Mathematic Slovaca

Robert Šulka

On three lattices that belong to every semigroup

Mathematica Slovaca, Vol. 34 (1984), No. 2, 217--228

Persistent URL: http://dml.cz/dmlcz/128875

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THREE LATTICES THAT BELONG TO EVERY SEMIGROUP

ROBERT ŠULKA

Dedicated to Academician Štefan Schwarz on the occasion of his 70th birthday

In paper [6] three kinds of nilpotency were introduced. By means of them we define three lattices which are subsets of the Boolean $\langle P(S), \subseteq\rangle$ of a semigroup S. Some properties of these lattices were found. For example it is proved that two of these lattices are complete and one of them is complemented.

We give conditions for a subset M of a semigroup S to belong to these lattices. It is proved that all ideals, (m, n)-ideals and (m, n)-quasiideals of a semigroup are elements of all these lattices.

In the case of cyclic semigroups we describe all elements of these lattices.
In the last section we are dealing with these lattices of subsemigroups of a semigroup.

Basic definitions and properties

In paper [6] the following definitions are introduced (see also [4] and [1]).
Definition 1. Let S be a semigroup, $M \subseteq S$ and $x \in S$.
a) If there exists a positive integer $n_{0}(x)$ such that $x^{n} \in M$ holds for all positive integers $n \geqslant n_{10}(x)$, then x will be called strongly M-potent. The set of all strongly M-potent elements of S will be denoted by $N_{1}(M)$.
b) If $x^{n} \in M$ holds for infinitely many positive integers n, then x will be called weakly M-potent. The set of all weakly M-potent elements of S will be denoted by $N_{2}(M)$.
c) If $x^{n} \in M$ holds for at least one positive integer n, then x will be called almost M-potent. The set of all almost M-potent elements of S will be denoted by $N_{3}(M)$.
d) Let J be a (two-sided) ideal of S such that $J \subseteq N_{1}(M)$ holds. Then J will be called a strong M-ideal. If $J \subseteq N_{2}(M)$, then J will be called a weak M-ideal. The union of all strong M-ideals will be denoted by $R^{*}(M)$ and the union of all weak M-ideals will be denoted by $R_{2}^{*}(M)$.

If $M \subseteq S, M_{1} \subseteq S$ and $M \subset \subseteq$, then the following statements are true (see [6]):
(i) $N_{1}(M) \subseteq N,(M) \subseteq N_{i}(M)$.
(ii) If $M_{1} \subseteq M_{1}$, then $N_{l}\left(M_{1}\right) \subseteq N_{1}\left(M_{,}\right)$for $i=1,2,3$.
(iii) $N_{1}\left(M_{1} \cap M\right)=N_{1}\left(M_{1}\right) \cap N_{1}\left(M_{\bullet}\right)$.
(iv) $N,\left(M_{1} \cup M_{2}\right)=N,\left(M_{1}\right) \cup N_{2}\left(M_{2}\right)$.
(v) $N_{i}\left(\cup\left\{M_{1} \mid i \in I\right\}\right)=\cup\left\{N_{3}\left(M_{i}\right) \mid i \in I\right\}$.

It is easy to prove the following Lemmas.
Lemma 1. Let $M_{i} \subseteq S$ and $N_{1}\left(M_{i}\right)=N_{2}\left(M_{i}\right)$ for $i=1,2$. Then $N\left(M_{1} \cup M_{\cdot}\right)=$ $N,\left(M_{1} \cup M\right)$.

Proof. (i), (iv), the assumptions of Lemma 1 and (ii) imply

$$
\begin{gathered}
N_{1}\left(M_{1} \cup M_{2}\right) \subseteq N,\left(M_{1} \cup M_{2}\right)=N_{2}\left(M_{1}\right) \cup N_{1}(M,)= \\
=N_{1}\left(M_{1}\right) \cup N_{1}\left(M_{\bullet}\right) \subseteq N_{1}\left(M_{1} \cup M_{2}\right) .
\end{gathered}
$$

Hence $N_{1}\left(M_{1} \cup M_{3}\right)=N,\left(M_{1} \cup M_{2}\right)$.
Similarly one can prove the following two Lemmas.
Lemma 2. Let $M_{i} \subseteq S$ and $N_{1}\left(M_{i}\right)=N_{3}\left(M_{i}\right)$ for all $i \in I$. Then $N_{1}\left(\cup\left\{M_{i} \mid i \in I\right\}\right)=$ $N_{\mathrm{i}}\left(\cup\left\{M_{i} \mid i \in I\right\}\right)$.

Lemma 3. Let $M_{i} \subseteq S$ and $N_{2}\left(M_{i}\right)=N_{3}\left(M_{i}\right)$ for all $i \in I$. Then $N,\left(\cup\left\{M_{i} \mid i \in I\right\}\right)=$ $N_{\text {: }}\left(\cup\left\{M_{i} \mid i \in I\right\}\right)$.

Lemma 4. Let $M_{i} \subseteq S$ and $N_{1}\left(M_{i}\right)=N_{2}\left(M_{t}\right)$ for $i=1,2$. Then $N\left(M_{1} \cap M_{\bullet}\right)=$ $N,\left(M_{1} \cap M_{)}\right)$.

Proof. From the assumptions of Lemma 4, from (iii), (i) and (ii) it follows that

$$
\begin{gathered}
N,\left(M_{1}\right) \cap N_{2}\left(M_{\bullet}\right)=N_{1}\left(M_{1}\right) \cap N_{1}\left(M_{2}\right)= \\
=N_{1}\left(M_{1} \cap M_{\bullet}\right) \subseteq N_{2}\left(M_{1} \cap M_{\bullet}\right) \subseteq N_{\cdot}\left(M_{1}\right) \cap N_{2}\left(M_{\bullet}\right) .
\end{gathered}
$$

Hence $N_{1}\left(M_{1} \cap M_{2}\right)=N_{2}\left(M_{1} \cap M_{2}\right)$.
Similarly we can prove
Lemma 5. Let $M_{i} \subseteq S$ and $N_{1}\left(M_{i}\right)=N_{i}\left(M_{i}\right)$ for $i=1,2$. Then $N_{1}\left(M_{1} \cap M_{i}\right)=$ $N_{i}\left(M_{1} \cap M_{r}\right)$.

Lemma 6. Let $M \subseteq S, M_{1} \subseteq S$ and $M_{2} \subseteq S$. Then the following statements hold:

(ii) If $M_{1} \subseteq M_{2}$, then $R_{1}^{*}\left(M_{1}\right) \subseteq R_{1}^{*}\left(M_{2}\right)$ for $i=1,2$.
(iii) If $N_{1}(M)=N_{2}(M)$, then $R_{1}^{*}(M)=R_{2}^{*}(M)$.

