Mathematic Slovaca

Milan Demko
 Lexicographic product decompositions of partially ordered quasigroups

Mathematica Slovaca, Vol. 51 (2001), No. 1, 13--24

Persistent URL: http://dml.cz/dmlcz/128708

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

LEXICOGRAPHIC PRODUCT DECOMPOSITIONS OF PARTIALLY ORDERED QUASIGROUPS

Milan Demko
(Communicated by Tibor Katriñák)

Abstract

In this paper there are investigated some properties of partially ordered quasigroups (briefly: p.o. quasigroups) and lexicographic product decompositions of p.o. quasigroups are studied. It will be shown that for a p.o. quasigroup Q with an idempotent element h the assertion analogous with Theorem 15 in [JAKUBÍK, J.: Lexicographic products of partially ordered groupoids, Czechoslovak Math. J. 14(89) (1964), 281-305 (Russian)] is valid, i.e. arbitrary two lexicographic product decompositions of a p.o. quasigroup Q with a finite number of directed lexicographic factors have isomorphic refinements.

1. Introduction

Lexicographic product decompositions of a certain type of partially ordered groupoids, so-called u-groupoids, were discussed by J. Jakubík in [6]. He proved that any two lexicographic product decompositions of an u-groupoid G with a finite number ([6; Theorem 15]) but also with an infinite number ([6; Theorem 35]) of lexicographic factors have isomorphic refinements. In this paper we will study lexicographic product decompositions of a partially ordered quasigroup Q with an idempotent element h. Here we will prove the following assertion analogous with [6; Theorem 15]: Arbitrary two lexicographic product decompositions of the partially ordered quasigroup Q with a finite number of directed lexicographic factors have isomorphic refinements. Let us remark that a partially ordered quasigroup Q with idempotent element h need not be an u-groupoid; conversely, an u-groupoid, in general, need not be a partially ordered quasigroup.

[^0]Fundamental results on lexicographic product of linearly ordered groups have been proved by Mal'cev [9]. Further, lexicographic product decompositions of some types ordered algebraic structures were dealt with in the papers [5], [7]. [8].

2. Preliminaries

We recall that a quasigroup (Q, \cdot) is defined (cf., e.g. [3]) as an algebra having a binary operation $a \cdot b$ which satisfies the condition that for any a, b the equations $a \cdot x=b$ and $y \cdot a=b$ have unique solutions x and y. A quasigroup having an identity element 1 (i.e., such that $1 \cdot x=x \cdot 1=x$ for each $x \in Q$) is called a loop. If ($Q, \cdot)$ is a quasigroup, then we define $a / b=c$ if and only if $a=c \cdot b$; in this case we also put $c \backslash a=b$. For any $a, x \in Q$ we set $L_{a} x=a \cdot x$, $R_{a} x=x \cdot a$. Then L_{a} and R_{a} are called left translations or right translations, respectively. We have $L_{a}^{-1} x=a \backslash x, R_{a}^{-1} x=x / a$. The group generated by all left and right translations of (Q, \cdot) is called the multiplication group of (Q, \cdot) and is denoted by $G(Q, \cdot)$.

We will say that two quasigroups $(Q, \circ),(Q, \cdot)$ are isotopic (cf., e.g. [3]) if there exist permutations α, β, γ of Q such that $\gamma(x \circ y)=\alpha x \cdot \beta y$ for all $x, y \in Q$. In such case we will write $(\circ)=(\cdot)^{(\alpha, \beta, \gamma)}$ and say that (Q, \circ) is an isotope of (Q, \cdot). It is well known (see, e.g. [3]) that if (Q, \cdot) is a quasigroup and $(\circ)=(\cdot)^{\left(R_{a}^{-1}, L_{b}^{-1}, I\right)}$, where $a, b \in Q, I$ is the identity permutation of Q, then (Q, \circ) is a loop with the identity element $b a$.

The direct product $Q_{1} \times Q_{2}$ of quasigroups Q_{1}, Q_{2} is defined in a natural way, i.e. $Q_{1} \times Q_{2}$ is the set of all ordered pairs $\left(q_{1}, q_{2}\right), q_{1} \in Q_{1}, q_{2} \in Q_{2}$, with the operation defined componentwise. The concepts of a normal subquasigroup, normal congruence on a quasigroup are used by definitions of [3]. Let ($\left.Q_{1}, \cdot\right)$ and (Q_{2}, \circ) be quasigroups. Notation $Q_{1} \cong Q_{2}$ means that there exists isomorphism of (Q_{1}, \cdot) into (Q_{2}, \circ).

For the sake of convenience, we summarize here some results which will be frequently used and quoted. These results had been proved by Belyavskaya in [1] and later quoted in [2]. We will formulate them according to [2].

Let (Q, \cdot) be a quasigroup with an idempotent element h. Then
A1) (Cf. [1; Theorem 4, Lemma 4]) $Q \cong Q_{1} \times Q_{2}$ if and only if there exist normal subquasigroups A, B of Q such that $A \cdot B=Q, A \cap B=\{h\}$. Then $Q / A \cong Q_{2} \cong B, Q / B \cong Q_{1} \cong A$.

A2) (Cf. [1; Theorem 3]) Let A, B be normal subquasigroups of $Q, h \in$ $A \cap B$. Then $A \cdot B=Q$ and $A \cap B=\{h\}$ if and only if each element $q \in Q$ can be uniquely written in the form $q=a \cdot b, a \in A, b \in B$.

