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ABSTRACT. A new oscillation criterion for the equation y'"’ +p(t)y’ +q(t)y = 0
with a nonpositive coefficient p and a positive coefficient ¢ is established. This
result extends and improves some oscillation criteria for third order linear differ-
ential equations in this case.

1. Introduction

Consider the differential equation

y" +p(t)y +a(t)y=0, (L)
where p,q,p': I - R, I = (a,00) C (0,00), R = (—00,00), are continuous.
We shall investigate two cases:

p(t) <0, q(t)>0, tel (P)

and
p(t) <0, p(t)—q(t)>0, tel. (PA)

We consider only nontrivial solutions of (L). Such a solution is called oscil-
latory on [ if it has arbitrarily large zeros, otherwise, it is called nonoscillatory
on I. Equation (L) is said to be oscillatory on I if it has at least one oscillatory
solution. Furthermore, equation (L) is said to be of Class I (Class II') on I if
and only if every solution y of (L) with y(c) = y'(¢) =0, y"’(c) > 0, c € (a,00),
has the property that y(¢) > 0 in (a,c¢) (in (¢, 00)).

In the particular case, when p(t).= 0, ¢(t) > 0, t € I, there is the well-known
oscillation criterion for (L) of the form

o0

/tZ_Eq(t) dt = o0 for some ¢ >0, (1.1)
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see, e.g., [1] and [11].
The condition (1.1) has been improved several times. We present a result of
Chanturiya . For analogous results, the reader is referred to [3] and [13].

THEOREM A. ([2; Theorem 2.1]) Let p(t) =0 and q(t) >0 for t € I. If

o0

lim inf tz/ q(s) ds > % , (1.2)
t

then equation (L) is oscillatory.

In general, we assume that p(t) # 0 on I. For equation (L) there are oscil-
lation criteria dueto Lazer and Erbe .

THEOREM B. ([10; Theorem 1.3]) Let condition (P) hold. If

2 (o)) gt =
/(q(t) 3\/5( p(t)) ) dt = o, (1.3)
then equation (L) is oscillatory.

THEOREM C. ([5; Theorem 2.4-2.6]) Let condition (P) hold and 2q(t) —
p'(t) > 0 for t € I. Assume further that for each A > 0 there exists ty > a
such that q(t) + Ap(t) > 0 for every t > tx and such that the equation
y"" + [q(t) + Ap(t)]y = 0 is oscillatory. Finally assume that

(o o]

/p(t) dt > —co orthat |p(t)| <K  for some K >0.

If [t*(2q(t) — p'(t)) dt = oo, then equation (L) is oscillatory.

The result of Lazer is applicable to the equation with constant coefficients
y" + poy’ + qoy = 0, where py < 0, gg > 0 are some constants, Theorem C of
Erbe is not applicable to the equation above. On the other hand, Erbe
presented an example (see [5; p. 378, Remark]) when Theorem C is applicable,
but Theorem B is not. Neither Theorem B nor Theorem C is applicable to the
Euler equation t3y"’ +poty’ +qoy = 0, where py < 0, go > 0 are some constants.

The aim of this paper is to establish some new criteria for equation (L) which
extend and improve Theorem B and Theorem C. Our results are applicable to the
Euler equation and equations with constant coefficients. Also they are verified
easier than Theorem C. Even in the case when p(t) =0, t € I, our result is not
worse than condition (1.2).

Remark. For Kneser-type oscillation criteria, the reader is referred to (7],
[9] and [14].
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2. Some helpful assertions

The following assertions describe the structure of solutions of equation (L).
The proofs of these assertions may be omitted since they are similar to proofs
in the references.

Let us note that, if y is a solution of equation (L), then also —y is a solution
of this equation. Thus, concerning nonoscillatory solutions of (L) we can restrict
our attention only to positive ones.

The following lemmas are satisfied even for some third order nonlinear dif-
ferential equations, see [4], [6], [12], [15], and [16].