Proof. (i) and (ii) follow immediately from Definition 1.
If $N_{1}(M)=N_{2}(M)$, then for every ideal J the relation $J \subseteq N_{1}(M)$ holds iff $J \subseteq N,(M)$. Using Definition 1, this implies (iii).

Corollary. Let $M_{i} \subseteq S$ and $N_{1}\left(M_{i}\right)=N_{2}\left(M_{i}\right)$ for $i=1,2$. Then $R_{\underset{\sim}{*}\left(M_{i}\right)=R_{2}^{*}\left(M_{i}\right)}^{\left(M_{2}\right)}$ for $i=1,2, R_{1}^{*}\left(M_{1} \cap M_{2}\right)=R_{2}^{*}\left(M_{1} \cap M_{2}\right)$ and $R^{*}\left(M_{1} \cup M_{2}\right)=R_{2}^{*}\left(M_{1} \cup M_{2}\right)$.

The proof follows from Lemmas 6, 4 and 1.
 R 数 $\left(M_{1} \cap M_{2}\right)$.
The proof of Lemma 7 is similar to the proof of Lemma 4.
Let $\langle P(S), \subseteq\rangle$ be the Boolean of S.
Lemmas 1-7 imply
Theorem 1. Let S be a semigroup,

$$
\begin{aligned}
& \mathcal{N}_{12}=\left\{M \subseteq S \mid N_{1}(M)=N_{2}(M)\right\}, \quad \mathcal{N}_{13}=\left\{M \subseteq S \mid N_{1}(M)=N_{3}(M)\right\}, \\
& \mathcal{N}_{23}=\left\{M \subseteq S \mid N_{2}(M)=N_{3}(M)\right\} \text { and } \mathscr{R}=\left\{M \subseteq S \mid R_{1}^{*}(M)=R_{2}^{*}(M)\right\} .
\end{aligned}
$$

Then the following statements hold:
a) \emptyset and S are contained in $\mathcal{N}_{12}, \mathcal{N}_{13}, \mathcal{N}_{23}$ and \mathscr{R}.
b) $\mathcal{N}_{13} \subseteq \mathcal{N}_{12} \subseteq \mathscr{R}$ and $\mathcal{N}_{13} \subseteq \mathcal{N}_{23}$.
c) $\left\langle\mathcal{N}_{12}, \subseteq\right\rangle$ is a lattice.
d) $\left\langle\mathcal{N}_{13}, \subseteq\right\rangle$ is a complete lattice.
e) $\left\langle\mathcal{N}_{23}, \subseteq\right\rangle$ is a complete lattice.
f) $\langle\mathscr{R}, \subseteq\rangle$ is a lower semilattice.
g) $\left\langle\mathcal{N}_{12}, \cap, \cup\right\rangle$ is a sublattice of $\langle P(S), \cap, \cup\rangle$.

i) $\left\langle\mathcal{N}_{13}, \cap, \cup\right\rangle$ is a sublattice of $\left\langle\mathcal{N}_{23}, \wedge, \cup\right\rangle$.
j) $\left\langle\mathcal{N}_{13}, \subseteq\right\rangle$ is a complete upper subsemilattice of $\langle P(S), \subseteq\rangle$.
k) $\left\langle\mathcal{N}_{23}, \subseteq\right\rangle$ is a complete upper subsemilattice of $\langle P(S), \subseteq\rangle$.
l) $\left\langle\mathcal{N}_{12}, \cap, \cup\right\rangle$ is a distributive lattice.
m) $\left\langle\mathcal{N}_{13}, \cap, \cup\right\rangle$ is a distributive lattice.
n) $\langle\mathscr{R}, \cap\rangle$ is a lower subsemilattice of $\langle P(S), \cap\rangle$.

Lemmas 1-7 and (iii)-(vi) imply

Theorem 2. Let S be a semigroup. Then the following statements are true:
a) The mapping $N_{12}:\left\langle\mathcal{N}_{12}, \cap, \cup\right\rangle \rightarrow\langle P(S), \cap, \cup\rangle, N_{12}(M)=N_{1}(M)=N_{2}(M)$ is a homomorphism.
b) The mapping $N_{13}:\left\langle\mathcal{N}_{13}, \cap, \cup\right\rangle \rightarrow\langle P(S), \cap, \cup\rangle, N_{13}(M)=N_{1}(M)=N_{3}(M)$ is a homomorphism. It preserves infinite joins (set-theoretical unions).
c) The mapping $N_{23}:\left\langle\mathcal{N}_{23}, \cup\right\rangle \rightarrow\langle P(S), \cup\rangle, \quad N_{23}(M)=N_{2}(M)=N_{3}(M)$ is
a homomorphism. It preserves infinite joins (set-theoretical unions).
d) The mapping $R_{12}^{*}:\langle\mathscr{R}, \cap\rangle \rightarrow\langle P(S), \cap\rangle, R_{1}^{*}(M)=R_{1}^{*}(M)=R_{2}^{*}(M)$ is a homomorphism.

Some examples

I et N be the set of all positive integers.
If $S=\langle a\rangle$ is a cyclic semigroup generated by the element a and $J(x)$ is the principal two-sided ideal generated by an element $x \in S$, then $x=a^{\prime \prime}$ for some $n_{n} \in N$ and $J\left(a^{n_{n}}\right)=\left\{a^{\prime \prime} \mid n \geqslant n_{n}\right\}$.

Theorem 3. Let $\emptyset \neq M \subseteq S$ and $S=\langle a\rangle$ be a cyclic semigroup, genetated by the clement a. Then $M \in V_{1}$ iff there exists an element $x \in S$ such that $J(x) \subseteq M$ holds.

Proof. a) Let $N_{1}(M)=N_{3}(M)$ hold. Since $M \neq \emptyset$, there exists a positive integer h such that $a^{h} \in M$ is true. Hence we have $a \in N_{3}(M)=N_{1}(M)$. This implies the existence of a positive integer n_{0} such that for all positive integers $n \geqslant n_{n}$, the relation $a^{\prime \prime} \in M$ holds. This means that $J\left(a^{\prime \prime \prime}\right)=\left\{a^{\prime \prime} \mid n \geqslant n_{n}\right\} \subseteq M$.
b) Let the relation $J\left(a^{n_{0}}\right)=\left\{a^{\prime \prime} \mid n \geqslant n_{0}\right\} \subseteq M$ hold. Let z be an arbitrary element of $S=\langle a\rangle$. Then $z=a^{h}$ holds for some positive integer h. Since $J\left(a^{n_{0}}\right) \subseteq M$, we have $a^{\prime \prime} \in M$ for all positive integers $n \geqslant n_{n}$. Hence we have aboo $z^{\prime \prime}=\left(a^{\kappa}\right)^{n} \in M$ for all positive integers $n \geqslant n_{l}$. This means that $z \in N_{1}(M)$. In this way we get that $N_{1}(M)=S$. Hence by (i) $N_{1}(M)=N_{i}(M)$.