A3) (Cf. [2; Lemma 1]) Let A, B be normal subquasigroups of Q and let $A \cdot B=Q, A \cap B=\{h\}$. If $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$, then

$$
\begin{equation*}
\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=R_{h}^{-1}\left(a_{1} h \cdot a_{2} h\right) \cdot L_{h}^{-1}\left(h b_{1} \cdot h b_{2}\right) \tag{2.1}
\end{equation*}
$$

A4) (Cf. [2; Chapt. 1, Corollaries 1, 2]) Let A, B be normal subquasigroups of Q such that $A \cdot B=Q, A \cap B=\{h\}$. Let $a \in A, b, b_{1} \in B$. Then

$$
\begin{align*}
& L_{h}(a b)=R_{h}^{-1} L_{h} R_{h} a \cdot L_{h} b, \quad \quad R_{h}(a b)=R_{h} a \cdot L_{h}^{-1} R_{h} L_{h} b, \tag{2.2}\\
& L_{h}^{-1}(a b)=R_{h}^{-1} L_{h}^{-1} R_{h} a \cdot L_{h}^{-1} b, \quad R_{h}^{-1}(a b)=R_{h}^{-1} a \cdot L_{h}^{-1} R_{h}^{-1} L_{h} b, \tag{2.3}\\
& a b \cdot b_{1}=a h \cdot L_{h}^{-1}\left(h b \cdot b_{1}\right), \\
& b \cdot a b_{1}=R_{h}^{-1} L_{h} R_{h} a \cdot L_{h}^{-1}\left(b \cdot h b_{1}\right) . \tag{2.4}
\end{align*}
$$

3. Some properties of partially ordered quasigroups

Definition 3.1. (Cf., e.g. [4; p. 297].) A nonempty set Q with an operation • and a relation \leq is called a partially ordered quasigroup (briefly: p.o. quasigroup) if
(i) (Q, \cdot) is a quasigroup.
(ii) (Q, \leq) is a partially ordered set.
(iii) For all $x, y, a \in Q, x \leq y$ if and only if $a x \leq a y$ if and only if $x a \leq y a$.

A partially ordered quasigroup will be denoted by $(Q, \cdot, \leq$) (or, if no misunderstanding can occur, by Q). If ($Q, \cdot)$ is a loop, then the p.o. quasigroup (Q, \cdot, \leq) is called a partially ordered loop (p.o. loop). Let h be an arbitrary element of Q. The set $U_{h}=\{x \in Q: x \geq h\}$ is said to be h-cone of p.o. quasigroup Q (cf. [10; Definition 2]). The set $\{x \in Q: x \leq h\}$ will be denoted by U_{h}^{*}. If (Q, \cdot, \leq) is a p.o. loop and h is an identity element of Q, then U will be used instead of U_{h} and U^{*} instead of U_{h}^{*}, respectively.

Let $\left(Q_{1}, \cdot, \leq\right)$ and ($\left.Q_{2}, \circ, \leq^{\prime}\right)$ be p.o. quasigroups. Notation $Q_{1} \cong Q_{2}$ means that there exists isomorphism of $\left(Q_{1}, \cdot\right)$ onto (Q_{2}, \circ) which is also isomorphism of the partially ordered set $\left(Q_{1}, \leq\right)$ onto ($\left.Q_{2}, \leq^{\prime}\right)$. In such case it will be said that p.o. quasigroups are o-isomorphic.

LEMMA 3.1. Let (Q, \cdot, \leq) be a p.o. quasigroup and let x, y be arbitrary elements in Q. Then $x \leq y$ if and only if $x / a \leq y / a, a \backslash x \leq a \backslash y, a / y \leq a / x$, $y \backslash a \leq x \backslash a$, where a is an arbitrary element in Q.

Proof. Since $x=a \cdot(a \backslash x)=(x / a) \cdot a$ and $y=a \cdot(a \backslash y)=(y / a) \cdot a$, by Definition 3.1 we have $x \leq y$ if and only if $x / a \leq y / a, a \backslash x \leq a \backslash y$. Further,
$x \leq y$ if and only if $(a / x) \cdot x \leq(a / x) \cdot y$ if and only if $a \leq(a / x) \cdot y$ if and only if $(a / y) \cdot y \leq(a / x) \cdot y$ if and only if $a / y \leq a / x$. Analogously, $x \leq y$ if and only if $y \backslash a \leq x \backslash a$.
LEMMA 3.2. Let (Q, \cdot, \leq) be a p.o. quasigroup. Let $(\circ)=(\cdot)^{(\alpha, \beta, \gamma)}$, where $\alpha, \beta, \gamma \in G(Q, \cdot)$. Then (Q, \circ, \leq) is a p.o. quasigroup.

Proof. This is an immediate consequence of Lemma 3.1.
A p.o. quasigroup (Q, \cdot, \leq) is said to be directed, if (Q, \leq) is directed set (i.e. for arbitrary elements $a, b \in Q$ there exist $c, d \in Q$ such that $a, b \leq c$ and $d \leq a, b$). By the same method as in the case of p.o. groups (cf., e.g., [4; p. 290, Lemma 1]) we obtain:

Lemma 3.3. A p.o. loop (Q, \cdot, \leq) is directed if and only if each element $q \in Q$ can be written in the form $q=u \cdot u^{*}$, where $u \in U, u^{*} \in U^{*}$.

A generalization of Lemma 3.3 (and also of [4; p. 290. Lemma 1]) is the following lemma:

LEMMA 3.4. Let (Q, \cdot, \leq) be a p.o. quasigroup and let h be its arbitrary element. Then the p.o. quasigroup (Q, \cdot, \leq) is directed if and only if each element $q \in Q$ can be written in the form $q=u \cdot u^{*}$, where $u \in U_{h}, u^{*} \in U_{h}^{*}$.

Proof. Assume that a p.o. quasigroup (Q, \cdot, \leq) is directed and q is an arbitrary element in Q. Then there is $c \in Q$ such that $q \leq c, h h \leq c$. There exists $x \in Q$ such that $c=x h$. From $q \leq x h$ and from $h h \leq x h$ we get $x \backslash q \leq h$ and $h \leq x$. Since $q=x \cdot(x \backslash q)$, we can conclude that q has the indicated form. Conversely, assume that each element $q \in Q$ can be written in the form $q=u \cdot u^{*}, u \in U_{h}, u^{*} \in U_{h}^{*}$. Let $(\circ)=(\cdot)^{\left(R_{h}^{-1}, L_{h}^{-1}, I\right)}$. Then (Q, \circ) is a loop with identity element $1=h h$ (see Section 2). By Lemma $3.2(Q, \circ, \leq)$ is a p.o. loop. Since each element $q \in Q$ can be represented in the form $q=R_{h} u \circ L_{h} u^{*}$, where $1 \leq R_{h} u$ and $L_{h} u^{*} \leq 1$, by Lemma 3.3 the p.o. loop (Q, \circ, \leq) is directed. The p.o. quasigroup (Q, \cdot, \leq) is obviously directed as well.

