zero element of X or the zero sequence in X. 

Given a sequence x = {£n} and elements r/1,...,77n G X in X, we shall 
denote by (x), [x] and fa,..., TTJ the set of all elements of the sequence x, the 
linear subspace generated by this set and the linear subspace generated by the 
set fa,..., rjn}, respectively, i.e. 

Or) := {fn : n £ N} , [x] := lin{fn : n £ N} , fa,... ,7?n] := l in fa , . . . ,TTJ . 

By m, we mean the Banach space of all bounded numerical sequences. Following 
I. L a b u d a and Z. L i p e c k i [15], we say that a sequence {£n} of elements 
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oo 

of X is m-independent if ^ ^n£n = ^ implies Xn = 0 for n G N whenever 
n = l 

{An} G ra. Clearly, every ra-independent sequence in X is linearly independent 
in X (i.e. the set of all its elements is linearly independent). A relationship in 
the converse direction was proved in [15] (see Lemma 5 below). 

By Fin and Inf we denote the families of all finite and of all infinite subsets of 
the set N of all positive integers, respectively. If x = {£n} is a given sequence in 
X, then its subsequence {£Pn } , where {pn} is an increasing sequence of positive 
integers, will also be denoted briefly by x | ^ , where A := {p 1 ,p 2 , . . .} G Inf. 
Given an arbitrary sequence x = {£n} in X satisfying the condition: 

oo 

£na < o o > (5) 
n = l 

we shall use the notation (see [6] and [12]) 

Z(x):={ EL'- Aelnf), m(x) := { £ XJn : {XJ G m l . 
InGA J U = l J 

Due to completeness of the space X, elements of Z(x) and m(x) are well defined. 
We need several lemmas. We begin by quoting some lemmas proved in [6] 

under Hypothesis H, which is weaker than Assumption A. The statements and 
proofs of results in [6] contain a number of misprints which are, however, easily 
spotted and corrected by the reader. We state lemmas from [6] (Lemmas 1-4 
below), removing inaccuracies and using the notation just introduced. 

LEMMA 1. (see [6; Lemma 1] and [12; Theorem 1]) Suppose that X, E, F 
satisfy Assumption A and that sequences x1, x2 in X such that (xx) C E and 
(x2) C F satisfy condition (5). Then there are subsequences yx and y2 of xx 

and x2, respectively, such that 

(E + m(Vl)) n (F + m(y2)) = {0} . 

LEMMA 2. (see [6; Lemma 2']) Suppose that X, E, F satisfy Assumption A 
and that a sequence x in X such that (x) C F satisfies condition (5). / / Z(x)nF 
= 0, then there is a subsequence y of x such that 

Z(y)n(E®F) = ®. 

LEMMA 3. (see [6; Lemma 3]) Suppose that X and E satisfy conditions (a), 
(b) ; (e) of Assumption A and that a sequence x in X such that (x) C E 
satisfies condition (5). If Z(x) n E = 0. then for every subspace H of X such 
that d imH < c we have 

Z(x)n(X\(E + H))^Q. 
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LEMMA 4. (see [6; Lemmas 4 and 5] and [12; Theorem 1]) Suppose that X, 
E, F satisfy Assumption A. Then 

codimE = codim(E © F) = c. 

The following result, proved for Hausdorff topological linear spaces by 
I. L a b u d a and Z. L i p e c k i in [15; Proposition 3] (see also [5; Theorem 3]), 
will be used in what follows. 

LEMMA 5. (see [15; Proposition 3]) Every linearly independent sequence in X 
satisfying (5) contains an m-independent subsequence. 

Applying the above lemmas, we now are going to prove three lemmas (Lem
mas 6 -8 ) , needed in the proof of Theorem 1. For the sake of homogeneity, all 
three lemmas are formulated and proved under Assumption A, though Lemma 6 
will be used in the proof of Theorem 1 only when E is a ifa-subspace. 

LEMMA 6. Assume that X and E satisfy conditions (a), (b). (e), (f) of As
sumption A. If H is another subspace of X such that N0 < d imH < c and 
E n H = {0} . then E® H is not a K-space. 

P r o o f . Let x be a fixed m-independent sequence in X such that (x) C H 
and (5) holds. Such a sequence exists by Lemma 5. 

Setting F := [x], xx := 0 and x2 := x in Lemma 1, we conclude that there 
exists a subsequence y of x such that 

E n m(y) = EH ([x] + m(y)) = {0} . (6) 

Let S := {Sa : a < c} be a Sierpiiiski family of sets in Jnf, i.e., 

Sa n Sp G Fin whenever a ^ (3. (7) 

Let us denote ya := y\g for a < c. 

