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LEXICOGRAPHIC PRODUCT DECOMPOSITIONS 
OF PARTIALLY ORDERED QUASIGROUPS 

MILAN D E M K O 

(Communicated by Tibor Katrindk ) 

ABSTRACT. In this paper there are investigated some properties of partially or
dered quasigroups (briefly: p.o. quasigroups) and lexicographic product decompo
sitions of p.o. quasigroups are studied. It will be shown tha t for a p.o. quasigroup 
Q with an idempotent element h the assertion analogous with Theorem 15 in 
[JAKUBIK, J.: Lexicographic products of partially ordered groupoids, Czechoslo
vak Math. J. 14(89) (1964), 281-305 (Russian)] is valid, i.e. arbitrary two lexico
graphic product decompositions of a p.o. quasigroup Q with a finite number of 
directed lexicographic factors have isomorphic refinements. 

1. Introduction 

Lexicographic product decompositions of a certain type of partially ordered 
groupoids, so-called u-groupoids, were discussed by J. J a k u b i k in [6]. He 
proved that any two lexicographic product decompositions of an u-groupoid 
G with a finite number ([6; Theorem 15]) but also with an infinite number 
([6; Theorem 35]) of lexicographic factors have isomorphic refinements. In this 
paper wTe will study lexicographic product decompositions of a partially ordered 
quasigroup Q with an idempotent element h. Here we will prove the following 
assertion analogous with [6; Theorem 15]: Arbitrary two lexicographic product 
decompositions of the partially ordered quasigroup Q with a finite number of 
directed lexicographic factors have isomorphic refinements. Let us remark that 
a partially ordered quasigroup Q with idempotent element h need not be an 
u-groupoid; conversely, an u-groupoid, in general, need not be a partially ordered 
quasigroup. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F15, 20N05. 
K e v w o r d s : partially ordered quasigroup, directed quasigroup, lexicographic product 
decomposition . 
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Fundamental results on lexicographic product of linearly ordered groups have 
been proved by M a l ' c e v [9]. Further, lexicographic product decompositions of 
some types ordered algebraic structures were dealt with in the papers [5], [7], [8]. 

2. Preliminaries 

We recall that a quasigroup (Q, •) is defined (cf., e.g. [3]) as an algebra having 
a binary operation a • b which satisfies the condition that for any a, b the 
equations a • x = b and y • a = b have unique solutions x and y. A quasigroup 
having an identity element 1 (i.e., such that 1 • x = x • 1 = x for each x G Q ) 
is called a loop. If (Q, •) is a quasigroup, then we define a/b = c if and only if 
a = c - b', in this case we also put c\a = b. For any a,x G Q we set Lax = a • x, 
Rax = x • a. Then La and Ra are called left translations or right translations, 
respectively. We have L~lx = a\x, R~lx = x/a. The group generated by all 
left and right translations of (Q, •) is called the multiplication group of (Q, •) 
and is denoted by G(Q,-). 

We will say that two quasigroups (Q,o), (Q,-) are isotopic (cf., e.g. [3]) 
if there exist permutations a, (5,7 of Q such that 7(0; o y) = ax • 3y for all 
x,y e Q. In such case we will write (o) = (•)(a'/9^) and say that (Q, o) is an 
isotope of (Q, •). It is well known (see, e.g. [3]) that if (Q, •) is a quasigroup and 
(o) = (-)(Ra >L* , 7 ) , where a, b G Q, I is the identity permutation of Q, then 
(Q, o) is a loop with the identity element ba. 

The direct product Qx x Q2 of quasigroups Q1, Q2 is defined in a natural 
way, i.e. Q1 x Q2 is the set of all ordered pairs (q1,q2), qx G (5X, <72 G Q 2 , with 
the operation defined componentwise. The concepts of a normal subquasigroup, 
normal congruence on a quasigroup are used by definitions of [3]. Let (Q1, •) and 
(Q2, o) be quasigroups. Notation Q1 = Q2 means that there exists isomorphism 
of (Qir) into (Q 2 ,o) , 

For the sake of convenience, we summarize here some results which will be 
frequently used and quoted. These results had been proved by B e l y a v s k a y a 
in [1] and later quoted in [2]. We will formulate them according to [2]. 