Let (Q, \cdot, \leq) be a p.o. quasigroup. Suppose that (A, \cdot) is a subquasigroup of (Q, \cdot). Then the p.o. quasigroup (A, \cdot, \leq) will be called a p.o. subquasigroup of the p.o. quasigroup (Q, \cdot, \leq). We write A instead of (A, \cdot, \leq) if no misunderstanding can occur. Let (A, \cdot, \leq) be a p.o. subquasigroup of Q and let h be any element in A. The sets $\{x \in A: h \leq x\}$ and $\{x \in A: x \leq h\}$ will be denoted by A_{h}^{+}and A_{h}^{-}, respectively.
Lemma 3.5. Let A, B be p.o. subquasigroups of a p.o. quasigroup Q. Let $h \in$ $A \cap B$. Then
(i) $A_{h}^{+} \subseteq B_{h}^{+}$if and only if $A_{h}^{-} \subseteq B_{h}^{-}$,
(ii) If A is directed, then $A_{h}^{+} \subseteq B_{h}^{+}$implies $A \subseteq B$.

LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

Proof.
(i) Let $a \in A_{h}^{-}$, i.e. $a \in A, a \leq h$. Then $h / h \leq h / a$, hence $(h / a) \cdot h \in A_{h}^{+}$. From $A_{h}^{+} \subseteq B_{h}^{+}$we have $(h / a) \cdot h \in B$, hence $a \in B$. Since $a \leq h$, we get $a \in B_{h}^{-}$. Analogously we can prove that $A_{h}^{-} \subseteq B_{h}^{-}$implies $A_{h}^{+} \subseteq B_{h}^{+}$.
(ii) Since A is directed, by Lemma 3.4 we have that each element $a \in A$ can be written in the form $a=u \cdot u^{*}$, where $u \in A_{h}^{+}, u^{*} \in A_{h}^{-}$. From $A_{h}^{+} \subseteq B_{h}^{+}$ and from (i) it follows that $u \in B_{h}^{+}, u^{*} \in B_{h}^{-}$, hence $a=u \cdot u^{*}$ belongs to B.

4. Lexicographic product decomposition of p.o. quasigroups

In this section we will study lexicographic product decompositions (with a finite number lexicographic factors) of a p.o. quasigroup Q with an idempotent element h.

Let $A_{i}, i=1,2, \ldots, n$, be p.o. quasigroups. Let C be the set of all ordered n-tuples $\left(a_{1}, \ldots, a_{n}\right), a_{i} \in A_{i}$. The binary operation (denoted by •) defined componentwise. For distinct elements $\left(a_{1}, \ldots, a_{n}\right)$ and (b_{1}, \ldots, b_{n}) in C we put $\left(a_{1}, \ldots, a_{n}\right)<\left(b_{1}, \ldots, b_{n}\right)$ whenever $a_{i}<b_{i}$ for the first element $i=1,2, \ldots, n$ such that $a_{i} \neq b_{i}$. It is a routine to verify that (C, \cdot, \leq) is a p.o. quasigroup. The p.o. quasigroup C that arises in this way will be called lexicographic product of the p.o. quasigroups A_{i} and it will be denoted by $\sum_{i=1}^{n} A_{i}$. By $[A \circ B]$ we will denote the lexicographic product of two p.o. quasigroups A, B.

Let Q be a p.o. quasigroup with an idempotent element h. Let there exist p.o. subquasigroups A, B of Q which contain the element h and let the following conditions be fulfilled:

C1) For each $q \in Q$ there exists exactly one pair (a, b) such that $a \in A$, $b \in B$ and $q=a \cdot b$.
C2) If $q_{1}, q_{2} \in Q, q_{1}=a_{1} b_{1}, q_{2}=a_{2} b_{2}, a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$, then

$$
q_{1} \cdot q_{2}=R_{h}^{-1}\left(R_{h} a_{1} \cdot R_{h} a_{2}\right) \cdot L_{h}^{-1}\left(L_{h} b_{1} \cdot L_{h} b_{2}\right)
$$

C3) Under the notation as in C2), the relation $q_{1} \leq q_{2}$ is valid if and only if either $a_{1}<a_{2}$ or $a_{1}=a_{2}$ and $b_{1} \leq b_{2}$.
In such case we will write

$$
\begin{equation*}
Q=(A \circ B)_{h} \tag{4.1}
\end{equation*}
$$

The mapping

$$
\begin{equation*}
\varphi: Q \rightarrow[A \circ B], \quad \varphi(a b)=\left(R_{h} a, L_{h} b\right) \tag{4.2}
\end{equation*}
$$

where $a \in A, b \in B$ is an o-isomorphism. In fact. from C1) it follows that φ is a bijection. Further, $\varphi\left(a_{1} b_{1}\right) \cdot \varphi\left(a_{2} b_{2}\right)=\left(R_{h} a_{1} \cdot L_{h} b_{1}\right) \cdot\left(R_{h} a_{2} \cdot L_{h} b_{2}\right)=$ $\left(R_{h} a_{1} \cdot R_{h} a_{2}, L_{h} b_{1} \cdot L_{h} b_{2}\right)=\varphi\left(R_{h}^{-1}\left(R_{h} a_{1} \cdot R_{h} a_{2}\right) \cdot L_{h}^{-1}\left(L_{h} b_{1} \cdot L_{h} b_{2}\right)\right)=\varphi\left(a_{1} b_{1} \cdot a_{2} b_{2}\right)$. Finally, $a_{1} b_{1} \leq a_{2} b_{2}$ if and only if (either $a_{1}<a_{2}$ or $a_{1}=a_{2}$ and $b_{1} \leq b_{2}$ if and only if (either $R_{h} a_{1}<R_{h} a_{2}$ or $R_{h} a_{1}=R_{h} a_{2}$ and $L_{h} b_{1} \leq L_{h} b_{2}$ if and onls if $\left(R_{h} a_{1}, L_{h} b_{1}\right) \leq\left(R_{h} a_{2} L_{h} b_{2}\right)$. Thus φ is noi omorphinıardic a th
4.1) d fines the le cographic produc decompo ition f the p qu \rightarrow r o with an idempotent element h.