Remark. The condition $J(x) \subseteq M$ is equivalent to the condition that M contains an ideal.

Theorem 4. Let $M \subseteq S$ and $S=\langle a\rangle$ be a cyclic semigroup. Then $M \in . \nu_{\text {, }}$, itf either the relation $a^{\prime \prime} \in M$ holds only for a finite number of positive integers n or $J(x) \subseteq M$ for some $x \in S$.

Proof. If the relation $a^{\prime \prime} \in M$ holds only for a finite number of positive integers n, then the condition $N_{1}(M)=N_{2}(M)$ is satisfied. Therefore it is sufficient to consider subsets M of S satisfying the relation $a^{\prime \prime} \in M$ for infinitely many positive integers n.
a) Let $N_{l}(M)=N,(M)$ and let $a^{\prime \prime} \in M$ hold for infinitely many positive integers n. Then $a \in N_{2}(M)=N_{1}(M)$ and we get that $J(x) \subseteq M$ as in the first part of the proof of Theorem 3.
b) Let $J\left(a^{n_{u}}\right)=\left\{a^{\prime \prime} \mid n \geqslant n_{0}\right\} \subseteq M$ (then clearly $a^{\prime \prime} \in M$ holds for infinitely many positive integers n). From the second part of the proof of Theorem 3 we know that $N_{1}(M)=S$. From this and (i) we get that $N_{1}(M)=N_{2}(M)$.

If S is a cyclic semigroup of infinite order, we can formulate Theorem + as follows:

Theorem 4a. Let $M \subseteq S$ and $S=\langle a\rangle$ be a cyclic semigroup of infinite order. Then $M \in V_{12}$ iff either M is a finite subset of S or $J(x) \subseteq M$ for an element $x \in S$.

Let $S=\left\{a, a^{2}, \ldots, a^{\prime}, a^{\prime+1}, \ldots, a^{\prime+m}\right\}$ be a cyclic semigroup of finite order with index r and with period m (see [1] and [3]). Denote $G=\left\{a^{\prime}, a^{\prime+1}, \ldots, a^{\prime+m}\right\}$ the maximal subgroup of S and $P=\left\{a, a^{2}, \ldots, a^{\prime}\right\}$. In such semigroup the condition
$J(x) \subseteq M$ is equivalent to the condition $G \subseteq M$. This follows from the fact that for all positive integers n_{0} the inclusion $G \subseteq J\left(a^{\prime \prime}\right)$ holds and $G=J\left(a^{\prime}\right)$.

Hence we have
Theorem 3a. Let $\emptyset \neq M \subseteq S$ and $S=\langle a\rangle$ be a cyclic semigroup of finite order. Then $M \in \mathcal{N}_{13}$ iff $G \subseteq M$.

If $S=\langle a\rangle$ is a cyclic semigroup of finite order, then the condition that the relation $a^{\prime \prime} \in M$ holds only for a finite number of positive integers is equivalent to the condition $M \subseteq P$.

This implies
Theorem 4b. Let $M \subseteq S$ and $S=\langle a\rangle$ be a cyclic semigroup of finite order. Then $M \in \mathcal{N}_{12}$ iff either $M \subseteq P$ or $G \subseteq M$.

Theorem 5. Let S be a semigroup and $M \subseteq S$. Then $M \in \mathcal{N}_{23}$ iff $M \subseteq N,(M)$.
Proof. a) Let $M \in \mathcal{N}_{23}$ i.e. $N_{2}(M)=N_{3}(M)$. Since $M \subseteq N_{3}(M)$ we have $M \subseteq$ $N_{2}(M)$.
b) Let $M \subseteq N_{2}(M)$. If $x \in N_{3}(M)$, then for a positive integer m we have $x^{m}=y \in M$. Since $M \subseteq N_{2}(M)$, there exists a strictly increasing sequence $\left(k_{n}\right)_{\prime \prime}^{\prime}$, of positive integers k_{n} such that $y^{{ }_{n}} \in M$ i.e. $x^{m k_{n}} \in M$ for all $n \in N$. This means that $x \in N_{2}(M)$ and we have $N_{3}(M) \subseteq N_{2}(M)$. Since by (i) $N_{2}(M) \subseteq N_{3}(M)$, we get $N_{2}(M)=N_{3}(M)$ i.e. $M \in \mathcal{N}_{23}$.

Theorem 6. Let S be a semigroup and $M \subseteq S$. Then $M \subseteq N_{2}(M)$ iff for every $\bar{x} \in M$ there exists a positive integer $n>1$ such that $x^{n} \in M$.

Proof. a) Let $M \subseteq N_{2}(M)$. If $x \in M$, then $x \in N_{2}(M)$ and there exists a positive integer $n>1$ such that $x^{n} \in M$.
b) If for every $x \in M$ there exists a positive integer $n>1$ such that $x^{\prime \prime} \in M$, then for every $x \in M$ there exists a sequence of positive integers $k_{n}>1$ such that $x, x^{h_{1} h_{2}}$, $x^{k_{1} k_{2} k_{2}}, \ldots, x^{h_{1} k_{2} \ldots k_{n}}, \ldots$ belong to M i.e. $x \in N_{2}(M)$. Hence $M \subseteq N_{2}(M)$.

Theorems 5 and 6 imply the following
Corollary. Let S be a semigroup and $x \in S$. Let $\left(k_{n}\right)_{n=1}^{\infty}$ be a sequence of positive integers $k_{n}>1$ and $M=\left\{x, x^{k_{1}}, x^{k_{1} k_{2}}, \ldots, x^{k_{1} k_{2} \ldots k_{n}}, \ldots\right\}$. Then $M \in \mathcal{N}_{23}$.

Lemma 8. Let S be a semigroup and x an element of S of infinite order. Let $\left(k_{n}\right)_{n, ~ a n d ~}\left(r_{n}\right)_{n=1}^{\infty}$ be two distinct sequences of positive integers $k_{n}>1$ and $r_{n}>1$. Let

$$
M_{1}=\left\{x, x^{k_{1}}, x^{k_{1} k_{2}}, \ldots, x^{k_{1} k_{2} \ldots k_{n}}, \ldots\right\}
$$

and

$$
M_{2}=\left\{x, x^{r_{1}}, x^{r_{1} r_{2}}, \ldots, x^{r_{1} r_{2} \cdots r_{n}}, \ldots\right\} .
$$

Then $M_{i} \neq M_{2}$.