Let (Q, -) be a quasigroup with an idempotent element h. Then 

Al) (Cf. [1; Theorem 4, Lemma 4]) Q = Qx x Q2 if and only if there exist 
normal subquasigroups A, B of Q such that A- B = Q, AnB = {h}. 
Then Q/A ^Q2^B, Q/B S Q ^ A . 

A2) (Cf. [1; Theorem 3]) Let A, B be normal subquasigroups of Q, h G 
ADB. Then A • B = Q and A n B = {h} if and only if each element 
q G Q can be uniquely written in the form q = a • b, a G A, b e B. 
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A3) (Cf. [2; Lemma 1]) Let A, B be normal subquasigroups of Q and let 
AB = Q, AnB = {h}. If a1,a2 E A, b1?b2 G B , then 

(a1b1)(a2b2) = i ? ^ 1 ^ ' a2h) • ^ ( / i b , • /ib2) . (2.1) 

A4) (Cf. [2; Chapt. 1, Corollaries 1, 2]) Let .A, B be normal subquasigroups 
of Q such that AB = Q, Af)B = {h}. Let at A, b,bxeB. Then 

Lh(ab)=Rh
1LhRha-Lhb, Rh(ab) = Rha-L'h

lRhLhb, (2.2) 

F^(ab) = R^L~h
lRha • L ^ 6 , ^ x ( a b ) = Rh

la • L^R^LJ, (2.3) 

ab • b-, = ah- L71 (hb • b,), 

- V (2-4) 
b-ab^iJ-^^a-F-^b-^). 

3. Some properties of partially ordered quasigroups 

DEFINITION 3 .1 . (Cf., e.g. [4; p. 297].) A nonempty set Q with an operation • 
and a relation < is called a partially ordered quasigroup (briefly: p.o. quasigroup) 
if 

(i) (Q, •) is a quasigroup. 
(ii) (Q, <) is a partially ordered set. 

(iii) For all x, y, a E Q, x < y if and only if ax < ay if and only if xa < ya. 

A partially ordered quasigroup will be denoted by (Q, •, <) (or, if no mis
understanding can occur, by Q). If (Q, •) is a loop, then the p.o. quasigroup 
(<5?*)<) is called a partially ordered loop (p.o. loop). Let h be an arbitrary 
element of Q. The set Uh = {x G Q : x > h} is said to be h-cone of p.o. quasi
group Q (cf. [10; Definition 2]). The set {x G Q : x < h} will be denoted by 
Uh . If (Q, •, <) is a p.o. loop and h is an identity element of Q, then U will be 
used instead of Uh and U* instead of Uh, respectively. 

Let ( (?! , - ,<) and (Q2,°,<') be p.o. quasigroups. Notation Q1 =Q Q2 

means that there exists isomorphism of (Q1,-) onto (Q2:°) which is also iso
morphism of the partially ordered set (Q1, <) onto (Q2, < ' ) . In such case it will 
be said that p.o. quasigroups are o-isomorphic. 

LEMMA 3 .1 . Let (Q, • ,< ) be a p.o. quasigroup and let x, y be arbitrary el
ements in Q. Then x < y if and only if x/a < y/a, a\x < a\y. a/y < a/x, 
y\a < x\a, where a is an arbitrary element in Q. 

P r o o f . Since x = a • (a\x) = (x/a) • a and y = a - (a\y) = (y/a) • a, by 
Definition 3.1 we have x < y if and only if x/a < y/a, a\x < a\y. Further, 
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x <y if and only if (a/x) • x < (a/x) • y if and only if a < (a/x) • y if and only 

if (a/y) • y < (a/x) • y if and only if a/y < a/x. Analogously, x < y if and only 

if y\a < %\a- ---

LEMMA 3.2. Let (Q, • , < ) be a p.o. quasigroup. Let (o) = (.)(<*>P>~f) ^ where 
a, /?, 7 G C?(Q, •). Tften (Q, o , <) w a p.o. quasigroup. 