Lemma 4.1. Let $(Q . \leq) b$ a po quasigroup The f lowin odtio 1 . (2) are equivalent
(1) $Q=(A \circ B)_{h}$.
(2) A, B are normal subquasigroups of Q such that
(i) $A \cap B=\{h\}$,
(ii) $Q=A \cdot B$,
(iii) $a_{1} b_{1} \leq a_{2} b_{2}, a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ if and only if either $a_{1}<a_{2}$ or $a_{1}=a_{2}$ and $b_{1} \leq b_{2}$.

Proof. Let $Q=(A \circ B)_{h}$. Let Θ be a relation on Q such that $a_{1} b_{1} \Theta a_{2} b_{2}$ if and only if $b_{1}=b_{2}$, where $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$. In view of C1) and C2) it is easy to verify that Θ is a normal congruence on Q. If $x \Theta$, then $x=a h$, $a \in A$, hence $x \in A$. Conversely, each element $x \in A$ can be written in the form $x=(x / h) \cdot h$, where $(x / h) \in A, h \in B$; thus $x \Theta h$. This proves that A is a class of the normal congruence Θ which contains the idempotent element h. Therefore A is a normal subquasigroup of Q. Analogously, B is a normal subquasigroup of Q. Now, for completing the proof, it suffices to use assertions A2), C1) and C3). The converse follows from A2), A3).

LEMMA 4.2. Let Q, Q_{1}, Q_{2} be p.o. quasigroups and let h be an idempotent element of Q. Then the following are equivalent:
(1) $Q \cong \cong_{\circ}\left[Q_{1} \circ Q_{2}\right]$.
(2) $Q=(A \circ B)_{h}$ such that $A \cong{ }_{\circ} Q_{1}, B \cong Q_{2}$.

Proof. Let $\varphi:\left[Q_{1} \circ Q_{2}\right] \rightarrow Q$ be an o-isomorphism. Let $h=\varphi(r, s)$, $r \in Q_{1}, s \in Q_{2}$ (it is obvious that r and s are idempotent elements) and let $Q_{1}^{\prime}=\left\{(q, s): q \in Q_{1}\right\}, Q_{2}^{\prime}=\left\{(r, q): q \in Q_{2}\right\}$. It is easy to verify that Q_{1}^{\prime}, Q_{2}^{\prime} are normal subquasigroups of $\left[Q_{1} \circ Q_{2}\right]$ such that $Q_{1}^{\prime} \cdot Q_{2}^{\prime}=\left[Q_{1} \circ Q_{2}\right]$ and $Q_{1}^{\prime} \cap Q_{2}^{\prime}=\{(r, s)\}$. Put $A=\varphi\left(Q_{1}^{\prime}\right), B=\varphi\left(Q_{2}^{\prime}\right)$. Since φ is an o-isomorphism, we can conclude that A, B are the normal subquasigroups of Q such that $A \cdot B=Q$ and $A \cap B=\{h\}$. Finally, we will show that the condition (iii) in Lemma 4.1 is valid. From A2) in the Section 2 it follows that each element $q \in Q$ can be uniquely written in the form $q=a b, a \in A, b \in B$. Let $q_{1}=a_{1} b_{1}$,

LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

$q_{2}=a_{2} b_{2}, a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ ．Since φ is an o－isomorphism，there exist $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ belonging to $\left[Q_{1} \circ Q_{2}\right]$ such that $q_{1}=\varphi\left(u_{1}, u_{2}\right), q_{2}=\varphi\left(v_{1}, v_{2}\right)$ ． We can write $q_{1}=\varphi\left(u_{1}, u_{2}\right)=\varphi\left[\left(u_{1} / r, s\right) \cdot\left(r, s \backslash u_{2}\right)\right]=\varphi\left(u_{1} / r, s\right) \cdot \varphi\left(r, s \backslash u_{2}\right)$ and analogously $q_{2}=\varphi\left(v_{1} / r, s\right) \cdot \varphi\left(r, s \backslash v_{2}\right)$ ．From $A=\varphi\left(Q_{1}^{\prime}\right)$ and $B=\varphi\left(Q_{2}^{\prime}\right)$ it follows that $\varphi\left(u_{1} / r, s\right), \varphi\left(v_{1} / r, s\right) \in A$ and $\varphi\left(r, s \backslash u_{2}\right), \varphi\left(r, s \backslash v_{2}\right) \in B$ ．Since q_{1}, q_{2} can be uniquely written in the form $q_{1}=a_{1} b_{1}, q_{2}=a_{2} b_{2}$ ，we have $a_{1}=\varphi\left(u_{1} / r, s\right), a_{2}=\varphi\left(v_{1} / r, s\right), b_{1}=\varphi\left(r, s \backslash u_{2}\right), b_{2}=\varphi\left(r, s \backslash v_{2}\right)$ ．Now，using that φ is an o－isomorphism we obtain $a_{1}<a_{2}$ if and only if $u_{1}<v_{1}$ and $b_{1} \leq b_{2}$ if and only if $u_{2} \leq v_{2}$ ．Thus $q_{1} \leq q_{2}$ if and only if either $a_{1}<a_{2}$ or $a_{1}=a_{2}$ and $b_{1} \leq b_{2}$ ．By Lemma 4.1 we conclude that $Q=(A \circ B)_{h}$ ．Finally，from $Q_{1}^{\prime} \cong Q_{1}$ and $Q_{2}^{\prime} \cong{ }_{\circ} Q_{2}$ it follows that $A \cong Q_{1}$ and $B \cong{ }_{\circ} Q_{2}$ ．