Proof. Let i be the least index such that $k_{1} \neq r_{1}$ holds. Suppose that $k_{1}<r_{1}$. Then $x^{k_{1} k_{2} \ldots k_{i}} \in M_{1}$ but $x^{k_{1} k_{2} \ldots k_{i}} \notin M_{2}$.

Theorem 7. If the semigroup S contains at least one element of infinite order, the card $\mathcal{N}_{23} \geqslant 2^{\kappa_{0}}$.

Proof. Let \mathcal{M} be the system of all sets $M=\left\{x, x^{h_{1}}, x^{h_{1} h_{2}}, \ldots, x^{k_{1} h^{\prime}, h_{n}}, \ldots\right\}$ where $\left(k_{n}\right)_{n-1}^{\infty}$ is a sequence of positive integers $k_{n}>1$. By Lemma 8 we have card $. ~ u t=2^{\kappa_{n}}$. Corollary of Theorems 5 and 6 implies $\mathcal{M} \subseteq \mathcal{N}_{23}$, therefore card. $\mathcal{N}_{27} \geqslant 2^{N_{1}}$.

Corollary. Let $S=\langle a\rangle$ be a cyclic semigroup of infinite order. Then card $. V_{i:}=$ 2^{κ}.

The proof follows from Theorem 7 and from the fact that card $P(S)=2^{\aleph_{1}}$.
Now we can prove that the sets $\mathcal{N}_{12}, \mathcal{N}_{13}, \mathcal{N}_{23}, \mathscr{R}$ and $P(S)$ may be distinct. This follows from the foregoing Theorems and their Corollaries.

Example. Let $S=\langle a\rangle$ be the cyclic semigroup of infinite order. Then $A=$ $\{a\} \in N_{12}$ but $A \notin N_{23}$ and $A \notin \mathcal{N}_{13}$, because $N_{1}(A)=N_{2}(A)=\emptyset$ but $N_{3}(A)=A \neq \emptyset$. Hence $\mathcal{N}_{12} \neq \mathcal{N}_{23}$ and $\mathcal{N}_{12} \neq \mathcal{N}_{13}$. Moreover $N_{3}(A)=\{a\}$ is neither an ideal in S nor it contains an ideal. Therefore $R_{1}^{*}(A)=R_{2}^{*}(A)=\emptyset$ i.e. $A \in \mathscr{R}$. Hence we have $A \in \mathscr{R}$ but $A \notin \mathcal{N}_{23}$ i.e. $\mathscr{R} \neq \mathcal{N}_{23}$. Moreover $A \notin \mathcal{N}_{23}$ implies that $\mathcal{N}_{23} \neq P(S)$.

Let $B=S \backslash\left\{a^{p} \mid p \in N, p\right.$ is prime $\}$. Then $R_{*}^{*}(B)=S \backslash\{a\} \neq S=R_{2}^{*}(B)$. Hence $B \notin \mathscr{R}$ and we have $\mathscr{R} \neq P(S)$.
By Corollary of Theorems 5 and $6 M=\left\{a^{2 h} \mid k \in N\right\} \in \mathcal{N}_{23}$ but $M \notin \mathcal{N}_{13}$ since $a \notin N_{1}(M)$ but $a \in N_{3}(M)$. Therefore $\mathcal{N}_{23} \neq \mathcal{N}_{13}$. Now we shall prove that $M \in \mathcal{R}$ but $M \notin \mathcal{N}_{12}$. Clearly $a \in N_{2}(M)$ but $a \notin N_{1}(M)$, therefore $M \notin \mathcal{N}_{12}$. On the other hand $M \in \mathcal{N}_{23}$ and $N_{2}(M)=N_{3}(M)=\{a\} \cup M$, but this is neither an ideal of S nor it contains an ideal of S. Hence $R_{\mathcal{*}}^{*}(M)=R_{2}^{*}(M)=\emptyset$ i.e. $M \in \mathscr{R}$. We have $\mathcal{R} \neq \mathcal{V}_{12}$. Moreover $M \in \mathscr{R}, M \notin \mathcal{N}_{12}$ imply $M \in \mathscr{R}, M \notin \mathcal{N}_{13}$. Hence $\mathscr{R} \neq \mathcal{N}_{13}$.

Some other properties

In the following example it will be shown that $\left\langle\mathcal{N}_{12}, \subseteq\right\rangle$ need not be a complete lattice.

Example. Let $S=\langle a\rangle$ be the cyclic semigroup of infinite order generated by a. Let $M_{i}=\left\{a^{2 i}\right\}$ for all $i \in N$. Denote $M=\cup\left\{M_{i} \mid i \in N\right\}$. Then clearly $N_{1}\left(M_{i}\right)=$ $N_{2}\left(M_{i}\right)=\emptyset$ for all $i \in N$. On the other hand $a \in N_{2}(M)$ but $a \notin N_{1}(M)$, hence $N_{1}(M) \neq N_{2}(M)$. This means that the union of infinitely many elements of \mathcal{N}_{12} does not belong to \mathcal{N}_{12}. Moreover we shall prove that in $\left\langle\mathcal{N}_{12}, \subseteq\right\rangle$ the $\sup \left\{M_{1} \mid i \in N\right\}=$ $\vee\left\{M_{l} \mid i \in N\right\}$ does not exist.
Let $a \in \mathcal{N}_{12}$ and $A \supseteq M$. Since $a \in N_{1}(M)$, we have $a \in N_{1}(A)$ and A contains a set $\left\{a^{k} \mid k \geqslant n_{0}\right\}$, where $n_{0} \in N$. Now it is easy to see that every upper bound A of M in $\left\langle. V_{12}, \subseteq\right\rangle$ is of the form $A=M \cup\left\{a^{k} \mid k \geqslant n_{0}\right\}$, where $n_{0} \in N$. But the system of
all these upper bounds of M has no minimal element. This implies that $\left\langle. \mathcal{N}_{12}, \subseteq\right\rangle$ is not a complete lattice.

Theorem 8. Let S be a semigroup. Then $\left\langle. N_{1_{2}}, \cap, U\right\rangle$ is a complemented lattice.
Proof. We prove it indirectly. Let $M \in \mathcal{N}_{1}$ i.e. $N_{1}(M)=N,(M)$ and $S \backslash M \notin V_{1}$, i.e. $N_{1}(S \backslash M) \neq N_{2}(S \backslash M)$. Since $N_{1}(S \backslash M) \subseteq N_{2}(S \backslash M)$ and $N_{1}(S \backslash M) \neq N,(S \backslash M)$ there exists an x such that $x \in N_{2}(S \backslash M)$ but $x \notin N_{1}(S \backslash M)$. Now $x \notin N_{1}(S \backslash M)$ implies that $x \in N_{2}(M)=N_{1}(M)$. However $x \in N_{1}(M)$ and $x \in N_{2}(S \backslash M)$ cannot hold. We have got a contradiction. Hence $S \backslash M \in V_{12}^{\prime}$.

