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DIRECT PRODUCT DECOMPOSITIONS OF DIGRAPHS
PAVEL KLENOVCAN

The direct, subdirect and weak direct product decompositions of partially
ordered sets and the decompositions of their convering graphs were inves-
tigated, e. g., in [1], [3], [4], [5], [6]. Any almost discrete partially ordered set
(P, £) may be represented as a directed graph. Some relations between the
direct product decompositions of a covering graph C(G) of a digraph G and the
direct product decompositions of the digraph G will be studied in the present
paper.

A graph G = (V, E) consists of a nonempty set V of vertices together with a
prescribed set E of unordered pairs of distinct vertices of V. Each pair {x, y}e E
is an (undirected) edge of the graph G.

A diagraph G = (V, E) consists of a nonempty set V of vertices together with
a prescribed set E of ordered pairs of distinct vertices. Each ordered pair
(x, )€ E is a (directed) edge of the digraph G.

Let I be a nonempty set and G; = (¥}, E;) (i€ I) be graphs. Let elements of V
will be denoted a = (a;), ie I, where a; = a(i)e V.. Let G be a graph whose set of
vertices is ¥ and whose set of edges consists of those pairs {x, y}, x, ye V which
satisfy the following condition: there is i€ I such that {x;, y;}€ E; and x; = y, for
each je I\{i}. Then G is said to be the direct product of the graphs G, (ie I) and

we write G = [ [ G;. We omit the symbol i€ I very often if no misunderstanding
iel
is likely to arise.
The direct product of digraphs is defined similarly.

If a mapping f: V; - V, is an isomorphism of a graph G, = (V] E,) into a
graph G, = (V,, E,), then we shall write G, L G, or shortly G, ~ G,.

if 6 £ [1G,, then we shall say that [ |G, is a decomposition of the graph G
(with respect to the mapping f).

In the present paper every decomposition || G,, where G, = (¥, E), is sup-
posed to be nontrivial (i.e.|¥| > 1 for each ie[).

Analogous terminology and notations are used for digraphs. For all further
notions concerning digraphs and graphs we refer the reader to [2].



Let G = (V, E) be a digraph. By the covering graph of G we mean the graph
C(G) = (V, E) whose edges are those pairs {a, b}, for which (a, b)eE or
(b, a)e E.

In Fig. 1 we have a digraph G and its covering graph C(G).

Let G = (V, E) be a digraph and C(G) L [1G;, where G, = (V, E)) (ie ). We
shall say that the decomposition [ | G; of the graph C(G) induces a decomposition
of the diagraph G if there exist such digraphs G, = (V, E) that C(G) = G, for

each iel and G £ I16G.

The decomposition of C(G) does not induce a decomposition of G in general.
In Fig. 1 the digraph G is not isomorphic to the direct product of any two
digraphs but its covering graph is isomorphic to the direct product of two
complete graphs K,.

G: C (G):

Fig. 1.

If a digraph G is isomorphic to []G,, then its covering graph C(G) is
isomorphic to [[C(G) and the decomposition [[C(G) induces the decom-
position [ | G, of G. Thus the existence of a decomposition of C(G) is a necessary
condition for the existence of a decomposition of G. A sufficient condition for
the existence of a decomposition of G is the existence of such a decomposition
of C(G) which induces a decomposition of G. hence the digraph G has a
decomposition if and only if its covering graph C(G) has a decomposition
inducing a decomposition of the digraph G. That is why we are going to
investigate when the decomposition of C(G) induces a decomposition of G.

The subgraph of a graph G = (V, E) induced by a set W < V will be denoted
by G{(W).

Let G=(V,E) be a graph. If there exists a four-element set
W ={a, b, c, d} = V such that G{W) = (W, F), where F = {{a, b}, {b, ¢}, {c, d},
{a, d}}, then we say that the graph G{W) is a square (in G) and we denote it by
S(a, b, ¢, d), If G is a digraph and C(G{W)) = S(a, b, c, d), then the digraph
G{W) is called a square (in G) and denoted by S(a, b, c, d).