Suppose that E 0 H is a if-space. This means that Z(ya) n (E 0 H) ^ 0 
for a < c, i.e. there exist 

Ca € Z(yJ (8) 

of the form: 
c;« = £« + r7a, eaeE, rja G H, (9) 

for a < c. Since d imH < c, there exist n G N, non-zero scalars Â  and ordinals 
a{ < c for i G {1, 2 , . . . , n} such that 

n 

Ev!Qi = 0 (-0) 
i=l 
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and thus, by (9), 

E\r = x:v-. (11) 
t = i t= i 

The right hand side of equation (11) is an element of E and the left hand side, 
n 

by (8), is a member of m(y). In view of (6), it follows that Yl ^iCQi = 0 a n d , 
i=l 

by (7), this contradicts the assumption that x is m-independent. • 

LEMMA 7. Assume that X, E, F satisfy Assumption A, and that the subspace 
H of X satisfies assumption (1) of Theorem 1, and let F := F 0 t f . Let tfx, tf2 

be subspaces of X and let x be a linearly independent sequence in X satisfying 
condition (5) such that 

dimtf. < c , (E®F)nHi = {0} ( i G {1,2}); (12) 

(F®H1)n(F®H2)=F; (13) 

[x] c P 0 HX , z(x) n (F 0 tfj = 0. (14) 

Then there exists £ swc/i that 

(eZ(x)\(E®F + H), (15) 

tv/iere tf := H1-h H2, and conditions (12) and (13) are satisfied if the subspace 

Hx is replaced by H1 := Hx 0 [£]. 

P r o o f . By Lemma 5, we may assume that x is an m-sequence. Notice that 
F' := F + [x] is a ^ - s u b s p a c e of X , (x) C F ' and, by (14), Z(x) n F 7 = 0 . 
Moreover, Fnf C FH ( F e t f J = {0}, by the first part of (14) and the second 
part of (12), so 1 , .E, F satisfy the assumptions of Lemma 2. Replacing F 
by F' in Lemma 2, we conclude that there is a subsequence y of x such that 
Z(y) n (2? 0 F ' ) = 0. Next, replacing x by y, tf by tf and E by F 0 F' in 
Lemma 3 (all the assumptions of which are satisfied after this replacement; in 
particular, condition (e) for E 0 F' follows from Lemma 4), we see that there 
exists a ( E Z(y) C Z(x) satisfying (15). 

Due to (15), the subspaces H1 := tf1 0 [£] and tf2 satisfy conditions (12) 
and (13). D 

LEMMA 8. Assume that X, E, F satisfy Assumption A and that subspaces 
H, tfj and tf2 of X satisfy the assumptions (1), (12) and (13), respectively, 
withF:=F®H. Then the set A := X\(E®F 0 Hx) is nonempty and for an 
arbitrary £ G A, there exists rj G X such that £ G E 0 [rj\ and 

V & (E 0 F 0 tfj U (F 0 tf), (16) 
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where H := Hx+ H2J and conditions (12) and (13) are satisfied if the subspace 
Hx is replaced by Hx := Hx ffi [rj\. 

P r o o f . Since dimH < c and dimHj < c, it follows from Lemma 4 that 
the set A is nonempty. 

Fix an arbitrary £ G A. It is easy to see that every rj G £ + E does not belong 
to the first summand of the union in (16), 

By condition (f) of Assumption A, there exists a system {sa}a<c of linearly 
independent elements of E. Suppose that £+E C F®H. Then, for every a < c, 
there exist 4>a G F and rja G H such that 

£ + ea = <f>a + ria. (17) 

Since dimH < c, equation (10) holds for some n G N, certain ordinals ai < c 
and certain non-zero scalars A ,̂ where i G {1, 2 , . . . , n}. By (17) and (10), 

( n \ n n 

i = i / t = i i = i 

Since E n F = {0}, we infer that £ A • ^ 0 and so £ G £ © F ffi H!. This 

contradicts the assumption that f G .4. The contradiction means that the set 
B := (f + J5) \ (F ® fl") is non-empty. Clearly, (16) is valid for every rj e B. 

By (16), the subspaces H1 := H1 ® [rj] and .fI2 satisfy conditions (12) and 
(13), where rj is an arbitrary element of the set B. • 

For the proof of Proposition 2 we need the following simple lemma (which is 
generally true in arbitrary linear spaces): 

LEMMA 9. Let H be a proper subspace of X. Then there exists an automor
phism L: X —•> X such that 

(d.) L(0 = ifor £ G H; 
(d2) L(t)?£forteX\H. 