Corollary. Let S be a semigroup. Then $\left\langle N_{1_{2}}\left(N_{1_{2}}\right), \cap, U\right\rangle$ is a complemented lattice.

The proof follows from the fact that $N_{12}:\left\langle N_{12}, \cap, \cup\right\rangle \rightarrow\langle P(S), \cap, \cup\rangle$ is a homomorphism.

In the next example it will be shown that $\left\langle\cdot \mathcal{N}_{13}, \cap, U\right\rangle$ need not be a complemented lattice.

Example. Let $S=\langle a\rangle$ be the cyclic semigroup of infinite order. Let $M=$ $\left\{a^{n} \mid n>n_{0}\right\}$, where $n_{0} \in N$. Then clearly $M \in \mathcal{N} \mathcal{N}_{13}$ but $S \backslash M=\left\{a^{k} \mid k \leqslant n_{0}\right\} \notin \mathcal{N}_{13}$ by Theorem 3.

In the following example it will be shown that $\left\langle\mathcal{N}_{13}, \subseteq\right\rangle$ need not be a complete sublattice of $\langle P(S), \subseteq\rangle$.

Example. Let $S=\langle a\rangle$ be the cyclic semigroup of infinite order. Let $M_{k}=$ $\{a\} \cup\left\{a^{n} \mid n \geqslant k\right\}$ for all $k \in N$. Then clearly $M_{k} \in \mathcal{N}_{13}$ for all $k \in N$ but $\cap\left\{M_{k} \mid k \in N\right\}=\{a\} \notin \mathcal{N}_{13}$.

Theorem 9. Let S be a semigroup. Then $\left\langle N_{13}\left(\mathcal{N}_{13}\right), \cap, \cup\right\rangle$ is a complemented lattice.

Proof. First we prove that $A=S \backslash N_{13}(M)$ is a union of cyclic semigroups. If $x^{n} \in N_{13}(M)=N_{3}(M)$, then $x \in N_{3}(M)=N_{13}(M)$. Hence $x \in A$ implies $\langle x\rangle \subseteq A$.

Next we show that $N_{3}(A)=A$. Clearly $N_{3}(A) \supseteq A$. If $x \in N_{3}(A)$, then infinitely many powers x^{n} belong to A, because A is a union of cyclic semigroups. From this follows that $x \notin N_{13}(M)$ (i.e. $x \in A$) since $x \in N_{13}(M)=N_{1}(M)$ implies that almost all powers x^{n} are contained in $M \subseteq N_{13}(M)$. Hence $x \in N_{3}(A)$ implies that $x \in A$ i.e. $N_{3}(A) \subseteq A$. We got $N_{3}(A)=A$.

Now we prove that $N_{1}(A)=A$. Clearly $N_{1}(A) \subseteq N_{3}(A)=A$, therefore $N_{1}(A) \subseteq$ A. Since A is a union of cyclic semigroups, $N_{1}(A) \supseteq A$ holds. We have $N_{1}(A)=$ $A=N_{3}(A)$, therefore $A=N_{13}(A) \in N_{13}\left(\mathcal{N}_{13}\right)$.

We got the following results: $N_{13}(M) \in N_{13}\left(\mathcal{N}_{13}\right), \quad N_{13}(A)=A \in N_{13}\left(\mathcal{N}_{13}\right)$, $N_{13}(M) \cup N_{13}(A)=S$ and $N_{13}(M) \cap N_{13}(A)=\emptyset$. This means that $\left\langle N_{13}\left(\mathcal{N}_{13}\right), \cap, \cup\right\rangle$ is a complemented lattice.

In the following example it will be shown that in the complete lattice $\left\langle. \mathcal{N}_{23}, \subseteq\right\rangle$ even the finite meets need not be set-theoretical intersections.

Example. Let $S=\langle a\rangle$ be the cyclic semigroup of infinite order. If $M_{1}=$ $\{a\} \cup\left\{a^{21} \mid i \in N\right\}$ and $M_{2}=\left\{a^{21} \mid i \in N\right\}$, then $M_{1} \in \mathcal{N}_{23}$ and $M_{2} \in \mathcal{N}_{3 ;}$ by Theorem 5 and 6. But $M_{1} \cap M_{2}=\{a\} \notin \mathcal{N}_{23}$. Hence $M_{1} \wedge M_{2}=\emptyset$.

From the following example we shall see that the complete lattice $\left\langle. \mathcal{N}_{23}, \subseteq\right\rangle$ need not be complemented.

Example. Let $S=\langle a\rangle$ be the cyclic semigroup of infinite order. Let $M_{1}=$ $\left\{a^{p} \mid p \in N, p=1\right.$ or p is a prime $\}$ and $M_{2}=\left\{a^{n} \mid n \in N, n \neq 1, n\right.$ is not a prime \}. Then $M_{1} \notin \mathcal{N}_{23}$ since $N_{3}\left(M_{1}\right)=M_{1}$ but $N_{2}\left(M_{1}\right)=\{a\}$. By Theorem 5 and $6, M_{2} \in \mathcal{V}_{n_{3}}$ because M_{2} contains with every element $a^{n} \in M_{2}$ also its power $\left(a^{\prime \prime}\right)^{2}=a^{2 n}$.

Now we have $M_{1} \cup M_{2}=S$ and $M_{1} \cap M_{2}=\emptyset$. We want to find an $K \in . V_{23}$ such that $M \cup K=S$ and $M_{2} \wedge K=\emptyset$.

The condition $M_{2} \cup K=S$ implies $K \supseteq M_{1}$. By Theorem 6, the conditions $K \in \mathcal{N}_{13}$ and $K \supseteq M_{1}$ imply that for the element $a \in M_{1}$ there has to exist a sequence $\left(n_{k}\right)_{k}^{x} \quad$, $n_{k} \in N$ such that $T=\left\{a^{n_{1} n_{7}}, \ldots, a^{n_{1} n_{>} n_{k}}, \ldots\right\} \subseteq K$ holds. But then $M, \cap K \supseteq T \neq \emptyset$ and by Theorem $6 T \in \mathcal{N}_{23}$. Hence $M_{2} \wedge K \neq \emptyset$. We see that $M_{2} \in V_{23}$ has no complement in $\left\langle. \dot{N}_{\imath,} \subseteq\right\rangle$, therefore $\left\langle. N_{23}, \subseteq\right\rangle$ is not complemented.

In the following example it is shown that the mapping $N_{12}:\left\langle\mathcal{N}_{12}, \cap, \cup\right\rangle \rightarrow$ $\langle P(S), \cap, \cup\rangle$ need not preserve infinite joins and infinite meets.