P r o o f . This is an immediate consequence of Lemma 3.1. D 

A p.o. quasigroup (Q, •, <) is said to be directed, if (Q, <) is directed set 
(i.e. for arbitrary elements a,b £ Q there exist c,d € Q such that a:b <c and 
d < a, b). By the same method as in the case of p.o. groups (cf., e.g., [4; p. 290, 
Lemma 1]) we obtain: 

LEMMA 3.3. A p.o. loop (Q, •, <) is directed if and only if each element q G Q 
can be written in the form q = u • u*, where u G U, u* G U* . 

A generalization of Lemma 3.3 (and also of [4; p. 290, Lemma 1]) is the 
following lemma: 

LEMMA 3.4. Let ( Q , - , < ) be a p.o. quasigroup and let h be its arbitrary el
ement. Then the p.o. quasigroup (Q, •, <) is directed if and only if each element 
q G Q can be written in the form q = u- u*, where u £Uh, u* G Uh . 

P r o o f . Assume that a p.o. quasigroup (Q, •, <) is directed and q is an 
arbitrary element in Q. Then there is c G Q such that q < c, hh < c. There 
exists x G Q such that c = xh. From q < xh and from hh < xh we get x\q < h 
and h < x. Since q = x • (x\q), we can conclude that q has the indicated 
form. Conversely, assume that each element q G Q can be written in the form 
q = u-u*,ueUh,u* eU£. Let (o) = (•)<** * ' L H \ 7 ) . Then (Q, o) is a loop with 
identity element 1 = hh (see Section 2). By Lemma 3.2 (Q, o , <) is a p.o. loop. 
Since each element q G Q can be represented in the form q = RhuoLhu*, where 
1 < Rhu and Lhu* < 1, by Lemma 3.3 the p.o. loop (Q. o, <) is directed. The 
p.o. quasigroup (Q, •, <) is obviously directed as wTell. D 

Let (Q, •, <) be a p.o. quasigroup. Suppose that (A, •) is a subquasigroup of 
(Q, •) . Then the p.o. quasigroup (A, •, <) will be called a p.o. subquasigroup of 
the p.o. quasigroup (Q, •, < ) . We write A instead of (A, •, <) if no misunder
standing can occur. Let (A, •, <) be a p.o. subquasigroup of Q and let h be any 
element in A. The sets {x € A : h < x} and {x £ A: x < h} will be denoted 
by Ah and Ah , respectively. 

LEMMA 3.5. Let A,B be p.o. subquasigroups of a p.o. quasigroup Q. Let h G 
AilB. Then 

(i) Ah C Bh if and only if Ah C Bh , 
(ii) If A is directed, then Ah C Bh implies A C B. 
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P r o o f . 
(i) Let a G A^, i.e. a G A, a < h. Then h/h < h/a, hence (h/a) • h G .A^. 

From A^ C i?^" we have (h/a) - h £ B, hence a E B. Since a < /i, we get 
a G L?^. Analogously we can prove that Aj^ C B^ implies A^ C J9^~. 

(ii) Since A is directed, by Lemma 3.4 we have that each element a € A can 
be written in the form a = u • u*, wThere u G AjJ" , u* G -4^. From .A^ C 5 ^ 
and from (i) it follows that u G B^, u* G i ? ^ , hence a = u - u* belongs to B. 

n 

4. Lexicographic product decomposition 
of p.o. quasigroups 

In this section we will study lexicographic product decompositions (with a 
finite number lexicographic factors) of a p.o. quasigroup Q with an idempotent 
element h. 

