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M a t h . Slovaca 38 , 1988, No . 1 , 

DIRECT PRODUCT DECOMPOSITIONS OF DIGRAPHS 

PAVEL KLENOVCAN 

The direct, subdirect and weak direct product decompositions of partially 
ordered sets and the decompositions of their convering graphs were inves­
tigated, e.g., in [1], [3], [4], [5], [6]. Any almost discrete partially ordered set 
(P, ^ ) may be represented as a directed graph. Some relations between the 
direct product decompositions of a covering graph C(G) of a digraph G and the 
direct product decompositions of the digraph G will be studied in the present 
paper. 

A graph G = (V, E) consists of a nonempty set V of vertices together with a 
prescribed set E of unordered pairs of distinct vertices of V. Each pair {x, y}eE 
is an (undirected) edge of the graph G. 

A diagraph G = (V, E) consists of a nonempty set V of vertices together with 
a prescribed set E of ordered pairs of distinct vertices. Each ordered pair 
(x, y) e E is a (directed) edge of the digraph G. 

Let I be a nonempty set and G, = (Vh Et) (iel) be graphs. Let elements of V 
will be denoted a = (a,), iel, where at = a(i)e V(. Let G be a graph whose set of 
vertices is V and whose set of edges consists of those pairs {*, y}, x, y e V which 
satisfy the following condition: there is ie I such that {xh y^eEi and x} = y} for 
eachje/\{l}. Then G is said to be the direct product of the graphs G, (iel) and 

we write G = Y[ Gt. We omit the symbol ie I very often if no misunderstanding 
iel 

is likely to arise. 
The direct product of digraphs is defined similarly. 
If a mapping f: Fj -• V2 is an isomorphism of a graph G, = (Vx Ex) into a 

graph G2 = (V2, E2), then we shall write <7, ~ G2 or shortly G, -̂  G2. 

If G ~ n ^ " ^en we shall say that Ĵ JG, is a decomposition of the graph G 
(with respect to the mapping f). 

In the present paper every decomposition Y\Gh where G, = (IV, is,), is sup­
posed to be nontrivial (i.e. \Vt\ > 1 for each iel). 

Analogous terminology and notations are used for digraphs. For all further 
notions concerning digraphs and graphs we refer the reader to [2]. 



Let G = (V, E) be a digraph. By the covering graph ofG we mean the graph 
C(G) = (V, £) whose edges are those pairs {a,b}, for which (a,b)eE or 
(b ,a)e£. 

In Fig. 1 we have a digraph G and its covering graph C(G). 

Let G = (V, £) be a digraph and C(G) L \\Gh where G, = (^, £,) (ie7). We 
shall say that the decomposition ]~IG, of the graph C(G) induces a decomposition 
of the diagraph G if there exist such digraphs G, = (Vh £,) that C(Gt) = G, for 

each iel and G ~ P I ^ -
The decomposition of C(G) does not induce a decomposition of G in general. 

In Fig. 1 the digraph G is not isomorphic to the direct product of any two 
digraphs but its covering graph is isomorphic to the direct product of two 
complete graphs K2. 

C(G): 

Fig. 1. 

If a digraph G is isomorphic to Yi^h t^ ien *ts covering graph C(G) is 
isomorphic to ]^[C(G,) and the decomposition f]C(G,) induces the decom­
position Y[ Gi of G. Thus the existence of a decomposition of C(G) is a necessary 
condition for the existence of a decomposition of G. A sufficient condition for 
the existence of a decomposition of G is the existence of such a decomposition 
of C(G) which induces a decomposition of G. hence the digraph G has a 
decomposition if and only if its covering graph C(G) has a decomposition 
inducing a decomposition of the digraph G. That is why we are going to 
investigate when the decomposition of C(G) induces a decomposition of G. 

The subgraph of a graph G = (V, E) induced by a set W ^ Vwill be denoted 
by G<H7>. 

Let G = (V, E) be a graph. If there exists a four-element set 
W = {a, b, c9 d} c V such that G< W> = (*V, F), where F = {{a, 6}, {6, c}, {c, d}, 
{a, d}}, then we say that the graph G< W} is a square (in G) and we denote it by 
S(a, b, c, d), If G is a digraph and C(G^ W}) = S(a, b, c, d), then the digraph 
G< V̂> is called a square (in G) and denoted by 5(a, fe, c, d). 