P r o o f . Let Y be a subspace of X such that X = H ® Y. Since every 
( E l can be uniquely represented in the form £ = rj + v with rj G H, v G F , 
it suffices to put L(£) := 77 + 2u for example. • 

4. Proofs of the main results 

We are now going to prove Theorem 1 and Propositions 2 and 3, formulated in 
Section 2. Theorems 2 and 3 are particular cases of Theorem 1, and Proposition 1 
is obvious and its proof is omitted here. 
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P r o o f of T h e o r e m 1. Since cardX = c, the family L of all linearly 
independent sequences in X satisfying condition (5) also has cardinality c, and 
there exists a base B of cardinality c of open sets in X. Arrange all the members 
of X , L and B into transfinite sequences {£a : a < c}, {xa : a < c} and 
{W a : a < c}, respectively. 

Set F := F 0 H. We shall define, by transfinite induction, the subspaces 
Hai satisfying, for all 0 < a < c and i G {1,2}, the following conditions: 

(ex) N0 < dim Hai < N0 + card a, Hal n Ha2 = {0}; 

(e2) (E®F)nHai = {0}'1 

(e3) (F®Hatl)n{F@Ha92) = F; 

(e4) ZaeE®F®Hai; 
(e5) WQn^ai^0; ' 
(e6) #a , i C Jftt |i, where Hoi := {0} and Hai:= \J H0i for a> 0] 

0<a 
(e7) ^ ( a , i ) ) n ( ^ f f a , i ) / « . 

where 

*(a, i) := min{/3 < c : (xp) C F 0 Ha>., Z(x^) n (F 0 Ha>•) = 0} . (18) 

Clearly, (e6) implies 

Hpi c Hpi c IYa?. C Hai, whenever 0 < (3 < a < c. (19) 

Fix 0 < a 0 < c and suppose that Ha { are defined for 0 < a < a 0 and 
i G {1,2} so that conditions (e1)-(e7) are satisfied. First it should be noted 
that F 0 H { is not a If-space. This follows from Lemma 6, where E is 
replaced by F and H by H ®H{, due to (ex) and (e2). Hence the set of 
ordinals on the right hand side of (18) is nonempty and, consequently, «(a0 ,z) 
is well defined for i E {1,2} (in particular, the above is valid for a 0 = 0). 

Denote K{ := /^(a0,z) for i G {1,2}. Notice that the conditions (e 1 ) - (e 3 ) are 

satisfied if Ha i are replaced by H {. Moreover, by (18), [x ] C F®iYQ 0 ) i and 

Z(xK.) n (F 0 Haoi) = 0, i.e. the assumptions of Lemma 7 are satisfied when x 

is replaced by x and H{ by Hao {. Applying Lemma 7 twice, we find £l G X 
such that 

( i e z ( I j \ ( £ e f e H J for i e { i , 2 } , (20) 

where Hao := Hao 1 0 Hao 2 . Moreover, £x, (2 are linearly independent and 

(12), (13), (14) are satisfied with H{ replaced by jffaoji 0 [C] for i G {1,2}. 

Fix i G {1,2}. Suppose that 

e°€E®F®Hao.®[C]. (21) 
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By Lemma 4, there exists ul G WaQ such that 

u'tEQFQH^QiC1,?]-

In this case, taking an arbitrary uo1 G WQo as above, we define 

Haoy.= Hao.®[C^]. 

If (21) does not hold, then, by Lemma 8, there exists rf G X such that £a° G 
E® [r]1} and the conditions (12), (13) and (16) hold with the respective replace
ments. Then we define 

Haoy.= Haoti®[C,i,u?], 

where uol denotes an arbitrary element of Wao such that 

ui£E®F®Hao®[C,\(2,r]\i1
2]. 

Notice that rj1, rj2, CJ1 , u2 satisfying the above requirements can be chosen 
in WaQ to be linearly independent elements. The subspaces HaQ i just defined 
satisfy (e1)-(e6) and 

CeHao.cP®Hao<i 

for i G {1,2}. By (20), this means that they also satisfy condition (e7). The 
induction construction is thus completed. 

We define the linear subspaces 

Yi:= \JP®Ha. for .€{1,2}. (22) 
Q<C 

Fix i G {1,2} and suppose that Y{ is not a iiT-space, i.e. (x) C Y{ and 
Z(x) r\Yi = 0 for some linearly independent sequence x satisfying (5). By (22), 

Z(x)n(F®Ha.)^<D (23) 

for all a < c, and there exists an a0 < c such that ( x ) c F ® Ha i. By (19), 

(x) C F © Ha • whenever a0 < a < c. (24) 

Evidently, x = x for a certain a1 < c. Hence, by (24), (23) and (18), 

a0 < a < c ==> n(a,i) < a± . (25) 

On the other hand, it follows from condition (18), (e7), and (19) that 

a < a' < c ---=> «(a, i) < rc(a;, i ) , 
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which contradicts (25). Since, in addition, Y{ C\ Wa ^ 0 for a < c, we conclude 
that Yi is a dense if-subspace in X. 