Let A{, i = 1, 2 , . . . , n , be p.o. quasigroups. Let C be the set of all ordered 
n-tuples ( a 1 , . . . , a n ) , a{ G Ai. The binary operation (denoted by •) defined 
componentwise. For distinct elements ( a x , . . . , an) and (b1 7 . . . , bn) in C we put 
(a1,..., an) < (b x , . . . , bn) whenever a{ < bi for the first element i = 1, 2 , . . . , n 
such that ai^bi. It is a routine to verify that (C, •, <) is a p.o. quasigroup. The 
p.o. quasigroup C that arises in this way will be called lexicographic product 

n 
of the p.o. quasigroups A{ and it will be denoted by T Ai . B y [Ao B] we will 

i=i 
denote the lexicographic product of two p.o. quasigroups A, B. 

Let Q be a p.o. quasigroup with an idempotent element h. Let there ex
ist p.o. subquasigroups A, B of Q which contain the element h and let the 
following conditions be fulfilled: 

CI) For each q G Q there exists exactly one pair (a, b) such that a G A, 
b G B and q = a • b. 

C2) If q1,q2 G Q, gx = a1b1 , f/2 = a2b2, a1 5a2 G A, bl7b2 G B , then 

0i • ^2 = Rh\Rhai • ^ a
2 ) * ^ ( ^ / A • X f t62). 

C3) Under the notation as in C2), the relation gx < q2 is valid if and only if 
either ax < a2 or ax =- a2 and bt < b2. 

In such case we will wTite 

Q = (AoB)h. (4.1) 

The mapping 
<p: Q -+ [A o B ] , ^(aft) = (RfcO, £h6) , (4.2) 
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where a G A, b G B is an o-isomorphism. In fact, from Cl) it follows that 
p is a bijection. Further, ^ ( a ^ ) • p(a2b2) = (R^.L^) • (Rha2.Lhb2) = 
(Rhal-Rha2,Lhbl-Lhb2) = p(Rh

l(Rhal-Rha2)-Lh\L^ 
Finally, a1bl < a2b2 if and only if (either ax < a2 or al = a2 and bx < b2 if 
and only if (either Rhal < Rha2 or Rhax — Rha2 and Lhb1 < Lhb2 if and onl\ 
if (Rhal,Lhbx) < (Rha2 Lhb2). Thus p is n o i ornorphi 11 ai d \ c s \ tl 
4.1) d fines the le icographic produc dccompo ition f the p qu ^v o 

with an idempotent element h. 

LEMMA 4.1. Let (Q, <) b apo quasiqroup The f low^n o d ho i 1 . 
(2) are equivalent 

(1) Q = (AoB)h. 
(2) A, B are normal subquasigroups of Q such that 

(i) AHB = {h}, 
(ii) Q = AB, 

(iii) a1b1 < a2b2, a1,a2 G A, b1,b2 G B if and only if either a1 < a2 

or ax = a2 and br <b2. 

P r o o f . Let Q = (A o B)h. Let 0 be a relation on Q such that a1b1 0 a2b2 

if and only if bx = b2, where ax,a2 G A, b1,b2 G B. In view of Cl) and C2) it 
is easy to verify that 0 is a normal congruence on Q. If x 0 h, then x = ah, 
a £ A, hence x G A. Conversely, each element x G A can be written in the 
form x = (x/h) • /i, wrhere (x/h) £ A, h G B: thus x 0 h. This proves that A 
is a class of the normal congruence 0 which contains the idempotent element 
h. Therefore A is a normal subquasigroup of Q. Analogously, B is a normal 
subquasigroup of Q. Now, for completing the proof, it suffices to use assertions 
A2), Cl) and C3). The converse follows from A2), A3). • 

LEMMA 4.2. Let Q, Qlf Q2 be p.o. quasigroups and let h be an idempotent 
element of Q. Then the following are equivalent: 

(1) Q = 0 K ? l 0 Q 2 ] . 
(2) Q = (Ao B)h such that A=*QQlf B =*0Q2. 