The following lemma is easy to verify (see, e. g., appendix 2 in [2]). 
Lemma 1. Let S„ i'e{l, 2, ..., 15} 6e digraphs in Fig. 2. If a digraph 

S(a, b, c, d) is a square, then there exists ie{\, 2, ..., 15} such that 
S(a, b, c, d) c_. Sj. 

The edge {a, b} of a graph PJ G, will be called a k-edge whenever a} = b7 for 
each je I\{k}. 



Remark . It is easy to see that every edge of a direct product of graphs is 
a k-edge for some k e I. 

We say that ordered pairs (a, b) and (c, d) of vertices of a direct product J~[ G, 
are r-equivalent and write (a, b) ~ (c, d) if {a, b} and {c, d} are r-edges and 
ar = cr, br = dr. 

Let Y\Gi = (V, E). If Wc V, then we denote Ot(W) = {a,; ae W}. 
Lemma 2. Let Y[Gi = (V, E). Let {a,b,c, d} = W c Vand S(a, b, c, d) be a 

square (w ["[G,). If {a, b}, {b, c} are r-edges, then {c, d}, {a, d} are r-edges too, and 
\Or(W)\ = 4, \Oj(W)\ = 1 for eachjel\{r}. 

Proof. Let {a, b}, {b, c} be r-edges. Then ar ^ br, br ^ cr and a} = bj = Cj 
for eachje/\M- Since a 7-= c, we have ar 7-= cr. Suppose {a, d} is not an r-edge. 
Then dr = ar and there exists s e I\{r} with as ^ ds. Since as = cs, we get cs -̂  ds. 
Thus dr = cr, a contradiction. So {a, d} is an r-edge. Similarly we obtain that 
{c, d} is an r-edge. Further, b ^ d and consequently br^ dr. Now we have 
\Or(W)\ = 4 and \Oj(W)\ = 1 for eachjGAW immediately. 

Lemma 3. Let S(a, b, c, d) be a square in ["[G,. If {a, b} is an r-edge and{b, c} 
is an s-edge, r -̂  s, then ar = dr and cs = ds. 

Proof. Suppose that ar 7-= dr or cs ^ ds. Let ar^dr. Then {a, d} is an r-
edge and (Lemma 2) {b, c}, {c, d} are r-edges, a contradiction. In the case when 
cs # ds we obtain a contradiction in a similar way. 

Using Lemma 2 and Lemma 3 the following lemma is easy to verify. 
Lemma 4. Let S(a, b, c, d) be a square in J~] G,. If {a, b} is an r-edge and {b, c} 

an s-edge, then {c, d} is an r-edge and {a, d} an s-edge. 
A square S(a, b, c, d) in Y\ G, will be called an r-square whenever all its edges 

are r-edges for some re I. If such re I does not exist, it will be called a mixed 
square. 

Lemma 3 and Lemma 4 imply the following 
Lemma 5. Let S(a, b, c, d) be a mixed square in ]~J G„ where {a, b} is an r-edge 

and {b, c} an s-edge. Then (a, b) ~ (d, c), (b, c) ~ (a, d). 
Lemma 6. Let \\ G,f = ( V, E) be a connected graph and the ordered pairs (a, b), 

(c, d) of vertices of \\ G, be r-equivalent. Then there exist vertices 
JC° = a, x\ ..., xn = c,y° = b, y\ ..., yn = de Vsuch that S(xj, xj+ \ yj+ \ / ) is a 
mixed square for eachje{0, 1, . . . ,« — 1}. 

Proof. Since ar = cr and the graph JjG, is connected, there exist vertices 
x° = a, x\ ..., xn = ce V such that ar = x\ = ... = cr and the sequence 
x° = a, x\ ..., xn = c is a path in Y\Gt. For eachje{l, 2, ..., n — 1} we define 
yjeV as follows: yJ = br, y{ = x{ for each kel\{r}. It is clear that 
S(xj, xj+\yJ+\ y7) is a square for eachj e {0, 1 , . . . , « - 1}. Further, {xj, yJ} is an 
r-edge and since xJ = xJ+\ {xJ, xj+l} is not an r-edge. Hence all the squares 
S(xJ, xJ+\yi+\ yj) are mixed. 
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Let C(G) L Y[Gh We shall say that the edge (a, b) of the digraph G and the 
edge {a, b) of the covering graph C(G) are k-edges (with respect to the isomor­
phism/) if {f(a), f(b)} is a k-edge of the graph Y\^f ^n a n analogous way the 
other notions concerning the direct product Y\^t c a n ^e introduced for the 
digraph G and the covering graph C(G). 