Conversely，if $Q=(A \circ B)_{h}$ ，then $Q \cong$ 。 $\left.A \circ B\right]$ ．From $A \cong{ }_{\circ} Q_{1}$ and $B \cong Q_{2}$ we get $[A \circ B] \cong$ 。 $\left[Q_{1} \circ Q_{2}\right]$ and hence $Q \cong$ 。 $\left[Q_{1} \circ Q_{2}\right]$ ．
Corollary 4．3．Let $Q=(A \circ B)_{h}$ and let $g \neq h$ be an idempotent element in Q ．Then there exist p．o．quasigroups C, D such that $Q=(C \circ D)_{g}$ and $C \cong$ 。 $A, D \cong$ 。

Proof．From（4．2）it follows that $\varphi:(a, b) \rightarrow R_{h}^{-1} a \cdot L_{h}^{-1} b$ is an o－iso－ morphism of $[A \circ B]$ onto $Q=(A \circ B)_{h}$ ．For completing the proof it suffices to use Lemma 4．2．

Let $Q=\left(\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h}$ ．From（4．2）and C2）it follows that

$$
\varphi_{1}:\left(a_{1} a_{2}\right) a_{3} \rightarrow\left(R_{h}\left(a_{1} a_{2}\right), L_{h} a_{3}\right)=\left(R_{h} a_{1} \cdot L_{h}^{-1} R_{h} L_{h} a_{2}, L_{h} a_{3}\right)
$$

where $a_{i} \in A_{i}$ ，for $i=1,2,3$ ，is an o－isomorphism Q onto $\left[\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right]$ ． Since $\varphi_{2}: a_{1} a_{2} \rightarrow\left(R_{h} a_{1}, L_{h} a_{2}\right)$ is an o－isomorphism $\left(A_{1} \circ A_{2}\right)_{h}$ onto $\left[A_{1} \circ A_{2}\right]$ ， we get

$$
\varphi_{3}:\left(a_{1} a_{2}\right) a_{3} \rightarrow\left(\varphi_{2}\left(R_{h} a_{1} \cdot L_{h}^{-1} R_{h} L_{h} a_{2}\right), L_{h} a_{3}\right)=\left(\left(R_{h}^{2} a_{1}, R_{h} L_{h} a_{2}\right), L_{h} a_{3}\right)
$$

is an o－isomorphism Q onto $\left[\left[A_{1} \circ A_{2}\right] \circ A_{3}\right]$ ．Hence

$$
\begin{equation*}
\varphi:\left(a_{1} a_{2}\right) a_{3} \rightarrow\left(R_{h}^{2} a_{1}, R_{h} L_{h} a_{2}, L_{h} a_{3}\right) \tag{4.3}
\end{equation*}
$$

is an o－isomorphism Q onto $\sum_{i=1}^{3} A_{i}$ ．Analogously，

$$
\varphi: a_{1}\left(a_{2} a_{3}\right) \rightarrow\left(R_{h} a_{1}, L_{h} R_{h} a_{2}, L_{h}^{2} a_{3}\right)
$$

is an o－isomorphism of $Q=\left(A_{1} \circ\left(A_{2} \circ A_{3}\right)_{h}\right)_{h}$ onto $\sum_{i=1}^{3} A_{i}$ ．
LEMMA 4．4．Let $Q=\left(\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h}$ ．Then
（i）$A_{1} \cap A_{2}=A_{2} \cap A_{3}=A_{1} \cap A_{3}=\{h\}$ ，
（ii）A_{1}, A_{2}, A_{3} are normal subquasigroups of Q ，
（iii）$\left(A_{1} \cdot A_{2}\right) \cdot A_{3}=A_{1} \cdot\left(A_{2} \cdot A_{3}\right)$ ．