P r o o f . Let (p: [Qx o Q2] -> Q be an o-isomorphism. Let h = (p(r,s), 
r G Qx, s G Q2 (it is obvious that r and s are idempotent elements) and let 

Qi = {(Q,s) '• Q £ Q\} - Q'2 = {(ri <l) '- Q € Q2}-
 lt i s e a s y t o verify that Q[, 

Q2 are normal subquasigroups of [Q1 o Q2] such that Q[ • <22 = [Q1 o Q2] and 
Qi H Q2 = {(r, 5 )} . Put A = ^(<5i) - -B = V?(Q2) • Since ^ is an o-isomorphism, 
we can conclude that A, B are the normal subquasigroups of Q such that 
A- B = Q and An B = {h}. Finally, we will show that the condition (iii) in 
Lemma 4.1 is valid. From A2) in the Section 2 it follows that each element q G Q 
can be uniquely written in the form q = ab, a £ A, b e B. Let ql = albl, 
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q2 = a2b2, ax,a2 E A, bx,b2 E B. Since ip is an o-isomorphism, there exist 
(ux,u2), (v1,v2) belonging to [QxoQ2] such that qx = ^p(ux,u2), q2 = cp(vx,

v2)-
We can write qx = y(ux,u2) = ip[{ujr,8) • (r,s\u2)] = ^ ( ^ / r , s) • (p(r,s\u2) 
and analogously q2 = (p(vl/r,s) • tp(r,s\v2). From A = <p(Q[) and B = tpiQ'z) 
it follows that ^(u-^/r, s), ip(vl/r,s) E A and (p(r,s\u2), y(r,s\v2) E B. Since 
q1, q2 can be uniquely written in the form q1 = albl, q2 = a2b2, we have 
a1 = (p(ux/r,s), a2 = cp(v1/r,s), bx = (p(r,s\u2), b2 = (p(r,s\v2). Now, using 
that ip is an o-isomorphism we obtain ax < a2 if and only if ux < vr and b1 < b2 

if and only if u2 < v2. Thus qx < q2 if and only if either ax < a2 or a1 = a2 and 
bx <b2. By Lemma 4.1 we conclude that Q = (AoB)h. Finally, from Q[ -=0 Qx 

and Q'2 ="0 Q2 it follows that A =.Q Q1 and B^0Q2. 
Conversely, if Q = (AoB)h, then Q t=0 [.AoJB], From A ^ 0 Qx and B = 0 Q2 

we get [A o B] ^ 0 [£-_ o Q2] and hence Q r=o [ g i o Q 2 ] . D 

COROLLARY 4 .3 . Le£ £? = (A o B)h and let g ^ h be an idempotent element 
in Q. Then there exist p.o. quasigroups C. D such that Q = (C o £)) and 
Cr= 0 A, D^QB. 

P r o o f . From (4.2) it follows that <p: (a,b) —> R^a • Lh
lb is an o-iso

morphism of [A o B] onto Q = (Ao B)h. For completing the proof it suffices to 
use Lemma 4.2. • 

Let Q = ((A1 o A2)h o A3)h. From (4.2) and C2) it follows that 

<Pi' ( a i a
2 k 3 "> (Rh(aia2)iLhaz) = (Rhai'LhlRhLha2iLhaz)i 

where a{ E At, for i = 1,2,3, is an o-isomorphism Q onto [(Ax o A2)h o As]. 
Since (p2: axa2 —> (RhavLha2) is an o-isomorphism (Ax o A2)h onto [A1 oA2], 
we get 

<rV ( a i a
2 ) a 3 -> ( ^ 2 ( ^ a i 'LhlRhLha2)^Lhas) = ((Rlai>RhLha2)>Lhas) 

is an o-isomorphism Q onto [[u4x o A J o .A3]. Hence 

ip: (aia2)a3 -> (R^R^^L^) (4.3) 

3 
is an o-isomorphism Q onto T .A .̂ Analogously, 

¥>:a 1 (o 2 a 3 ) - ->( i J h a 1 > L h .R f c a 2 , ^o 3 ) (4.3') 

3 
is an o-isomorphism of Q = (At o (A2 o A3)h)h onto y ^ . 