Example. Let S be the free semigroup generated by the set $\{0, a\} \cup\left\{b_{k} \mid k \in N\right\}$ and by the relations $0 \cdot 0=0 \cdot a=a \cdot 0=0 \cdot b_{k}=b_{k} \cdot(0) a \cdot b_{k}=b_{k} \cdot a=0$ for all $k \in N$ and $b_{k} \cdot b_{l}=b_{l} \cdot b_{k}=0$ for all $k, l \in N, k \neq l$.
a) Let $M_{k}=\left\{a^{h}\right\} \cup\left\langle b_{k}\right\rangle$ for all $k \in N$. Clearly $N_{1}\left(M_{k}\right)=N_{2}\left(M_{k}\right)=\left\langle b_{k}\right\rangle=$ $N_{12}\left(M_{k}\right)$, hence $M_{k} \in \mathcal{N}_{12}$.

We have $\cup\left\{M_{k} \mid k \in N\right\}=\langle a\rangle \cup\left(\cup\left\{\left\langle b_{k}\right\rangle \mid k \in N\right\}\right)=S \backslash\{0\}$. Moreover

$$
\begin{aligned}
N_{\mathrm{l}}\left(\cup\left\{M_{k} \mid k \in N\right\}\right) & =N_{2}\left(\cup\left\{M_{k} \mid k \in N\right\}\right)= \\
=\langle a\rangle \cup\left(\cup\left\{\left\langle b_{k}\right\rangle \mid k \in N\right\}\right) & =S \backslash\{0\}=N_{12}\left(\cup\left\{M_{k} \mid k \in N\right\}\right),
\end{aligned}
$$

hence $\cup\left\{M_{k} \mid k \in N\right\} \in \mathcal{N}_{12}$.
On the other hand we get $M=u\left\{N_{12}\left(M_{k}\right) \mid k \in N\right\}=\cup\left\{\left\langle b_{k}\right\rangle \mid k \in N\right\} \neq S \backslash\{0\}$, $N_{1}(M)=N_{2}(M)=M=N_{12}(M)$ i.e. $\cup\left\{N_{12}\left(M_{k}\right) \mid k \in N\right\}=M \in N_{12}\left(\mathcal{N}_{12}\right)$.

Hence $N_{12}\left(\cup\left\{M_{k} \mid k \in N\right\}\right)=S \backslash\{0\} \neq \cup\left\{N_{12}\left(M_{k}\right) \mid k \in N\right\}$.
b) Let $L_{k}=\left\{a^{i} \mid i \geqslant k\right\} \cup\left\langle b_{k}\right\rangle$ for all $k \in N$. Then $N_{1}\left(L_{k}\right)=N_{2}\left(L_{k}\right)=\langle a\rangle \cup\left\langle b_{k}\right\rangle=$ $N_{1,}\left(L_{k}\right)$, hence $L_{k} \in N_{12}$.

Moreover $\quad \cap\left\{L_{k} \mid k \in N\right\}=\emptyset \quad$ and $\quad N_{1}(\emptyset)=N_{2}(\emptyset)=\emptyset=N_{1}(\emptyset) \quad$ imply that $\cap\left\{L_{k} \mid k \in N\right\} \in \mathcal{N}_{12}$ and $N_{12}\left(\cap\left\{L_{k} \mid k \in N\right\}\right)=\emptyset$.

On the other hand $\cap\left\{N_{12}\left(L_{k}\right) \mid k \in N\right\}=\langle a\rangle$. But $N_{1}(\langle a\rangle)=N_{2}(\langle a\rangle)=\langle a\rangle=$ $N_{12}(\langle a\rangle)$ means that $\cap\left\{N_{12}\left(L_{k}\right) \mid k \in N\right\} \in N_{12}\left(\mathcal{N}_{12}\right)$.

Hence $N_{12}\left(\cap\left\{L_{k} \mid k \in N\right\}\right)=\emptyset \neq\langle a\rangle=\cap\left\{N_{12}\left(L_{k}\right) \mid k \in N\right\}$.

Subsets that belong to \mathcal{N}_{13} or to \mathcal{N}_{23}
We shall prove that if a subset M of a semigroup S satisfies some conditions, then M belongs to \mathcal{N}_{13} or to \mathcal{N}_{23}.

Lemma 1 of [6] implies that every subsemıgroup of a semigroup S belongs to \mathcal{N}_{23}.

From Lemma 2 of [6] it follows that every left ideal, right ideal and two-sided ideal of a semigroup S belongs to \mathcal{N}_{13} (hence it belongs also to \mathcal{N}_{12} and \mathcal{N}_{23}).

Let S be a semigroup, $M \subseteq S$ and $M \neq \emptyset$. We consider the following conditions:
(1) $M^{m} S M^{n} \subseteq M$,
(2) $M^{m} S \cap S M^{n} \subseteq M$,
where m, n are fixed nonnegative integers, not both equal 0 and for $m=0$ or $n=0$, \boldsymbol{M}^{0} be the empty symbol. We say that \boldsymbol{M} satisfies condition (1) or (2), respectively, for the pair (m, n).

Remark. If M satisfies condition (1) or (2) for the pair (m, n), it also satisfies this condition for the pair $(p, q), p \geqslant m, q \geqslant n$ (see [2]).

Lemma 9. If M satisfies condition (1), then $N_{1}(M)=N_{3}(M)$.
Proof. a) $N_{1}(M) \subseteq N_{3}(M)$.
b) If $x \in N_{3}(M)$, then there exists a positive integer k, such that $x^{k} \in M$ holds. In view of condition (1) we have $x^{k(m+n)+p} \in M$ for all $p \in N$. Hence $N_{3}(M) \subseteq N_{1}(M)$.

Lemma 10. If M satisfies condition (2) it satisfies also condition (1) (see [2]).
Proof. Evidently $M^{m} S M^{n} \subseteq M^{m} S$ and $M^{m} S M^{n} \subseteq S M^{n}$. Hence $M^{m} S M^{n} \subseteq$ $M^{\prime \prime \prime} S \cap S M^{n} \subseteq M$. Hence (2) implies (1).

Corollary. If M satisfies condition (2), then $N_{1}(M)=N_{3}(M)$.
Further let us consider the condition
(3) $S^{m} M \cap M S^{n} \subseteq M$, where m, n are fixed positive integers. We say that M satisfies condition (3) for the pair (m, n).

Lemma 11. If M satisfies condition (3) for some pair (m, n), then it satisfies condition (3) for every pair (p, q), $p \geqslant m, q \geqslant n$.