Proof. Let $Q=\left(\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h}$ and let $\varphi: Q \rightarrow{ }_{i=1}^{3} A_{i}$ be the isomorphism defined by (4.3). Then $\varphi\left(A_{1}\right)=\left\{\left(a_{1}, h, h\right): a_{1} \in A_{1}\right\} . \varphi\left(A_{2}\right)=$ $\left\{\left(h, a_{2}, h\right): a_{2} \in A_{2}\right\}, \varphi\left(A_{3}\right)=\left\{\left(h, h, a_{3}\right): a_{3} \in A_{3}\right\}$. Since $\varphi\left(A_{1}\right) \cap \varphi\left(A_{2}\right)$ $=\varphi\left(A_{2}\right) \cap \varphi\left(A_{3}\right)=\varphi\left(A_{1}\right) \cap \varphi\left(A_{3}\right)=\{(h, h, h)\}=\{\varphi(h)\}$, we have $A_{1} \cap A_{2}=$ $A_{2} \cap A_{3}=A_{1} \cap A_{3}=\{h\}$. Thus (i) holds. It is a routine to verify that the relation Θ defined by the rule $\left(a_{1}, a_{2}, a_{3}\right) \Theta\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ if and only if $a_{2}=a_{2}^{\prime}$ and $a_{3}=a_{3}^{\prime}$ is a normal congruence on $\prod_{i=1}^{3} A_{i}$ and the subquasigroup $\varphi\left(A_{1}\right)$ is a class of the normal congruence Θ. Therefore $\varphi\left(A_{1}\right)$ is a normal subquasigroup of $\sum_{i=1}^{3} A_{i}$. Analogously $\varphi\left(A_{2}\right), \varphi\left(A_{3}\right)$ are normal subquasigroups of $\sum_{i=1}^{3} A_{i}$. Hence A_{1}, A_{2}, A_{3} are normal subquasigroups of Q, i.e. (ii) is valid. Finally, from $\left(\varphi\left(A_{1}\right) \cdot \varphi\left(A_{2}\right)\right) \cdot \varphi\left(A_{3}\right)=\varphi\left(A_{1}\right) \cdot\left(\varphi\left(A_{2}\right) \cdot \varphi\left(A_{3}\right)\right)=\sum_{i=1}^{3} A_{i}$ we have (iii).
LEMMA 4.5. $Q=\left(\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h}$ if and only if $Q=\left(A_{1} \circ\left(A_{2} \circ A_{3}\right)_{h}\right)_{h}$.
Proof. Let $Q=\left(\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h}$. Let us denote $E=A_{2} \cdot A_{3}$ and let $\varphi: Q \rightarrow \Gamma_{i=1}^{3} A_{i}$ be an o-isomorphism defined by (4.3). Then $\varphi(E)=\varphi\left(A_{2} \cdot A_{3}\right)=$ $\varphi\left(A_{2}\right) \cdot \varphi\left(A_{3}\right)=\left\{\left(h, a_{2}, a_{3}\right): a_{2} \in A_{2}, a_{3} \in A_{3}\right\}$. Since $\varphi(E)$ is a normal subquasigroup of $\Gamma_{i=1}^{3} A_{i}$ and $\varphi\left(A_{2}\right), \varphi\left(A_{3}\right)$ are normal subquasigroups of $\varphi(E)$. E is a normal subquasigroup of Q and A_{2}, A_{3} are normal subquasigroups of E. From Lemma 4.4(i) it follows that $A_{2} \cap A_{3}=\{h\}$. Further, let $a_{2} a_{3}, a_{2}^{\prime} a_{3}^{\prime} \in E$ $\left(a_{i}, a_{i}^{\prime} \in A_{i}\right)$. Since $a_{2}, a_{2}^{\prime} \in\left(A_{1} \circ A_{2}\right)_{h}$ and $a_{3}, a_{3}^{\prime} \in A_{3}$, from the assumption we get $a_{2} a_{3} \leq a_{2}^{\prime} a_{3}^{\prime}$ if and only if either $a_{2}<a_{2}^{\prime}$ or $a_{2}=a_{2}^{\prime}$ and $a_{3} \leq a_{3}^{\prime}$. Thus by Lemma 4.1 we conclude that $E=\left(A_{2} \circ A_{3}\right)_{h}$.

From Lemma 4.4(iii) it follows that $Q=A_{1} \cdot E$. Since $\varphi\left(A_{1}\right) \cap \varphi(E)=$ $\{(h, h, h)\}, A_{1} \cap E=\{h\}$. For arbitrary elements $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}$ we can write $a_{1}\left(a_{2} a_{3}\right)=\left[\left(a_{1} / h\right) \cdot h\right] \cdot\left(a_{2} a_{3}\right)$. Since $a_{1} / h, a_{2} \in\left(A_{1} \circ A_{2}\right)_{h}$ and $h, a_{3} \in A_{3}$, then from the assumption of the lemma and by C2) we have $a_{1}\left(a_{2} a_{3}\right)=R_{h}^{-1}\left(a_{1} \cdot R_{h} a_{2}\right) \cdot L_{h}^{-1}\left(h \cdot L_{h} a_{3}\right)$. Consequently in view of (2.3) we obtain

$$
\begin{equation*}
a_{1}\left(a_{2} a_{3}\right)=\left(R_{h}^{-1} a_{1} \cdot L_{h}^{-1} R_{h}^{-1} L_{h} R_{h} a_{2}\right) \cdot L_{h} a_{3} . \tag{4.4}
\end{equation*}
$$

for all $a_{1} \in A_{1}, a_{2} \in A_{2} . a_{3} \in A_{3}$. From (4.4) it follows (we take $R_{h} a_{1}$ instead of $a_{1}, R_{h}^{-1} L_{h}^{-1} R_{h} L_{h} a_{2}$ instead of a_{2} and $L_{h}^{-1} a_{3}$ instead of a_{3})

$$
R_{h} a_{1} \cdot\left(R_{h}^{-1} L_{h}^{-1} R_{h} L_{h} a_{2} \cdot L_{h}^{-1} a_{3}\right)=\left(a_{1} a_{2}\right) a_{3}
$$

According to (4.4) and from the assumption we obtain $a_{1}\left(a_{2} a_{3}\right) \leq a_{1}^{\prime}\left(a_{2}^{\prime} a_{3}^{\prime}\right)$ if and only if $\left(R_{h}^{-1} a_{1} \cdot L_{h}^{-1} R_{h}^{-1} L_{h} R_{h} a_{2}\right) \cdot L_{h} a_{3} \leq\left(R_{h}^{-1} a_{1}^{\prime} \cdot L_{h}^{-1} R_{h}^{-1} L_{h} R_{h} a_{2}^{\prime}\right) \cdot L_{h} a_{3}^{\prime}$

LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

if and only if either $a_{1}<a_{1}^{\prime}$ or $a_{1}=a_{1}^{\prime}$ and $a_{2} a_{3} \leq a_{2}^{\prime} a_{3}^{\prime}$. Thus, by Lemma 4.1 we conclude that $Q=\left(A_{1} \circ E\right)_{h}=\left(A_{1} \circ\left(A_{2} \circ A_{3}\right)_{h}\right)_{h}$. Analogously, using an o-isomorphism defined by (4.3') and by (4.4'), we can prove that $Q=$ $\left(A_{1} \circ\left(A_{2} \circ A_{3}\right)_{h}\right)_{h}$ implies $Q=\left(\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h}$.

In view of Lemma 4.5 we can write $Q=\left(A_{1} \circ A_{2} \circ A_{3}\right)_{h}$ instead of $Q=$ $\left(\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h}$. Analogously, by induction we can write $\left(A_{1} \circ A_{2} \circ A_{3} \circ \cdots \circ A_{n-1} \circ A_{n}\right)_{h}=\left(\left(\left(\ldots\left(A_{1} \circ A_{2}\right)_{h} \circ A_{3}\right)_{h} \circ \cdots \circ A_{n-1}\right)_{h} \circ A_{n}\right)_{h}$.