LEMMA 2.1. Let (P) hold and y be a nontrivial nonoscillatory solution of
(L). Then there exists b > a such that

y(t)y'(t) <0 (2.1a)
or
y(t)y'(t) >0, y(t)#0 (2.1b)
for every t > b.
Furthermore, some positive solution y of type (2.1a) satisfies

y(t) >0, y'(t)<0, y'(t)>0, y'(t)<0 foral t>a
and (2.2)
. 17 1 / _ . _ ’
Jim y"(t) = lim y'(¢) =0, lim y(t) = L <oo.
Proof. See [10; Lemma 1.1, Lemma 1.3, Theorem 1.1], [5; Lemma 2.2].

LEMMA 2.2. Let (P) hold. Then there ezists a positive solution y of (L) with
property (2.1a) .

Proof. See [10; Theorem 1.1].

THEOREM 2.3. Let (P) hold. A necessary and sufficient condition for (L)
to be oscillatory is that for any nontrivial nonoscillatory solution y the condi-
tion (2.1a) hold.

Proof. See [10; Theorem 1.2].

THEOREM 2.4. Let (P) hold and equation (L) be oscillatory. Then any
nonoscillatory solution y satisfies

tlim y(t)=0.
Proof. See (8].
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DEFINITION 2.5. Equation (L) is said to have property A if each solution y
of this equation is either oscillatory, or satisfies condition (2.2) with L = 0.

Remark 2.6. From Theorem 2.3 and Theorem 2.4, it follows that equa-
tion (L) is oscillatory if and only if it has the property A.

Remark 2.7. From the above results, it follows that, in order to prove
oscillatoriness of equation (L), it is sufficient to prove that (L) does not have
any nonoscillatory positive solution of type (2.1b).

3. Oscillation criteria

The following lemma is elementary but quite useful in the sequel.

LEMMA 3.1. Let (P) hold. Let Q be the polynomial in the variable z,

Qz)= L3 324 <t% —|—p(t)>z + t%q(t), t>0.

Then
Q) = Ba(t) +1p(t) — o= (1= 0()" = Q) )

for all z>0.

Remark 3.2. The right-hand side of (3.1) is the local minimum of @ in
the point zg = t(l + 3‘1/2(1 - tzp(t))l/z) .

The following theorem generalizes, improves and extends Theorem B and

Theorem C.
THEOREM 3.3. Let (P) hold. If

7[t2q<t> +tp(t) -

then equation (L) is oscillatory.

2 2 3/2 _
o (1= 20(0) | at =, (3.2)

Proof. Let y be a nonoscillatory solution of (L). Suppose without loss of
generality that y is positive. We prove that y cannot have property (2.1b). To
prove this, we assume the contrary, i.e., y(t) > 0, 3'(t) > 0, ¢ > b > a. Now,
we denote

2y (¢
Ay =2y
y(t)
So z(t) > 0, and it is easy to verify that z satisfies the second-order Riccati
equation

/
J 322 4t_1z] +1742% =3t + [2t 72+ p(t) |z +t3q(t) =0,  t>b.

2
(3.3)
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Substituting the estimate (3.1) to (3.3) we have

[z’ + %t—zz2 - 4t_1z]l < - [tzq(t) +tp(t) — 3%/&(1 - tz’p(t))s/z} = —Q(20(t))

for all ¢>b.

Integrating the above inequality from b to t > b we get

2'(t) + %t_QZZ(t) —4t712(t) < Ko — /Q(zo(s)) ds,
b

where K is a constant. Since %t_zzz(t) —4t™1z(t) > —%, integration of the
above inequality from b to t > b yields
t s
z(t) < Ky + Kot — //Q[zo(u)] duds, (3.4)
b b

where Ki = 2(b) + 3b— Kob, K3 = Ko+ . So it follows from (3.2) and (3.4)
that z < 0 for sufficiently large ¢, which contradicts the nonnegativity of z.