Proof. We have $S^{\prime \prime} M \cap M S^{q} \subseteq S^{\prime \prime} M \cap M S^{n} \subseteq M$.
Lemma 12. If M satisfies condition (3) for some pair (m, n), then $N_{1}(M)=$ $N_{3}(M)$.
Proof. a) $N_{1}(M) \subseteq N_{3}(M)$.
b) If $m \geqslant n$ and M satisfies condition (3) for the pair (m, n), then M also satisfies this condition for the pair (m, m) and for every pair $(m+t, m+t), t \in N$.

Let $x \in N_{3}(M)$ i.e. $x^{k} \in M$ for some positive integer k. Then the relation $S^{m+1} M \cap M S^{m+1} \subseteq M, t \in N$ implies that $x^{k+m+1} \in M$ for every $t \in N$ i.e. $x \in N_{1}(M)$. We have obtained that $N_{3}(M) \subseteq N_{1}(M)$. Hence $N_{1}(M)=N_{3}(M)$.

From the foregoing Lemmas we have

Theorem 10. Let S be a semigroup. All subsets $M \subseteq S$ that satisfy some of the conditions (1), (2), (3) are elements of \mathcal{N}_{13}.

Corollary. Let S be a semigroup. Then all (m, n)-ideals and all (m, n)-quasiideals of S are elements of \mathcal{N}_{13}.

The Corollary follows immediatelly from definitions (see [2] and [5]).
Lemma 13. Let S be a semigroup, $A \subseteq S, B \subseteq S$ and let $A B \subseteq A \cap B$. Then $N_{2}(A B)=N_{2}(A \cap B)=N_{3}(A \cap B)=\left(N_{3}(A B)\right.$.

Proof. a) First we prove that $N_{2}(A B)=N_{2}(A \cap B)$. Evidently $N_{2}(A B) \subseteq$ $N_{2}(A \cap B)$ since $A B \subseteq A \cap B$. Now let $x \in N_{2}(A \cap B)$. Then for infinitely many $k \in N$ we have $x^{k} \in A \cap B$ i.e. for infinitely many $k \in N$ there is $x^{h} \in A$ and $x^{k} \in B$. This implies that for infinitely many k we have $x^{2 k} \in A B$ i.e. $x \in N_{2}(A B)$. Hence $N_{2}(A \cap B) \subseteq N_{2}(A B)$.
b) Similarly it can be proved that $N_{3}(A B)=N_{3}(A \cap B)$.
c) It remains to prove that $N_{3}(A B)=N_{2}(A B)$. It is sufficient to prove that $N_{3}(A B) \subseteq N_{2}(A B)$ because we know that $N_{2}(A B) \subseteq N_{3}(A B)$.

Let $x \in N_{3}(A B)$. Then there exists a $k \in N$ such that $x^{k} \in A B$. We shall prove that $x^{n k} \in A B$ for all $n \in N$. This statement is true for $n=1$. Suppose that $x^{n k} \in A B \subseteq$ $A \cap B$. Then $x^{n k} \in A$. But $x^{k} \in A B \subseteq A \cap B$ implies $x^{k} \in B$. Therefore $x^{(n+1) k}=$ $x^{n k} \cdot x^{k} \in A B$. We have $x^{n k} \in A B$ for all $n \in N$ i.e. $x \in N_{2}(A B)$. We have proved that $N_{3}(A B) \subseteq N_{2}(A B)$. This together with $N_{2}(A B) \subseteq N_{3}(A B)$ gives $N_{2}(A B)=$ $N_{3}(A B)$.

Theorem 11. Let S be a semigroup, $A \subseteq S, B \subseteq S$ and $A B \subseteq A \cap B$. Then $A B \in \mathcal{N}_{23}, A \cap B \in \mathcal{N}_{23}$ and $N_{23}(A B)=N_{23}(A \cap B)$.

Subsemigroups

Let S be a semigroup, S^{\prime} a subsemigroup of S and $M^{\prime} \subseteq S^{\prime}$. Then $N_{i}^{\prime}\left(M^{\prime}\right)$ will be the set of all strongly M^{\prime}-potent elements of $S^{\prime}, N_{2}^{\prime}\left(M^{\prime}\right)$ will be the set of all weakly M^{\prime}-potent elements of S^{\prime} and $N_{3}^{\prime}\left(M^{\prime}\right)$ will be the set of all almost M^{\prime}-potent elements of S^{\prime}.

We have the following
Lemma 14. Let S be a semigroup, S^{\prime} a subsemigroup of S and $M \subseteq S$. Then $N_{i}^{\prime}\left(S^{\prime} \cap M\right)=N_{i}(M) \cap S^{\prime}$ holds for $i=1,2,3$.

Proof. a) If $x \in N_{i}^{\prime}\left(S^{\prime} \cap M\right)$, then $x^{n} \in S^{\prime} \cap M \subseteq M$ for almost all $n \in N$ and $x \in S^{\prime}$ hold. This means that $x \in N_{l}(M)$ and $x \in S^{\prime}$, hence $x \in N_{1}(M) \cap S^{\prime}$. Therefore $N_{1}^{\prime}\left(S^{\prime} \cap M\right) \subseteq N_{1}(M) \cap S^{\prime}$ is valid.
b) If $x \in N_{1}(M) \cap S^{\prime}$, then $x \in N_{1}(M)$ and $x \in S^{\prime}$. This implies that $x^{n} \in M$ for almost all $n \in N$ and $x \in S^{\prime}$. Since S^{\prime} is a subsemigroup, $x^{n} \in S^{\prime}$ holds for all $n \in N$. Hence we get $x^{n} \in M \cap S^{\prime}$ for almost all $n \in N$ and $x \in S^{\prime}$ i.e. $x \in N_{1}^{\prime}\left(S^{\prime} \cap M\right)$.

For the cases $i=2$ and 3 the proofs are similar.
Corollary. Let S be a semigroup, S^{\prime} a subsemigroup of S and $M \subseteq S^{\prime}$. Then $N_{i}^{\prime}(M)=N_{i}(M) \cap S^{\prime}$ for $i=1,2,3$.

Using the notations $\mathcal{N}_{12}^{\prime}=\left\{M \subseteq S^{\prime} \mid N_{1}^{\prime}(M)=N_{2}^{\prime}(M)\right\}, \mathcal{N}_{13}^{\prime}=\left\{M \subseteq S^{\prime} \mid N_{1}^{\prime}(M)=\right.$ $\left.N_{3}^{\prime}(M)\right\}$ and $\mathcal{N}_{23}^{\prime}=\left\{M \subseteq S^{\prime} \mid N_{2}^{\prime}(M)=N_{3}^{\prime}(M)\right\}$, we get

Lemma 15. Let S be a semigroup, S^{\prime} be a subsemigroup of S and $M \subseteq S^{\prime}$. If $M \in \mathcal{N}_{23}^{\prime}$, then $M \in \mathcal{N}_{23}$.

