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INDIVIDUAL ERGODIC THEOREM ON A LOGIC 

SYLVIA PULMANNOVA 

A generalization of the individual ergodic theorem on a logic, formulated and 
proved b y D v u r e d e n s k i j and R iedan [1], is given. It is shown that jr-measurabi-
lity is not a necessary condition for the validity of the individual ergodic theorem. 

Let S£ be a logic, that is, let S£ be a a-lattice with the first and last elements 0 and 
1, respectively, with an orthocomplementation J.: ai—>ax, a,ax eS£, which satisfies 
(,) (a

xy = a for all aeS£, (//) if as= b, then b~*£ax, (Hi) a v a x = 1 for all a e S£; 
and with the orthomodular law: if a^b, then b = av(bAaJ~). 

Two elements a,beS£are orthogonal (a±b) if a^bx; and they are compatible 
(a <-» b) if there are mutually orthogonal elements ax, b\, ceS£ such that a = atvc 
and b = b\vc. Let S£\ and S£2 be logics with the last elements L and 12, 
respectively. A map T: S£\—*S£2 is a o-homomorphism if (/) T (1 , ) = 12, (//) if a-Li, 

then T(a)lT(6), a, beS£\, (Hi) \/ r(a.) = r l\/ a,\ for any sequence {a,}<=S£\. 

An observable on S£ is a a-homomorphism from the Borel a-algebra 9S(R\) into 
_?. If / : R\—*R\ is a Borel measurable function, then fox: E—>x(f~\E)), 
Ee 3B(R\) is an observable. Two observables x and y are compatible if ;c(E)«-* 
>(F) for any E, Fe9S(R\). 

A subset S c L is a sublogic of if if (/) a e S implies ax e S, (//) {a,} c S implies 

V a ' S. A sublogic of i ? which is distributive is a Boolean sub-o-algebra of if. 
I - I 

The range R(x) = {x(E): Ee9&(R\)} of an observable x is a sub-a-algebra of if. 

The state on i f is a map m: S£—>[0, 1] such that (/) m ( l ) = l , (ii) m (\/ a\ 

= ^m(a,) if a,±a„ i+j. If x is an observable, then the expectation m(x) of x in 
I - I 

a state m is defined by the equality 

m(x) = ltmx (dl) 

if the integral exists, where mx(E) = m(x(E)), Ee3S(R\). 
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Let m be a state and T: J?—>J? be a a-homomorphism. We say that T is 
m-preserving if m(T(a)) = m(a) for any aeS£. An m-preserving a-homomorph
ism r: !£-*!£ is ergodic in m if T(a) = a implies m(a)e{0, 1}. 

Let x be an observable. A a-homomorphism T: 5£—>!£ is x-measurable if 
r(i?(;«:)) <=/?(*) (see [1]). If we set T X(E)= T(X(E)), Ee9Z(R,), then the map 
To*: 59(f?i)—»if is an observable. 

Let m be a state. We say that a sequence of observables {*„} converges to the 
null observable o(o{0} = 1) almost everywhere in m (a.e. [m], see [2]) if 

m (lim sup x„((-e, e))c) = 0 forany e>0. 
n 

The following theorem was proved in [1]. 

Theorem 1. Lef x be an observable, T: if—»i?an x-measurable o-homomorph-
ism of the logic Z£, ergodic in a state m. Let m(x) = 0. Then 

1 " ' 

- 2 г x—*° a є- [m\-n , n 

Theorem 1 was generalized for the case in which m(x) =£ 0 and T is m-preserving 
but not necessarily ergodic [5]. The following theorem generalizes the result of [5] 
by relaxing the condition of x-measurability. We require only that the range of * be 
contained in an invariant countably generated sub-a-algebra of !£. This we beliewe 
may become useful as soon as we intend to apply the theorem in the realm of 
quantum theories. 

Theorem 2. Lef B be a countably generated sub-o-algebra ofS£. Let m be a state 
on !£and let T be an m-preserving o-homomorphism of 5£such that T(B) C B. Let x 
be an observable such that R(x) c B and m(x) < °°. Then there is an observable x* 
such that R(x*)cB, Tox* = x* a.e. [m], m(x) = m(x*) and 

1 " ' 
— 2 T ' x-x*-*o a.e. [m]. 

Proof. By [6] there is an observable y such that R(y) = B. As R(x)c R(y), 
there exists a Borel measurable function / : R,—*Ri such that x = fy [6]. Now by 
the proof of Theorem 1 there is a Borel measurable transformation T: Rx—*R, 
such that Toy = Toy, i.e. Toy(E) = y(T~l(E)), EeB(R,). Then we have 

To*(E) = r( /oy(E)) = T(y( f ' (£ ) ) ) = - V C T ' ( E ) ) = 
= y(r ' ( f 1 (£) ) ) = y((/or) •(£)). 
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Let us set 
i " ' 

.=-I,f-т 
wi *--- '•' 

s" .— 
П , o 

In view of the definition of the sum of compatible observables [6], the observables 
yn=Snoy are the sums 

1 " ' n I 

•oX. 

n ,_o 

Since T is the measure my — preserving transformation from Rt into itself, from 
the validity of the individual ergodic theorem (see [3]) on the dynamical system 
(R,, 38(Ri), my, T) applicated to the function f(t), teR\, we get that there is 
a Borel measurable function f* which is T — invariant, 

fr(t)my (dt) = ff(t)my (dt) = m(x), 
and 

Sn(t)-+f*(t) a.e. [my]. 

Since it may be shown that snoy—f*oy^*o a.e. [m] if and only if s„(t)—*f*(t) 
a.e. [my] (see [2]), we finish the proof by setting x*=f*oy. 

Q.E.D. 

Lemma 3. Let McStbe such that T(M) C M, where x is a o-homomorphism of 
St. Let S£o be the minimal sublogic of SB containing M. Then r(.2o) c S£o. 

Proof. Let S = {beSto: T(b)eS£o). It can be easily checked that 5 is a sublogic 
of St, and McS. From this we get S = S£o. 

Q.E.D 

Theorem 4. Let mbe a state onS£,Tbe an m-preserving o-homomorphism ofS£, 
and let x be an observable such that m(x)<oo and r 'ox are pairwise compatible. 
Then there is an observable x* such that To;t* = jc* a.e. [m], m(x*) = m(x) and 

1 ""' 
— 2 т'oJt — x*—*o a.e. [m]. 

Proof. Let us set M=[JR(T'OX). AS T ( M ) C Z M , we obtain by Lemma 3 that 
• - 0 

T(S£O) C S£o, where S£o is the sublogic of St generated by M. For any a, b e M we 
have a «-> b in .2\ Since .2o is a lattice, a <-» b also in S£o. By the proof as in [4], .2o is 
a Boolean sub-a-algebra of .2. As each R(T'OX) is countably generated, .20 is also 
countably generated. The statement of the theorem follows from Theorem 2 if we 
s e t B = .2o. Q.E.D. 
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ИНДИВИДУАЛЬНАЯ ЭРГОДИЧЕСКАЯ ТЕОРЕМА НА ЛОГИКЕ 

Сылвиа Пулманнова 

Резюме 

В статье исследуется индивидуальная эргодическая теорема на логике. Приводится обобщение 
результата Двуреченского и Риечана, показывающее, что .«-измеримость гомоморфизма логики 
не является необходимым условием для этой теоремы. 
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