Therefore equation (L) cannot have any solution with property (2.1b), and, by
Remark 2.7, we get the assertion of Theorem 3.3. O

The next result generalizes, improves, and extends [10; Theorem 2.6] and
[5; Corollary 2.7-2.8].

COROLLARY 3.4. Let (PA) hold. If

oo

/[t2 [P'(8) = a(®)] + tp(t) — 3%/gt(l — 2p(t))™*] dt = oo,

then equation (L) is oscillatory.
Proof. The adjoint equation to (L) is
y" +p)y + [p'(t) — q(t)]y = 0. (LA)

By resultsof Hanan (7, Theorem 3.3, Lemma 2.9], equation (LA) is of Class I,
and so equation (L) is of Class II. Hence, by [7; Theorem 4.7], equation (L) is
oscillatory if and only if equation (LA) is oscillatory. So, applying Theorem 3.3
to equation (LA) we obtain the assertion of Corollary 3.4.
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4. Final remarks and comparisons

In this section, we compare our results with previous results obtained for
equation (L).

In the special case when p(t) =0 on I, there is the well-known Kneser-type
condition of oscillation for the equation

y" +q(t)y=0. (4.1)

Let g(t) > 0 on I. Then (4.1) is oscillatory if

liminf t%(t) > (4.2)

2
t—o00 3\/5 ’
see [7; Theorem 5.7]. From (4.2), it follows that there exist ¢ > 0 and T > a
such that

q(t) - 3\/——t3 >et™?, (4.3)

{q< )- - ﬁ,} > e/t (4.4)
forall t > T.

For equation (4.1) conditions (1.2) and (3.2) may be rewritten as

and

o0

o s 2
llﬁ&lft/( (s) — 3\/_3>d5>0, (4.5)
t
and
oo
2 2
——=— ] ds =0, 4.6
[#(a6)- 25 ) as=oc (46)
respectively.

Using inequalities (4.3) and (4.4) respectively, we get

Remark 4.1. Let p(t) =0, ¢q(t) > 0 on I. Then (4.2) implies (4.5) and
(4.2) implies (4.6).
To compare conditions (4.5) and (4.6), we suppose that

0 for sufficiently large t. (4.7)

)~ 57 >
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ASSERTION 4.2. Let p(t) =0, and q(t) >0 on I and assume (4.7) satisfied.
Then (4.5) implies (4.6).

Proof. Let (4.5) and (4.7) hold. So there exist § > 0 and 77 > a such

that
tZ/( >d3>6 forall ¢t>1Ty.

If /32 (q(s) - 3—\%;—) ds < oo, then there exists Ty > T such that

7 (q() f >d3<5/2

So we have B
6/2> T/ *(ate) - 52 )
= lim inf /t (q(S) 2 \/_ ) ds+7s2 (q(s) - 57_2@) ds

0o . oo
o mint [ 2 (a(s) - —2_
> llgglf/s (q(s) 3,/3s 3> ds 2 htlggolft/t (q(s) 3\/533) ds

t

o0
— i 'ft2/< s———2—)d > 6,
i € (1) 5755 ) o2

a contradiction. Hence (4.6) is satisfied. a

Remark 4.3. Condition (1.1) cannot be applied to the Euler equation,
while (4.5) and (4.6) may be applied.

Now we suppose that (P) holds, and p(t) # 0 for t € I. To compare our
result with known oscillation criteria, we consider the equation
"

"+ pot’y + qot’y = 0, (4.8)
where pg < 0, go > 0 are some constants, and § > —3, 26 > 34.

For 8 = —2, § = —3 equation (4.8) becomes the Euler equation. Neither
Theorem B nor Theorem C is applicable. The necessary and sufficient condition
for oscillation of Euler’s equation (4.8) is

2
90 +p0—é—\/§(1—p0)3/2>0. (4.9)
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It is easy to check that for oscillation of Euler’s equation (4.8) condition (4.9)
is equivalent to condition (3.2) of Theorem 3.3.