To complete the proof notice that equations (2) follow from (e4) and equa
tion (3) follows from (e3) and (19). • 

P r o o f of P r o p o s i t i o n 2. Let x = {£n} be an arbitrary ra-indepen-
dent sequence in (X, || • \\x) satisfying (5) (with || • 1̂  instead of || • | |). Put 
H := [x] and let L: X —> X be an automorphism fulfilling assertions (dx) and 
(d2) of Lemma 9. Define ||f||2 := ||L(f)lli for f G X. Clearly, ||-||2 is an F-norm 
and (bx) holds true. 

To prove (b2) denote || • ||3 := || • \\x + || • ||2. By (dx), we have 

IIU3 = IIUi + IWUIi=-I IUi->o 
as n -> oo. If (X, || • ||3) were a if-space, there would exist a subsequence {€Pn} 
of the sequence x and 77 G X such that ||r/n — 77H3 -> 0 as n -» 00, where 

71 

j]n := J2 f . Then, by the definition of the norm || • ||3, we would have 
k=l 

||»?n - 17IU -+ 0 f°r <e{ l , 2} (26) 

and thus, by the definition of || • ||2, 

\K - -Wil l = \\L{rin) - L(r,)\\i = \\nn - r,||2 -> 0 (27) 

as n -» oo. Since x is m-independent in (X, || • \\x), (26) implies rj £ H. On the 
other hand, (26) and (27) imply r\ = L(rj), which contradicts assertion (d2) of 
Lemma 9 and finishes the proof. • 

We shall now derive Proposition 3 from Theorem 3. 

P r o o f of P r o p o s i t i o n 3. Let E be a closed subspace of (X, || • ||) of 
infinite dimension and infinite codimension and let H, Yx, Y2 be as in The
orem 3 with dim if > N0. By (2), every £ G X has a unique representation in 
the form: 

£ = ei + vi, JeE, vl eY{ for t € { l , 2 } . (28) 

Defining 
llell.:=ll--i|l + l|f<ll for » e { l , 2 } , 

IKIIs-IKIIi + IKIk-
we have 

n-eii < lien. < iien3 for » e { i , 2 } . o o 
Hence, in particular, the topology generated by each of the norms || • \\x, || • ||2 , 
is stronger than the original topology in X. 
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Since Yi are If-spaces and E, being a closed subspace of X, is an TV-space, 
it follows from (28) and (29) that (X, || • ||.) is a If-space for i G {1,2} (cf. (a2) 
in Proposition 1), i.e. assertion (cx) is true. 

Before proving (c2) notice that the subspaces Y1 and Y2 of X are closed in 
the topologies of the norms || • ||x and || • ||2, respectively. In fact, if vn G Y{ for 
n G N and \\vn - £% -» 0 for some C G X of the form (28), then 

ikii + 11^-^11 = we -vjii->o 
as n -> oo, i.e. £* = 0 and f* = */ G Ŷ  for i G {1,2} (see also [16; Corollary 3]). 

Now suppose that (X, || • ||3) is a If-space and consider an arbitrary linearly 
independent sequence x = {£n} in X such that (x) C H and | | f j | -» 0. By 
(4), (28) and (29), we have ||^lli = I IU = IIU2 f°r n G N. Consequently, 
IICJI3 = 2ll£JI ""* ° ^ ^ ~> °° . Therefore there exists a subsequence y of x 
which is summable to a certain 7/ G X in the norm || • ||3 and, by (30), also 
in || • ||f (i G {1,2}) and in the original norm || • ||. Since y is a sequence in 
H = Yx n y2, summable to 77 in the norms || • Id and || • ||2, we conclude that 
rj G Y1 r\Y2 - H and thus (JB", || • ||) is a If-space. This, however, contradicts the 
assumption that dimH < c (see [15; Corollary 1]). Consequently, (c2) holds. 

• 

Added in proof: 

Property K was also studied in 

CHERESIZ, V. M.: Equicontinuity of group representations, Sibirsk. Mat. Z. 19 
(1978), 1381-1385 (Russian). 

Proposition 2 is related to the result that the supremum of two non compa
rable complete norms can be not barrelled, given in 

DE WILDE, M— TSIRULNIKOV, B.: Barrelledness and the supremum of two 
locally convex topologies, Math. Ann. 246 (1980), 241-248. 

Every Banach space X of dimension c has the property mentioned in the 
assumption of Proposition 3. It is an open problem whether every F-space of 
this dimension has the property. 
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