The following lemma is easy to verify (see, €. g., appendix 2 in [2]).

Lemma 1. Let S, ie{l,2,...,15} be digraphs in Fig. 2. If a digraph
S(a, b, c,d) is a square, then there exists i€{l,2,...,15} such that
S(a, b, c,d) ~ S,.

The edge {a, b} of a graph [ [G; will be called a k-edge whenever a; = b, for
each je N\{k}.
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Remark. It is easy to see that every edge of a direct product of graphs is
a k-edge for some kel

We say that ordered pairs (a, b) and (¢, d) of vertices of a direct product [ | G;
are r-equivalent and write (a, b) ~ (c, d) if {a, b} and {c, d} are r-edges and
a=c,b =d.

Let ]_[G,. = (V, E). If W < V, then we denote O,(W) = {a;; ae W}.

Lemma 2. Let [[G, = (V, E). Let {a, b,c,d} = W < V and S(a, b, c, d) be a
square (in [ | G). If {a, b}, {b, c} are r-edges, then {c, d}, {a, d} are r-edges too, and
|0,(W)| = 4, |0,(W)| = 1 for each je Nr}.

Proof. Let {a, b}, {b, c} be r-edges. Then a,#b,, b, # ¢, and a;= b; = ¢,
for each je I\{r}. Since a # ¢, we have a, # c,. Suppose {a, d} is not an r-edge.
Then d, = a, and there exists se I\{r} with a, # d.. Since a, = c,, we get ¢, # d,.
Thus d, = ¢,, a contradiction. So {a, d} is an r-edge. Similarly we obtain that
{c,d} is an r-edge. Further, b # d and consequently b, # d,. Now we have
|0, (W)| = 4 and |O;(W)| = 1 for each je I\{r} immediately.

Lemma 3. Let S(a, b, ¢, d) be a square in [ | G,. If {a, b} is an r-edge and {b, c}
is an s-edge, r # s, then a, = d, and ¢, = d..

Proof. Suppose that a, # d, or ¢, # d,. Let a, # d,. Then {a, d} is an r-
edge and (Lemma 2) {b, c}, {c, d} are r-edges, a contradiction. In the case when
¢, # d, we obtain a contradiction in a similar way.

Using Lemma 2 and Lemma 3 the following lemma is easy to verify.

Lemma 4. Let S(a, b, c, d) be a square in [ | G.. If {a, b} is an r-edge and {b, c}
an s-edge, then {c, d} is an r-edge and {a, d} an s-edge.

A square S(a, b, ¢, d) in [ | G, will be called an r-square whenever all its edges
are r-edges for some rel. If such rel does not exist, it will be called a mixed

. Square.

Lemma 3 and Lemma 4 imply the following

Lemma 5. Let S(a, b, c, d) be a mixed square in H G;; where {a, b} is an r-edge
and {b, ¢} an s-edge. Then (a, b) ~ (d, ¢), (b, ¢) ~ (a, d).

Lemma 6. Let ]-[ G; = (V, E) be a connected graph and the ordered pairs (a, b),

(c,d) of vertices of [|G, be r-equivalent. Then there exist vertices
X=ax, .., x"=¢)=b,y, .., y"=deVsuchthat S(X, x)*+', y*+! })isa

mixed square for each je{0, 1, ...,n — 1}.
Proof Since a, = ¢, and the graph [1G: 1s connected, there exist vertices
x*=a,x',...,x"=ceV such that g, =x!=..=c and the sequence

x°=a, x‘, ,x" = cis a path in [[G,. For each]e{l, 2, ...,n — 1} we define
yeV as fol]ows: yi=b,, y,=x] for each kel{r}. It is clear that
S(x/, xI+1, y/*+1, y)is a square for each je{0, 1, ..., n — 1}. Further, {x’, y/} isan
r-edge and since x/ = x/*!, {x/, x¥*1} is not an r-edge. Hence all the squares
S(x?, x/*1, y/*1, y/) are mixed.