In the case 6 = —3, 26 > 383, Theorem B is not applicable and Theorem C
is applicable only when 8 < —3, and qg > 2/(3\/5), also see example of Erbe
in [5; p. 378, Remark].

ASSERTION 4.4. Let § = =3, B < —2, and qo > 2/(3V3). Then equa-
tion (4.8) is oscillatory.

Proof. Since

2 & k(2k — 1)1

3/2 2 ST
(1+x) =1+ 5+ g > 2kk+2)' it Aiet

where (2k — D)!! = (1)(3)(5)...(2k — 1), substituting the coefficients of equa-
tion (4.8) to the left-hand side of (3.2) for ¢t > ag > (—po)~*/#+2) we obtain

17 B+2 _ 2 (1 _ . B+2 3/2]
/t 90 + pol 3\/5(1 pot ) dt
ao
oo -
_ /1 g2 _ 2 ( _ 3 .8+2 3 2,28+4 )
—/t _(Jo+pot 33 1 = 5pot + gPot +...)| dt
ao
(1] B+2 ( 3 B+2 | 3.2,28+4 )}
= [ 2|9 — + ot ot Spgt +... )| dt.

Since qo > 2/(3\/§), B+2 <0, it is easy to see that condition (3.2) is fulfilled.
So the assertion follows immediately by Theorem 3.3. a

In the case § > —3, 26 = 33, Theorem B may be applied only when 6 > —1,
and gqo > 2(—p0)3/2/(3\/§). Theorem C is not at all applicable.

ASSERTION 4.5. Let § > —3, 26 = 38, and qo > 2(—po)*/?/(3V/3). Then
equation (4.8) is oscillatory.

Proof. Since § > -3, 26 = 33, there exists € > 0 such that § = -3 + ¢,
and 3= —2+(2/3)e. Let t > ag > (—po)~%/?¢. Substituting the coefficients of
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equation (4.8) to the left-hand side of (3.2) and using (4.10) we get

oo

—2¢/31\3/2
glte 4 pm142e/3 2 ( —pat2e/3 (l_t > ] dt
/[qo bo 3v/3t (=pot™") Po

ao

7 —2¢/3 3¢—4e/3
= [t | go + pot </ — 3/2( 3t ) dt
/ [q" po 3f (=po) 0 | 82 |

ao
oo
— t—1+a[ 2 3/2 4 5 4—€/3
/ do0 3\/3( o) Po
ao

_ L B 3/2(_ 3t—26/3 3t—4€/3 :l gt —
3\/5( Do) ( 50 + 52 +) 00
since go — 2(—po)>/?/(3v/3) > 0. The proof is complete. O

In the last case § > —3, 26 > 33, Theorem B may be applied again only
when 6 > —1. Theorem C is applicable only when 8 < 6, and 8 < 0.

ASSERTION 4.6. Let 6 > —3, 26 > 38. Then equation (4.8) is oscillatory.

Proof. Similarly as before, after substituting the coefficients of equa-
tion (4.8) to the left-hand side of (3.2) and using (4.10) for sufficiently large t,
we obtain:

-B-2  34-28-4
6+2 B+ _ 2 3/2t3(ﬂ+2)/2<1_3t - ) dt,
/ [ +po 3 \/ﬁt( Po) o o

ao

for B+ 2 > 0;
oo
#0424 ppl o 2 (1 3/2Jdt, for f+2=0;
/[QO Po 3\/§t( Do) B

[e.e]

/ [qot6+2 +potPtl — ﬁ_?; (1 - %potﬁ'ﬂ + %pgtzﬂ“ T )J dt,

ao

for 0+2<0.

It is easy to check that §+2 > —1, and since §+2 > —1, all the integrals above

satisfy (3.2). So, from Theorem 3.3, it follows that equation (4.8) is oscillatory.
a
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Remark 4.7. If condition (PA) holds, then using Corollary 3.4 we can

derive analogous assertions for equation (4.8).

(1]
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