LEMMA 4.4. Let Q = ((A1 o A2)h o A3)h. Then 
(i) A1nA2 = A2nA3=A1DA3 = {h}, 

(ii) .4j, A j , A3 are normal subquasigroups of Q, 
(iii) (Ax • A2) •A3 = A1- (A2 • A3). 
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3 

P r o o f . Let Q = ((Al o A2)h o A3)h and let y\ Q —r V A^ be the iso
morphism defined by (4.3). Then (p(Ax) = {(a1:h,h) \ a1 E A x } , <p(A2) = 
{(ft,a2,ft) \ a2 E A 2 } , ip(A3) = {(ft,ft,a3) : a3 E A3}. Since (/(A^ n <p(A2) 
= ip(A2) n ip(A3) = V(AX) n p(A3) = {(ft,ft,h)} = {^(ft)}, we have ^ f l i ^ 
A2 n A3 = Ax n A3 = {ft}. Thus (i) holds. It is a routine to verify that the 
relation 0 defined by the rule (a1:a2,a3) 0 (a[,a2,a'3) if and only if a2 = a'2 

3 
and a3 = a3 is a normal congruence on T Ai and the subquasigroup ^(A-J is a 

i=i 
class of the normal congruence 0 . Therefore <p(Ax) is a normal subquasigroup of 

3 3 
T A,. Analogously <p(A2), ^p(A3) are normal subquasigroups of T A-. Hence 

i=l i=l 

Ax, A2 , A3 are normal subquasigroups of Q, i.e. (ii) is valid. Finally, from 
3 

(v(^i) • v W ) • (̂A3) = v(A) • (V(4J) • v(4.)) = r A we have ("0- n 
LEMMA 4.5. Q = {(Ax o A2)h o A3)h if and only if Q = (A1 o (A2 o A 3 ) h ) h . 

P r o o f . Let Q = ((A1 o A2) / l o A 3 ) / i . Let us denote E = A2 • A3 and let 
3 

<£: Q —r T A- be an o-isomorphism defined by (4.3). Then ip(E) = (p(A2-A3) = 
i=l 

(p(A2) • ip(A3) = {(ft, a 2 ,a 3 ) : a2 e A2 , a3 E A 3 } . Since ^(£?) is a normal 
3 

subquasigroup of T A. and <£>(A2), v?(A3) are normal subquasigroups of (^(F"). 

FJ is a normal subquasigroup of Q and A2 , A3 are normal subquasigroups of E. 
From Lemma 4.4(i) it follows that A2 n A3 = {ft}. Further, let a2a3, a'2a'3 E E 
(a^a't E A J . Since a21a'2 E (Ax o A2) / i and a 3 , a 3 E A 3 , from the assumption 
we get a2a3 < a'2a'3 if and only if either a2 < a'2 or a2 = a'2 and a3 < a'3. Thus 
by Lemma 4.1 we conclude that E = (A2 o A3)h. 

From Lemma 4.4(iii) it follows that Q = Ax • E. Since ip(Ax) n ^p(E) = 
{(ft, ft, ft)}, A1H E = {ft}. For arbitrary elements ax E Ax , a2 € A2, a3 E A3 

we can write a1(a2a3) = [(ax/ft) • ft] • (a2a3). Since a^-ft, a2 E (Ax o A2)^ 
and ft, a3 E A3 , then from the assumption of the lemma and by C2) we have 
a1(a2a3) = Rh

1(a1 • Rha2) • Lh
l(h • Lha3). Consequently in view of (2.3) we 

obtain 
ax(a2a3) = (R^a, • L^R^L^a^ • Lha3 . (4.4) 

for all ax E Al. a2 E A 2 . a 3 G i 4 3 . From (4.4) it follows (we take I?/?a1 instead 
of a2 , Rh

1Lh
1RhLha2 instead of a2 and L~^la3 instead of a3) 

Rhai '(RhlLhlRhLha2'Lhlai) = K « 2 ) a 3 (4-4 ') 