Let C(G) ~\[Gh where G = (V, E). We shall say that the r-equivalent 
ordered pairs (a, b), (c, d) of vertices of G are similarly oriented if 

(1) (a, b)e£\f and only if (c, d)eE. 

Lemma 7. Let C(G) L \[Gh where G = (V, E) and G, = (Vh £,). The decom­
position Y[ G, of C(G) induces a decomposition of G if and only if every two 
r-equivalent ordered pairs of vertices ofG are similarly oriented for each re I (i. e. 
if and only if the relation (a, b) ~ (c, d) implies (1)). 

Proof. It suffices to define G, for each iel as follows: G, = (Vh £,), where 
(f(a)h /(b)/)G Eh if and only if there exists an /-edge (a, b) e E. 

In the sequel we shall write "connected", instead of the more precise "weakly 
connected". 

Theorem 1. Let C(G) ~ \[Gh where G = (V, E) is a connected digraph. The 
decomposition Y[ Gt of C(G) induces a decomposition of G if and only if the 
following condition is fulfilled: 
(A) If S(a, b, c, d) is a mixed square in G, then there exists ie{\, 2, 3} with 

S(a, b, c, d) ~ S; (see Fig. 2). 
Proof. Let the decomposition j^fG, of C(G) induce a decomposition of G 

and S(a, b, c, d) be its mixed square. Then there exist (Lemma 5) r, s e I, r 7-= s, 

such that (a, b) ~ (d, c) and (b, c) ~ (a, d). From Lemma 7 it follows that (a, b), 
(d, c) are similarly oriented and (b, c), (a, d) are similarly oriented, too. Thus 
there exists ie{l, 2, 3} with the property S(a, b, c, d) ~ Sh Suppose, to prove the 
reverse implication, that (A) is fulfilled. With respect to Lemma 7, it suffices to 
prove that the edges (x, y) and (u, v) of G are similarly oriented whenever 

(JC, y) ~ (u, v). Then, by Lemma 6, there exist a nonnegative integer n and 
vertices x° = x, x\ ..., x" = u, y° = y, y\ ..., yn = veV such that 
S(xj, xj+ \ yj+ \ yJ) is a mixed square in G for eachjE{0, 1, ..., n — 1}. In n = 0, 
then (x, y) and u, v) are similarly oriented, since (x, y) = (u, v). If n = 1, then 
S(x, u, v, y) is a mixed square and (x, y), (u, v) are similarly oriented according 
to (A). Now it is easy to complete the proof by induction on n. 

From Theorem 1, Lemma 1 and Lemma 2 we immediately obtain: 
Theorem 2. Let C(G) ̂  Y\Gi9 where G = (V, E) is a connected digraph and 



S,: 

Ss: 

• >" 

*0 *0 ~vG 
5 Ö *CJ: 

Fig. 2. 

G; = (Vi9 Et). The decomposition Y\Gt ofC(G) induces a decomposition ofG if and 
only if the following condition is fulfilled: 
(B) IfS(a9 b, c, d) ~ Si9 ie{49 5, ..., 15}, where W = {a9 b9c9d}^ V9 then there 

exists kel such that S(a9 b9 c9 d) is a k-square (in other words, there exists 
kelsuch that \fj(W)\ = \Oj(f(W))\ = 1/or eachjel\{k}9 wheref/. V'-> V-is a 
projection corresponding to the mapping f: V-* \\ V). 

The following theorem follows from Theorem 1 or Theorem 2 immediately. 
Theorem 3. Let Gbea connected digraph which contains no square isomorphic 

to Si9 ie{4, 5, ..., 15}. Then every decomposition \\G{ (iel) of the covering graph 
C(G) of the digraph G induces a decomposition of the digraph G. 