Let C(G) ~ nG We shall say that the edge (a, b) of the digraph G and the
edge {a, b} of the covering graph C(G) are k-edges (with respect to the isomor-
phism f) if {f(a), f(b)} is a k-edge of the graph [][G,. In an analogous way the
other notions concerning the direct product [ |G, can be introduced for the
digraph G and the covering graph C(G).

Let C(G) £ [1G:, where G = (V, E). We shall say that the r-equivalent
ordered pairs (a, b), (c, d) of vertices of G are similarly oriented if

(1) (a, b)e E if and only if (c, d)e E.

Lemma 7. Let C(G) ~ ]_[G,, where G = (V, E) and G, = (V,, E). The decom-
position [|G; of C(G) induces a decomposition of G if and only if every two
r-equivalent ordered pairs of vertices of G are similarly oriented for eachrel (i.e.
if and only if the relation (a, b) ~ (c, d) implies (1)).

Proof. It suffices to define G, for each ie[ as follows: G, = (¥, E), where
(f(a);, f(b)) € E,, if and only if there exists an i-edge (a, b)e E.

In the sequel we shall write “connected”, instead of the more precise “weakly
connected”’.

Theorem 1. Let C(G) ~ HG,, where G = (V, E) is a connected digraph. The
decomposition []G; of C(G) induces a decomposition of G if and only if the
Sfollowing condition is fulfilled:

(A) If S(a, b, c, d) is a mixed square in G, then there exists i€{l, 2, 3} with
S(a, b, ¢, d) ~ S, (see Fig. 2).

Proof. Let the decomposition [ |G, of C(G) induce a decomposition of G

and S(a, b, c, d) be its mixed square Then there exist (Lemma 5) r, se I, r # s,

such that (a, b) ~ (d, ¢)and (b, ¢) ~ (a d). From Lemma 7 it follows that (a, ),
(d, c) are similarly oriented and (b, ¢), (a, d) are similarly oriented, too. Thus
there exists ie {1, 2, 3} with the property S(a, b, ¢, d) ~ S,. Suppose, to prove the
reverse implication, that (4) is fulfilled. With respect to Lemma 7, it suffices to
prove that the edges (x, y) and (u,v) of G are similarly oriented whenever

(x,y) ~ (u v). Then, by Lemma 6, there exist a nonnegatlve integer n and
vertices x° = x, x', ..., x" = u, y° = y, y', ..., y" = veV such that
S(x/, x’+1, y/+1 /) is a mixed square in G foreach je{0, 1, ..., n — 1}.Inn = 0,
then (x, y) and u, v) are similarly oriented, since (x, y) = (4, v). If n = 1, then
S(x, u, v, y) is a mixed square and (x, y), (v, v) are similarly oriented according
to (A). Now it is easy to complete the proof by induction on ».

From Theorem 1, Lemma 1 and Lemma 2 we immediately obtain:

Theorem 2. Let C(G) ~ £ [1G:, where G = (V,E) is a connected digraph and
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Fig. 2.

G, = (V,, E). The decomposition [ | G; of C(G) induces a decomposition of G if and
only if the following condition is fulfilled:
(B) If S(a, b, c,d)~ S, ie{4, 5, ..., 15}, where W = {a, b, ¢, d} < V, then there
exists keI such that 8(a, b, c, d) is a k-square (in other words, there exists
ke I such that |f,(W)| = |O;(f(W))| = 1 for each je Nk}, where f: V — V/is a
projection corresponding to the mapping f: V — [ V).
The following theorem follows from Theorem 1 or Theorem 2 immediately.
Theorem 3. Let G be a connected digraph which contains no square isomorphic
108, i€f{4,5, ..., 15}. Then every decomposition [ | G, (i€ I) of the covering graph
C(G) of the digraph G induces a decomposition of the digraph G.
Let G = (V, E) be a digraph. An edge (a, b) € E will be called transitive if there



exists a vertex ce V, ¢ # a, ¢ # b such that there is a (directed) path from a to
¢ and also a (directed) path from c to b.
It is easy to verify the following
Lemma 8. Let S(a, b, ¢, d) be a square in G. Then
(@) if G is an acyclic digraph, then S(a, b, ¢, d) ~ S, ie{l, 5, 6},
(b) if G is a digraph with no transitive edge, then S(a, b, ¢, d) ~ S, ie{l, 4, 6}.
Theorem 2 and Lemma 8 imply
Theorem 4. Let G = (V, E) be an acyclic connected digraph with no transitive

edge and let C(G) L [1G:. The decomposition []G; of C(G) induces a decom-

position of G if and only if the following condition is fulfilled:

(O) If S(a, b, ¢, d) ~ S, where W = {a, b, c, d} < V, then there exists ke I such
that |f;(W)| = 1 for each je N\k}.

Every almost discrete partially ordered set (P, <) (shortly “poset P’) may be
represented as a digraph G = (P, E) such that (a, b) € E if and only if b covers a.
Clearly, this digraph is acyclic and has no transitive edge.

The covering graph C(P) of a poset P is the graph whose vertices are the
elements of P and whose edges are those pairs {a, b}, a, be P, for which a covers
b or b covers a.

Obviously, C(P) = C(G), where G is the digraph corresponding to P.

Let a, b, ¢, d be distinct elements of P such that {a, b}, {b, ¢}, {c, d}, {a, d} are
edges of C(P). Then Q = (a, b, ¢, d) is said to be an elementary quadruple in P.
The elementary quadruple isomorphic to the poset in Fig. 3a or Fig. 3b is
denoted by Q, or Q,, respectively. If Q is an elementary quadruple in P, then the
poset Q is isomorphic either to Q, or to Q, (see, €. g., [5)]).

A subset K of P is said to be saturated if, whenever a, be K and a covers b
in the poset K, then a covers b in the poset P.

Fig. 3a. Fig. 3b.

If G = (P, E) is the digraph corresponding to P, then the saturated elemen-
tary quadruple Q, or Q, in P is represented by the square S, or S, respectively.

From the above mentioned facts and from Theorem 4 the following corollary
proved by Jakubik in [6] follows easily.

Corollary 1. Let C(P) £ [1G;, where P is a connected almost discrete poset
(i.e. C(P) is a connected graph) and G, = (P, E)) are graphs. The decomposition

8



[1G: of C(P) induces a decomposition of P if and only if the following condition
is fulfilled:
(D) If Q is a saturated elementary quadruple in P isomorphic to Q,, then there
exists keI such that |f,(Q)| = 1 for each je \{k}.
Proof. Let G be a digraph corresponding to P. If (D) is fulfilled, then, by

Theorem 4, G £ [1G., where G, = (B, E). Clearly, digraphs G; are acyclic and
have no transitive edges. Let as define a partial ordering on each of the sets P,
as follows: b covers a if and only if (a, b) € E; (the ordering on P, is determined
by this covering relation). Then the digraphs G, correspond to the posets P, and

pi [1R, C(P) = C(G) = G,. The necessity of the condition (D) is obvious.
If P is a semilattice, then every saturated elementary quadruple in P is
isomorphic to Q,. By Theorem 3, this implies the following corollary proved in
[6], which is a generalization of a result from [1].
Corollary 2. Let P be a semilattice. Then every decomposition [[G,

iel

I={1,2, ..., n} of C(P) induces a decomposition of P.
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O PA3JIOXEHHUHAU OP-T'PADPOB IO IMPAMbBIM MMPOU3BEAEHUAM
Pavel Klenovcéan

Pe3rome

Mycts G = (V, E) ssnserca oprpadom. I'pad C(G) = (V, E), y koToporo pebpa CyThb Te mapbl
{a, b}, a, be V, uto (a, b)€ E unu (b, a)e E, Ha3biBaeTcs nokpriparowuM rpadgom oprpaga G.

B cTaThe aBTOpP PacCMATPHBAET HEKOTOPbiE OTHOLICHHS MEXOY pa3joxeHHsmMu G U pas-
noxenuamu C(G).
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