A p.o. quasigroup A is said to be the lexicographic factor of Q with an idempotent element h, if there are p.o. subquasigroups H, D of Q such that $Q=(H \circ A \circ D)_{h}$ (for an analogous notation in the theory of partially ordered u-groupoids cf. [6; Sect. 6]). Let us remark that Q and $\{h\}$ are lexicographic factors, because $Q=(\{h\} \circ Q \circ\{h\})_{h}$ and also $Q=(Q \circ\{h\} \circ\{h\})_{h}$.

Let $Q=\left(A_{1} \circ A_{2} \circ A_{3} \circ \cdots \circ A_{n-1} \circ A_{n}\right)_{h}$. Then, using (4.5) and (4.2), we get by induction that

$$
\begin{aligned}
\varphi:\left(\ldots\left(\left(a_{1} a_{2}\right) a_{3}\right)\right. & \left.\ldots a_{n-1}\right) a_{n} \\
& \longrightarrow\left(R_{h}^{n-1} a_{1}, R_{h}^{n-2} L_{h} a_{2}, R_{h}^{n-3} L_{h} a_{3}, \ldots, R_{h} L_{h} a_{n-1}, L_{h} a_{n}\right)
\end{aligned}
$$

is an o-isomorphism $\left(A_{1} \circ A_{2} \circ A_{3} \circ \cdots \circ A_{n-1} \circ A_{n}\right)_{h}$ onto $\sum_{i=1}^{n} A_{i}$. In such case we say that $Q=\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n}\right)_{h}$ defines the lexicographic product decomposition of Q with the finite number of lexicographic factors.

From Lemma 3.5 it follows that if each lexicographic factor of a p.o. loop Q is directed, then Q is an u-groupoid. Therefore all results which hold for u-groupoids (see [6]) also hold for these p.o. loops. Now, we will show that some assertions analogous to those in [6] valid for u-groupoids can be proved for p.o. quasigroups.

LEMMA 4.6. If $Q=(A \circ B)_{h}$, then B is a convex p.o. subquasigroup of Q.
Proof. This proof is analogous to the proof in [6; Sect. 7].
LEMMA 4.7. Let $Q=(A \circ B)_{h}, Q=(C \circ D)_{h}$ be two lexicographic product decompositions of a p.o. quasigroup Q. "Let A, B, C, D are directed subquasigroups of Q. Then
(i) $B \subseteq D$ or $D \subseteq B$.
(ii) If $\bar{D} \subseteq B$, then $B=((B \cap C) \circ D)_{h}$.
(iii) If $A=C$, then $B=D$.

Proof.
(i) Let $D \nsubseteq B$. Then, by Lemma 3.5, $D_{h}^{+} \nsubseteq B_{h}^{+}$and $D_{h}^{-} \nsubseteq B_{h}^{-}$. Now, in the same way as when proving 9) in [6] we get $B \subset D$.
(ii) Let $D \subseteq B$. First, we will prove that $B=(B \cap C) \cdot D$. Each element $b \in B$ can be uniquely represented in the form $b=c d, c \in C, d \in D$. Since $D \subseteq B$, we have $d \in B$ and hence $c \in B$. Thus $c \in B \cap C$, therefore $b \in(B \cap C) \cdot D$. We have $B \subseteq(B \cap C) \cdot D$. The converse inclusion is trivial. From the assumption of the lemma it follows that $B \cap C$ and D are normal subquasigroups of Q; thus they are normal subquasigroups of B. It is clearly that $(B \cap C) \cap D=\{h\}$. For completing the proof we need show that the condition (iii) from Lemma 4.1 is valid. Let $b_{1}=c_{1} d_{1}, b_{2}=c_{2} d_{2}, c_{1}, c_{2} \in B \cap C, d_{1}, d_{2} \in D$. Since $Q=(C \circ D)_{h}$, $b_{1} \leq b_{2}$ if and only if either $c_{1}<c_{2}$ or $c_{1}=c_{2}$ and $d_{1} \leq d_{2}$; thus (iii) is valid. Therefore by Lemma 4.1 we can conclude that $B=((B \cap C) \circ D)_{h}$.
(iii) From (i) and (ii) we get either $B=((B \cap A) \circ D)_{h}=(\{h\} \circ D)_{h}$ or $D=((D \cap C) \circ B)_{h}=(\{h\} \circ B)_{h}$. Hence $B=D$.

Let $Q=(A \circ B)_{h}$. From Lemma 4.1 it follows that A, B are normal subquasigroups of Q such that $A \cap B=\{h\}$. Let Q / B be a set of all classes $x B$, $x \in Q$, with the operation $x B \cdot y B=R_{h}^{-1}\left(R_{h} x \cdot R_{h} y\right) \cdot B$. Then Q / B is a quasigroup (see e.g. [3]). Every class $x B$ contains exactly one element of A. In fact, let $a, a^{\prime} \in A \cap x B$ and let $x=a_{1} b_{1}, a_{1} \in A, b_{1} \in B$. Then from (2.4) we have $a=a_{1} b_{1} \cdot b=a_{1} h \cdot L_{h}^{-1}\left(L_{h} b_{1} \cdot b\right)$ and $a^{\prime}=a_{1} b_{1} \cdot b^{\prime}=a_{1} h \cdot L_{h}^{-1}\left(L_{h} b_{1} \cdot b^{\prime}\right)$, where $b, b^{\prime} \in B$. Since, at the same time $a=(a / h) \cdot h$ and $a^{\prime}=\left(a^{\prime} / h\right) \cdot h$, we get $a_{1} h=a / h$ and $a_{1} h=a^{\prime} / h$. Hence $a=a^{\prime}$. Finally, if $x=a_{1} b_{1}$, then by (2.4), $x \cdot\left(L_{h} b_{1} \backslash h\right)=a_{1} h \cdot h$, hence $x \cdot\left(L_{h} b_{1} \backslash h\right) \in A \cap x B$, therefore $A \cap x B \neq \emptyset$.