Let G = (V9 E) be a digraph. An edge (a9 b) e E will be called transitive if there 



exists a vertex ceV, c 7-= a, c 7-- b such that there is a (directed) path from a to 
c and also a (directed) path from c to b. 

It is easy to verify the following 
Lemma 8. Let S(a, b, c, d) be a square in G. Then 

(a) if G is an acyclic digraph, then S(a, b, c, d) ~ Sh ie{\, 5, 6}, 
(b) if G is a digraph with no transitive edge, then S(a, b, c, d) c* Sh ie{\, 4, 6}. 

Theorem 2 and Lemma 8 imply 
Theorem 4. Let G = (V, E) be an acyclic connected digraph with no transitive 

edge and let C(G) ~ f| G,. The decomposition Y\ Gt of C(G) induces a decom­
position of G if and only if the following condition is fulfilled'. 
(C) If S(a, b, c, d) ~ S6, where W = {a, b, c, d} ^ V, then there exists kelsuch 

that \fj(W)\ = 1 for eachjel\{k}. 
Every almost discrete partially ordered set (P, = ) (shortly "poset P") may be 

represented as a digraph G = (P, E) such that (a, b)eE\f and only if b covers a. 
Clearly, this digraph is acyclic and has no transitive edge. 

The covering graph C(P) of a poset P is the graph whose vertices are the 
elements of P and whose edges are those pairs {a, b}, a, beP, for which a covers 
b or b covers a. 

Obviously, C(P) = C(G), where G is the digraph corresponding to P. 
Let a, b, c, d be distinct elements of P such that {a, b}, {b, c}, {c, d}, {a, d} are 

edges of C(P). Then Q = (a, b, c, d) is said to be an elementary quadruple in P. 
The elementary quadruple isomorphic to the poset in Fig. 3a or Fig. 3b is 
denoted by Qx or Q2, respectively. If Q is an elementary quadruple in P, then the 
poset Q is isomorphic either to Q, or to Q2 (see, e.g., [5]). 

A subset K of P is said to be saturated if, whenever a, beK and a covers b 
in the poset K, then a covers b in the poset P. 

Fig. 3a. Fig- 3b. 

If G = (P, E) is the digraph corresponding to P, then the saturated elemen­
tary quadruple Qx or Q2 in P is represented by the square S{ or S6, respectively. 

From the above mentioned facts and from Theorem 4 the following corollary 
proved by Jakub ik in [6] follows easily. 

Corollary 1. Let C(P) ~ fjG,, where P is a connected almost discrete poset 
(i. e. C(P) is a connected graph) and G, = (Ph £,-) are graphs. The decomposition 
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Y[Gi of C(P) induces a decomposition of P if and only if the following condition 
is fulfilled: 
(D) If Q is a saturated elementary quadruple in P isomorphic to Q2, then there 

exists kel such that \fj(Q)\ = I for eachjel\{k}. 
Proof. Let G be a digraph corresponding to P. If (D) is fulfilled, then, by 

Theorem 4, G ^ n^/> where Gt = (Ph Et). Clearly, digraphs Gt are acyclic and 
have no transitive edges. Let as define a partial ordering on each of the sets Pt 

as follows: b covers a if and only if (a, b)eEt (the ordering on Pt is determined 
by this covering relation). Then the digraphs Gt correspond to the posets Pt and 
p - n ^ ' c ( ^ ) = c(<*.) = °i- T h e necessity of the condition (D) is obvious. 

If P is a semilattice, then every saturated elementary quadruple in P is 
isomorphic to Qx. By Theorem 3, this implies the following corollary proved in 
[6], which is a generalization of a result from [1]. 

Corollary 2. Let P be a semilattice. Then every decomposition \\Gh 
iel 

I = {1, 2, ..., n} of C(P) induces a decomposition of P. 
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О РАЗЛОЖЕНИИ ОР-ГРАФОВ ПО ПРЯМЫМ ПРОИЗВЕДЕНИЯМ 

РаVе1 К1епоVсап 

Резюме 

Пусть С = (V, Ё) является орграфом. Граф С(С) = (V, Е), у которого ребра суть те пары 
{а, /?}, а, 6 е V, что (а, 6) е Ё или (&, а) е Ё, называется покрывающим графом орграфа С. 

В статье автор рассматривает некоторые отношения между разложениями С и раз­
ложениями С(С). 
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