According to (4.4) and from the assumption we obtain a1(a2a3) < a'1(a'2a'3) if 

and only if (R^a,-L^R'1 LhRh a2)-Lha3 < ( i ^ X •L~ l R h ' L h R h a ' 2 ) -L h a ' 3 
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if and only if either a1 < a[ or ax = a[ and a2a3 < a2a3. Thus, by Lemma 4.1 
we conclude that Q = (A1 o E)h = (Ax o (A2 o A3)h)h. Analogously, using 
an o-isomorphism defined by (4.3') and by (4.4'), we can prove that Q = 
(A, o (A2 o A3)h)h implies Q = ((A2 o A2)h oA3)h. D 

In view of Lemma 4.5 we can write Q = (Al o A2 o ,43)^ instead of Q = 
((Ax o A2)h o A3)h. Analogously, by induction we can write 

(A1oA2oA3o--.oAn_1oAn)h = (((...(A1oA2)hoA3)ho.--oAn_1)hoAn)h. 

(4.5) 
A p.o. quasigroup A is said to be the lexicographic factor of Q with an 

idempotent element h, if there are p.o. subquasigroups FT, D of Q such that 
Q = (H o A o D)h (for an analogous notation in the theory of partially ordered 
u-groupoids cf. [6; Sect. 6]). Let us remark that Q and {h} are lexicographic 
factors, because Q = ({h} 0Q0 {h})h and also Q = (Q o {h} o {h})h. 

Let Q = (A1 o A2 o A3 o • • • o An_1 o An)h. Then, using (4.5) and (4.2), we 
get by induction that 

tp: {•••{(a1a2)a3)...an_1)an 

• (Rh~lal>Rh~ Lha2'Rh~3Lha3'-''<RhLhan-l>Lhan) 

n 
is an o-isomorphism (Ax o A2 o A3 o • • • o An_1 o An)h onto T Ai. In such 

i=l 

case we say that Q = (A1 o A2 o • • • o An)h defines the lexicographic product 
decomposition of Q with the finite number of lexicographic factors. 

From Lemma 3.5 it follows that if each lexicographic factor of a p.o. loop 
Q is directed, then Q is an u-groupoid. Therefore all results which hold for 
u-groupoids (see [6]) also hold for these p.o. loops. Now, we will show that 
some assertions analogous to those in [6] valid for u-groupoids can be proved for 
p.o. quasigroups. 

LEMMA 4.6. If Q = (Ao B)h, then B is a convex p.o. subquasigroup of Q. 

P r o o f . This proof is analogous to the proof in [6; Sect. 7]. • 

LEMMA 4.7. Let Q = (AoB)h, Q = (CoD)h be two lexicographic product de
compositions of a p.o. quasigroup Q. Let A, B. C. D are directed subquasigroups 
of Q. Then 

(i) BCD or DCB. 
(ii) If DCB, then B= ((BnC)oD)h. 

(iii) If A = C, then B = D. 

P r o o f . 
(i) Let D g B. Then, by Lemma 3.5, D+ % B+ and Dh £ B~. Now, in 

the same way as when proving 9) in [6] we get B CD. 
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(ii) Let D C B. First, we will prove that B = (BnC)-D. Each element b e B 
can be uniquely represented in the form b = cd, c e C, d e D. Since D C B, 
we have de B and hence ceB. Thus c e BnC, therefore b e (BnC)-D. We 
have B C (B nC) • D. The converse inclusion is trivial. From the assumption of 
the lemma it follows that BnC and D are normal subquasigroups of Q; thus 
they are normal subquasigroups of B. It is clearly that (B n C) D D = {h}. For 
completing the proof we need show that the condition (iii) from Lemma 4.1 is 
valid. Let bx = cxdx, b2 = c2d2, cx,c2 e BnC, d1,d2 e D. Since Q = (CoD)h, 
bj < b2 if and only if either cx < c2 or cx = c2 and dx < d2; thus (iii) is valid. 
Therefore by Lemma 4.1 we can conclude that B = ((B n C) o D)h. 