In view of the assertion above we can write $Q / B=\left\{R_{h}^{-1}(a) \cdot B: a \in A\right\}$. Let \leq be a relation on the set Q / B which is defined as follows: $R_{h}^{-1}\left(a_{1}\right) \cdot B \leq$ $R_{h}^{-1}\left(a_{2}\right) \cdot B$ if and only if $a_{1} \leq a_{2}$. It is a routine to verify that $(Q / B, \cdot, \leq)$ is a p.o. quasigroup. The mapping $\varphi(a)=R_{h}^{-1}(a) \cdot B$ is an o-isomorphism of A onto Q / B.

Lemma 4.8. Let $Q=(A \circ B)_{h}$ and $Q=(C \circ B)_{h}$. Then there exists an o-isomorphism φ of A onto C such that $\varphi(h)=h$.

Proof. In view of the assumption, each element $a \in A$ can be uniquely written in the form $a=R_{h}^{-1}(c) \cdot b$, where $c \in C, b \in B$. Let φ be a mapping of A into C such that $\varphi(a)=c$ whenever $a=R_{h}^{-1}(c) \cdot b$. The map φ is a composition of two o-isomorphisms:
$\varphi_{1}: A \rightarrow Q / B ; \varphi_{1}(a)=R_{h}^{-1}(a) \cdot B$,
$\varphi_{2}: Q / B \rightarrow C ; \varphi_{2}\left(R_{h}^{-1}(a) \cdot B\right)=c$, where $c \in R_{h}^{-1}(a) \cdot B$.
Therefore $\varphi=\varphi_{2} \varphi_{1}$ is an o-isomorphism of the quasigroup A onto quasigroup C. Clearly, $\varphi(h)=h$.

Let

$$
\begin{equation*}
Q=\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n}\right)_{h} \tag{4.6}
\end{equation*}
$$

LEXICOGRAPHIC PRODUCT DECOMPOSITIONS

and suppose that there are given lexicographic product decompositions

$$
A_{i}=\left(A_{i 1} \circ A_{i 2} \circ \cdots \circ A_{i m(i)}\right)_{h}
$$

for each $i=1,2, \ldots, n$. Then according to Lemma 4.5 and by (4.5) we can write

$$
\begin{equation*}
Q=\left(A_{11} \circ A_{12} \circ \cdots \circ A_{i j} \circ \cdots \circ A_{n m(n)}\right)_{h} . \tag{4.7}
\end{equation*}
$$

We will say that the lexicographic product decomposition (4.7) is a refinement of (4.6). Further, let

$$
\begin{equation*}
Q=\left(B_{1} \circ B_{2} \circ \cdots \circ B_{m}\right)_{h} \tag{4.8}
\end{equation*}
$$

The lexicographic product decompositions (4.6) and (4.8) are said to be isomorphic, if $m=n$ and A_{i} and B_{i} are o-isomorphic for all $i=1,2, \ldots, n$.

THEOREM 4.1. Two lexicographic product decompositions $Q=\left(A_{1} \circ \cdots\right.$ $\left.\cdots \circ A_{n}\right)_{h}$ and $Q=\left(B_{1} \circ \cdots \circ B_{m}\right)_{h}$, where $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}$ are directed subquasigroups of p.o. quasigroup Q, have isomorphic refinements.

Proof. We prove the theorem by induction on $n+m, n+m \geq 2$ (for an analogous proof cf. [6; Theorem 15]). It is clear for $n+m=2$. Let $n+m$ >2. According to Lemma 4.7 (i) we can suppose without loss of generality that $A_{n} \subseteq B_{m}$. Then, by Lemma 4.7 (ii) we have $B_{m}=\left(E \circ A_{n}\right)_{h}$, where $E=B_{m} \cap\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n-1}\right)_{h}$. Since E is the first lexicographic factor and $B_{m}=\left(E \circ A_{n}\right)_{h}$ is directed, then E is also directed. From $Q=\left(B_{1} \circ\right.$ $\left.B_{2} \circ \cdots \circ B_{m-1} \circ E \circ A_{n}\right)_{h}=\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n}\right)_{h}$ and by Lemma 4.8 we have $\left(B_{1} \circ B_{2} \circ \cdots \circ B_{m-1} \circ E\right)_{h} \cong{ }_{\circ}\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n-1}\right)_{h}$. By assumption of induction we can conclude that the theorem is proved.

REFERENCES

[1] BELYAVSKAYA, G. B.: Direct decomposition of quasigroups, Mat. Issled. 5 (1987), 23-38. (Russian)
[2] BELYAVSKAYA, G. B.: Complete direct decompositions of quasigroups with an idempotent, Mat. Issled. 113 (1990), 21-36. (Russian)
[3] BELOUSOV, V. D.: Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967. (Russian)
[4] BIRKHOFF, G.: Lattice Theory, Amer. Math. Soc., Providence, RI, 1967.
[5] ČERNÁK, Š. : Lexicographic products of cyclically ordered groups, Math. Slovaca 45 (1995), 2938.
[6] JAKUBÍK, J. : Lexicographic products of partially ordered groupoids, Czechoslovak Math. J. $14(89)$ (1964), 281-305. (Russian)
[7] JAKUBÍK, J. : Lexicographic product decompositions of cyclically ordered groups, Czechoslovak Math. J. 48(123) (1998), 229-241.
[8] JAKUBÍK, J. : Lexicographic products of half linearly ordered groups, Czechoslovak Math. J. (To appear).

MILAN DEMKO

[9] MAL'CEV, A. I. : On ordered groups, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 473-482. (Russian)
[10] TARARIN, V. M. : Ordered quasigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1979), 82-86. (Russian)

Received October 30, 1998
Department of Mathematics
Revised July 15, 1999

FHPV PU
17. novembra 1 SK-081 16 Prešov SLOVAKIA
E-mail: demko@unipo.sk

[^0]: 2000 Mathematics Subject Classification: Primary 06F15, 20N05.
 Kev words: partially ordered quasigroup, directed quasigroup, lexicographic product decomposition.