Proof. Let $M \subseteq S^{\prime}$ and $M \in \mathcal{N}_{23}^{\prime}$ i.e. $N_{2}^{\prime}(M)=N_{3}^{\prime}(M)$. If $x \in N_{3}(M)$, then there exists $n \in N$ such that $x^{n} \in M \subseteq S^{\prime}$. This means that $x^{n} \in N_{3}^{\prime}(M)=N_{2}^{\prime}(M)$. Therefore $x^{n m}=\left(x^{n}\right)^{m} \in M$ holds for infinitely many $m \in N$ i.e. $x \in N_{2}(M)$. We have proved that $N_{3}(M) \subseteq N_{2}(M)$. This, together with $N_{2}(M) \subseteq N_{3}(M)$ gives $N_{2}(M)=$ $N_{3}(M)$ i.e. $M \in \mathcal{N} \mathcal{N}_{23}$.

A subsemigroup S^{\prime} of a semigroup S is called isolated if $x^{n} \in S^{\prime}$ implies $x \in S^{\prime}$ for all $x \in S$.

Lemma 16. Let S be a semigroup, S^{\prime} an isolated subsemigroup of S and $M \subseteq S^{\prime}$. Then the following statements hold:
a) If $M \in \mathcal{N}_{13}^{\prime}$, then $M \in \mathcal{N}_{13}$.
b) If $M \in \mathcal{N}_{12}^{\prime}$, then $M \in \mathcal{N}_{12}$.

Proof. a) Let $M \subseteq S^{\prime}$ and $M \in \mathcal{N}_{13}^{\prime}$ i.e. $N_{1}^{\prime}(M)=N_{3}^{\prime}(M)$. If $x \in N_{3}(M)$, then there exists $n \in N$ such that $x^{n} \in M \subseteq S^{\prime}$. But since S^{\prime} is an isolated subsemigroup, we have $x \in S^{\prime}$ and $x^{n} \in M$, hence $x \in N_{3}^{\prime}(M)=N_{1}^{\prime}(M)$. Therefore $x^{m} \in M$ holds for almost all $m \in N$ i.e. $x \in N_{1}(M)$. We have obtained $N_{3}(M) \subseteq N_{1}(M)$ what together with $N_{1}(M) \subseteq N_{3}(M)$ gives $N_{1}(M)=N_{3}(M)$. This means that $M \in \mathcal{N}_{13}$.

The proof of b) is similar.
Theorem 12. Let S be a semigroup and S^{\prime} a subsemigroup of S. Then the following statements hold:
a) $\mathcal{N}_{23}^{\prime} \subseteq \mathcal{N}_{23}$.
b) If S^{\prime} is an isolated subsemigroup, then $\mathcal{N}_{12}^{\prime} \subseteq \mathcal{N}_{12}$ and $\mathcal{N}_{13}^{\prime} \subseteq \mathcal{N}_{13}$.
c) The complete lattice $\left\langle\mathcal{N}_{23}^{\prime}, \subseteq\right\rangle$ is a complete sublattice of the complete lattice $\left\langle\mathcal{N}_{23}, \subseteq\right\rangle$.
d) If S^{\prime} is an isolated subsemigroup, then the lattice $\left\langle\mathcal{N}_{12}^{\prime}, \cap, \cup\right\rangle$ is a sublattice of the lattice $\left\langle\mathcal{N}_{12}, \cap, \cup\right\rangle$.
e) If S^{\prime} is an isolated subsemigroup, then the complete lattice $\left\langle\mathcal{N}_{13}^{\prime}, \subseteq\right\rangle$ is a complete sublattice of the complete lattice $\left\langle\mathcal{N}_{13}, \subseteq\right\rangle$.

The proof follows from the foregoing Lemmas and Theorem 1.
The following example illustrates that if S^{\prime} is not an isolated subsemigroup of S, then neither $\mathcal{N}_{12}^{\prime} \subseteq \mathcal{N}_{12}$ nor $\mathcal{N}_{13}^{\prime} \subseteq \mathcal{N}_{13}$ need be true.

Example. Let $S=\langle a\rangle$ be the cyclic semigroup of infinite order. Let $S^{\prime}=M=$ $\left\{a^{2 k} \mid k \in N\right\}$. Then $N_{1}^{\prime}(M)=N_{2}^{\prime}(M)=N_{3}^{\prime}(M)=M=S^{\prime}$ i.e. $M \in \mathcal{N}_{12}^{\prime}$ and $M \in \mathcal{N}_{13}^{\prime}$.

On the other hand $a \notin N_{1}(M)$ but $a \in N_{2}(M)$ and $a \in N_{3}(M)$. Hence $N_{1}(M) \neq N_{2}(M)$ and $N_{1}(M) \neq N_{3}(M)$ i.e. $M \notin \mathcal{N}_{12}$ and $M \notin \mathcal{N}_{13}$.

REFERENCES

[1] CLIFFORD, A. H.-PRESTON, G. B.: The algebraic theory of semigroups, I. Providence 1961.
[2] LAJOS, S.: Generalized ideals in semigroups. Acta Sci. Math. Szeged, 22, 1961, 217-222.
[3] LJAPIN, E. S.: Polugruppy. Moskva 1960.
[4] SCHWARZ, Š.: K teórii pologrúp. Sborník prác Prírodovedeckej fakulty Slovenskej univerzity v Bratislave, 6, 1943, 1-64.
[5] STEINFELD, O.: Über die Quasiideale von Halbgruppen. Publ. Math. Debrecen, 4, 1956. 262-275.
[6] ŠULKA,R.: On the nilpotency in semigroups. Mat. časop. 18, 1968, 148-157.
[7] ŠULKA, R.: The maximal semilattice decomposition of a semigroup, radicals and nilpotency. Mat. časop. 20, 1970, 172-180.

Received July 7, 1983

Katedra matematiky
Elektrotechnickej fakulty SVŠT
Gottwaldovo nám. 19
81219 Bratislava

О ТРЕХ СТРУКТУРАХ. ПРИНАДЛЕЖАЩИХ ВСЯКОИ ПОЛУГРУППЕ
Robert Šulka
Резюме
С помощью понятия нильпотентности определены три структуры, элементы которых принадлежат булеану $\langle P(S), \subseteq\rangle$ полугруппы S. Доказываются некоторые свойства этих структур. Так две из этих структур являются полными и одна из них является структурой с дополнениями. Показывается, что все (m, n) - идеалы и все (m, n) - квазиидеалы содержатся во всех трех этих структурах. Изучаются тоже эти структуры в случае циклических полугрупп и в случае подполугрупп полугруппы.