(iii) From (i) and (ii) we get either B = ((B D A) o D)h = ({h} oD)h or 

D= ((DnC)oB)h= ({h}oB)h. Hence £ = £>. D 

Let Q = (A o B)h. From Lemma 4.1 it follows that A, B are normal sub
quasigroups of Q such that An B = {h}. Let Q/B be a set of all classes xB, 
x e Q, with the operation xB • yB = Rh

lf
yRhx • Rhy) • B. Then £?/i? is a 

quasigroup (see e.g. [3]). Every class xB contains exactly one element of A. In 
fact, let a, a' e An xB and let x = axbx, a1 e A, b2 e B. Then from (2.4) we 
have a = a1b1 • b = a±h • Lh

1(Lhb1 • b) and a' = albl-b' = axh- Lh
1(LJlbl • b'), 

where b,b' e B. Since, at the same time a = (a/h) h and a' = (a'/h)-h, we get 
axh = a/h and axh = a'jh. Hence a = a'. Finally, if x = a1b1, then by (2.4), 
x • (Lhbx\h) = a^-h, hence x • (Lfc&1\/i) E i d x B , therefore A fl XJB ^ 0. 

In view of the assertion above we can write Q/B = {R~h"(a) • B : a e A}. 
Let < be a relation on the set Q/B which is defined as follows: Rh

1(a1) • B < 
Rh

l(a2) • B if and only if ax <a2. It is a routine to verify that (Q/B, • ,<) is 
a p.o. quasigroup. The mapping tp(a) = R^i0) ' B is an o-isomorphism of A 
onto Q/B. 

LEMMA 4.8. Let Q = (A o B)h and Q = (C o B)h. Then there exists an 
o-isomorphism (p of A onto C such that tp(h) = h. 

P r o o f . In view of the assumption, each element a e A can be uniquely 
written in the form a = Rh

l(c) • b, where c e C, b e B. Let (p be a mapping 
of A into C such that (p(a) = c whenever a — R~/^(c) ~ b. The map tp is a 
composition of two o-isomorphisms: 

(px: A->Q/B: ^ ( a ) = Rh\a) • B, 
<p2: Q/B - > C ; ip^R'1 (a) • B) = c, where cG Rh

1(a)-B. 
Therefore cp = ^2^1 ^s a n o-isomorphism of the quasigroup A onto quasi
group C. Clearly, ip(h) = h. • 

Let 
Q = (A1oA2o...oAn)h (4.6) 
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and suppose that there are given lexicographic product decompositions 

A i = (AiloAi2°--°Aim(i))h 

for each i = 1,2,..., n. Then according to Lemma 4.5 and by (4.5) we can write 

Q = (Au o A12 o • • • o A{j o • • • o Anm{n))h . (4.7) 

We will say that the lexicographic product decomposition (4.7) is a refinement 
of (4.6). Further, let 

Q=(B1oB2o*..oBm)h. (4.8) 

The lexicographic product decompositions (4,6) and (4.8) are said to be isomor
phic, if m = n and Ai and Bi are o-isomorphic for all i = 1,2,..., n. 

THEOREM 4 . 1 . Two lexicographic product decompositions Q = (A1 o ••• 
• "oAn)h and Q = (Bx o- • -oBm)h, where Av...,An, B1,...,Bm are directed 
subquasigroups of p.o. quasigroup Q, have isomorphic refinements. 

P r o o f . We prove the theorem by induction onn + m,n + m>2 (for 
an analogous proof cf. [6; Theorem 15]). It is clear for n + m = 2. Let n + m 
> 2. According to Lemma 4.7(i) we can suppose without loss of generality 
that An C Bm. Then, by Lemma 4.7(ii) we have Bm = (E o An)h, where 
E = Bm fl (Ax o A2 o • • • o An_1)h. Since E is the first lexicographic factor 
and Bm = (E o An)h is directed, then E is also directed. From Q = (B1 o 
B2 o • • • o Bm_1 o E o An)h = (A1 o A2 o • • • o An)h and by Lemma 4.8 we have 
(B1 oB2o- -oBm_1oE)h =Q (Ax oA2o> • -oAn_1)h. By assumption of induction 
we can conclude that the theorem is proved. • 
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