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D A R B O U X P R O P E R T Y O F M E A S U R E S A N D C O N T E N T S 

D. PLACHKY 

Let us call a non-negative and finitely additive set function v on an algebra ?f of 
subsets of a set 5 with a v(0) = O content. Furthermore a content v is said to be 
continuous if for any e > 0 there exists a partition Al9 ..., An of the underlying set S 
such that v(At)<£, i = \,...,n holds. Finally a content v has the Darboux 
property if for any A e?t and for all a e[0, v(A)] there i s a B e ? l with v(B) = a 
and B a A. 

If furthermore W is an algebra of subsets of S with ? lc5C, and v is finite, i.e. 
v(5) < co, the family of finite contents v ' : ?l' - »R with v' |?l = v will be denoted by 
^(W, v, W). Now the following auxiliary result can be proved: 

Lemma, v is continuous iff every v' e ^(W, v, W) is continuous. 
Proof. According to [7] there exists an extreme point v ' of ^(?I, v, W). 

Furthermore an extreme point v' of ^(W, vra 91') has the following property (see 
[7], theorem 1): For any e>0 and A eW there exists a JB e?t with v'(AAB)<e. 
If in addition v' is continuous, this property implies that v = v'|?l is also 
continuous, which can be seen as follows (see [8], lemma 3.1): Let e > 0 and let n 

be a natural number such that — <e. There exists a partition Au ..., An of 5 with 
n 

, / A X n v ' ( S ) 

l -hMV(S) 

Furthermore there exists Bt e ?t with 

AZV ( 5 ) 

which implies 

/ ( B . ) . Š v ' ( A . ) ( l + - ^ - ) < e , i = l , . . . , » . 

Defining C, = .Bi, G= .BA(B, u . . . u f i _ , ) , i = 2 , . . . ,« + 1 , where Bn + 1 = 
= 5 \ (B 1 u. . .uB„) yields a partition G , ..., G+i of S with v(d)<e, i = 

1, ..., n + 1, because 
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v'(B,+,) = V (UA,.\ljB,)§v' (jJ(A,\Bl))g 

giv(AAB1)^iv(A iAB i)<^<£. 
i = 1 i = 1 " 

This implies the continuity of v. 
This lemma remains true if the property of a content to be continuous is replaced 

by the property to be atomless, as can be seen in the following way: If v is atomless 
and A 0 G 9 C is a v'-Atom for some v' e^(9l , v, 9t'), then vA o |9 t^v holds with vAo 

as the concentration of v' at A0, where vAo|9t is two valued content. According to 
the decomposition of Hammer—Sobczyk (see [8]) we have v A o =0 , which is 
a contradiction. If now A0 e 91 is a v-Atom, vAo is two valued and therefore vAo too 
for every extreme point v' of ^(9t, v, 91') because of [7], theorem 1. Hence A 0 is 
a v'-Atom for every extreme point of ^(91, v, 9V). 

According to [3], theorem 2, a content v defined on a a-algebra 91 of subsets of 
a set S is continuous iff v has the Darboux property. Therefore the lemma above 
implies 

Theorem. Let 91 and 91' be o-algebras with 9t c= 9C and v a finite content on 9V 
Then v has the Darboux property iff every v'e<#(9t, v, 9V) has the Darboux 
property. 

This theorem is not true in general if the assumption that 9t and 9V are 
a-algebras is replaced by assuming that 91 and 9t' are algebras, as the following 
special case shows: Choose S = [0, 1] and 91 as the field generated by {[a, b]\0^ 
al-Sb-Sl, a and b rationals} and \i as the Lebesgue measure restricted to 9V If 
furthermore 9V is the Borel a-algebra of S, then every \i' e ^(91, JU, 9V) is 
continuous and has therefore the Darboux property (see [3], theorem 2), whereas \i 
has not this property. 

In the following 9t and 9V are defined to be a-algebras of subsets of a set S. If 
furthermore \i is a finite measure on 91 and M{%, \i, 9V) denotes the family of all 
finite measures \i' on 9C with ,u'|9t = ,u, theorem 1 is not true in general if 
<g(9(, v, 9V) is replaced by M(% n, 9V). This shows the following 

E x a m p l e 1: Let 9 t={AczR|A or R\A is countable} be the a-algebra of 
subsets of the set R of real numbers generated by the singletons and \i the measure 
defined by ^ ( A) = 0 if A is countable and \i(A)=\ if R\A is countable. If 
furthermore 91' is the a-algebra of Borel subsets of R the family M(% ]U,9V) 
consists of all atomless probability measures on 9V. Hence in this case every 
li' eM(%, \i, 9V) has the Darboux property, but not \i. Furthermore M(% u, 9V) 
in this example has no extreme points (see [7]). 

If, however, one assumes that the set of extreme points of J£(9t, [i, 9C) is not 
empty the method of proof for the theorem above yields the 
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Corel ary. Let Hi and Vf' be o-algebras with VI c Vf' and \i a finite measure on ?!. 
IfM(?\, \i, VC) has at least one extreme point, then \i has the Darboux property iff 
every f.i' eM(^\, pi, VC) has the Darboux property. 

Here are some examples, where the set of extreme points ofM(?\, \i, VV) is not 
empty : 

E x a m p l e 2. Let VI be a a-algebra of subsets of an arbitrary set S and VI' the 
a-algebra generated by V(u{A}, where A is a fixed subset of S. Then M(% pi, VV) 
has extreme points, where l/ is a finite measure on Vf (see [7]). 

E x a m p l e 3. Let VI be a a-algebra of subsets of an arbitrary set S and \i a finite 
me ure ^n VI If S)P is the a-algebra generated by Vt and a family of internal 

. neg igible sets closed under countable unions, then the proof of theorem 31 in [5] 
s ows that tnere exists an extension ptf eM(?\, \i, VV) of \i with the property: For 
A eVV there is a B eVt with fi'(AAB) = 0. Hence \i' is an extreme point of 
M(*,ii,*V) (see [7]). 

E x a m p l e 4. Let S be a locally compact space. If in addition it is assumed that S 
is a-corrpact, then the Baire, resp. Borel, a-algebra coincides with the Baire, resp. 
Bo el a-ri ig. It is well known (see [1]) that every Baire measure \x can be extended 
u quely to a regular Borel measure \i', from which it follows that \i' is an extreme 
po'nt of M(?\, pi, VI'). For a generalization to completely regular spaces S compare 
[4]. 

E x a m p l e 5. Let S be a compact space and Vt' the baire a-algebra, resp. 
\\ = f '(>('), where/ : S^>S is assumed to be continuous, which implies VtczVt' ,\i is 
defineu to be a finite measure on VI. If furthermore C(S) denotes the family of all 
real va'ued, continuous functions, then M(?\, pi, V(') is compact with respect to the 
weak* topology of the dual space C*(S) of C(S), which can be seen as follows: 
A net pi'aeM^, pi, VI') converges to pi' with respect to the weak* topology iff 
Jg dpia-+jg dpi' holds for every geC(S). This implies fg0fdfia —> fgofdfi', 
geC(S), from which pi' eM(?\, pi, VI') follows, since pi'aeM(% l/, VV) implies 
J"g0f d^a = !Qof dpi = \g dpif and C(S) is dense in the space Li(S, VC, pif) of 
//-in^egrable functions with respect to the Lj-norm (see [1]). The theorem of 
Krein—Miiman now implies that there exist extreme points of M(?\, jU,VC) if 
M(\ pi,\\') is non empty. This is true if in addition it is assumed that S is 
me rizable (see [2]). 
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