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ON EXTENSION OF BAIRE SUBMEASURES 

IVAN DOBRAKOV 

Let T be a locally compact Hausdorff topological space. It is well known and 
important, for example in harmonic analysis, that each Baire measure on T can be 
uniquely extended to a regular Borel measure on T, see §54 in [6], or §65 in [1]. 
The extension procedure described therein consists of the generation of a regular 
Borel content and its extension to a regular Borel measure. This procedure was 
modified in [3, §3] to obtain the analogous result for the so-called submeasures 
(non additive set functions having many common properties with measures, see 
later). For measures, and especially for submeasures, this method is rather 
technical. The purpose of this note is to propose a more simple and transparent 
method of extension. It was inspired by the following simple observation. If \i is 
a regular Borel (sub)measure, then to each Borel set A there is a Baire set E such 
that A =EAN, where N is a Borel jit-null set, see §68 in [1] and Theorem 17 in 
[3]. Hence to obtain the required extension we have to add to Baire sets by 
symmetric difference a suitable class of null sets, and make the obvious extension 
which neglects in value these null sets. In this note this method will be described in 
details. Since we consider finite, hence bounded (sub)measures, we in fact obtain 
the extension to the so called weakly Borel sets ( = the a-algebra generated by all 
open subsets of T), see [2]. (Recently for most authors these are the Borel sets.) 

For convenience let us remind the notions of submeasures. Let 01 be a ring of 
subsets of a non empty set T. According to Definition 1 in [3] we say that a set 
function \i: £%—>[0, +<») is a submeasure if it is 1) monotone, 2) continuous: 
Ane0l, n = 1, 2, ..., and A „ \ 0 implies \i(An)—>0, and 3) subadditively con
tinuous : For every Ae0l and e > 0 there is a 5 > 0 such that Be 01 and ,u(B) < <5 
implies / i ( A ) - e^ii(A -B) ^ JU(A) ^ J U ( A U £ ) ^ pi(A) + E. If the 6 in 
condition 3) is uniform with respect to Ae0i, then we say that ju is a uniform 
submeasure. It is easy to verify, see page 68 in [4], that subadditive continuity is 
equivalent to the following property 3)*: If A,Ane0l, n = \, 2, ... and 
/i(A„AA)->0, then JU(A„)->JU(A). Similarly, the uniform subadditive continuity 
is equivalent to the following one: 3u)*: for each e > 0 there is a <5>0 such that 
A, Be 01 and J U ( A A B ) < < 5 --> | J U ( A ) - j u ( B ) | < e . If instead of 3) we have 
H(AKJB)^ y(A) + [i(B) for every A, B e 01, or JU(A uB) = [i(A) + p(B) for every 
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A, B e$/l such that AnB = 0, then we say that \i is a subadditive or an additive 
submeasure, respectively. Obviously subadditive, and particularly additive subme-
asures (i.e., countably additive measures) are uniform. 

For our next general result we need Theorem 12 from [5] According to this 
theorem, if 9 c 2 T is a 6-ring (a ring closed with respect to the formation of 
countable intersections) and Ma2T is a hereditary a-ring, then the smallest d-ring 
containing both 3 and N is the class 3AJf = {A: A = DAN, De3, NeJi}. 

Theorem 1. Let 2)cz2T be a d-ring, let N a2T be a hereditary o-ring and let 
,u: 2)—>[0, +°°) be a submeasure. Suppose ,u(E) = 0 for Ee3nJf, and for 
A = DAN, where De3andNeN put n„(A) = ii(D). Then [i*: 3AN-^>[0, +oo) 
is an unambiguously defined submeasure of the same type as [i, which extends ju to 
the smallest d-ring 2JAJV containing both 3 and X. 

Proof. Throughout this proof all D-s belong to 3 and all N-s to JV. The 
unambiguity and monotonicity of {ix follows by standard methods, see the proof of 
Theorem 13 B in [6] on the completion of a measure. 

Let An=DnANn\0, n = l,2, .... Then C\Dn-\jNn = f\(Dn-Nn) c 
n=\ n=\ n-\ 

oo / o o \ / ra °° \ 

PI An = 0, hence /i ( H Dn) = 0. However, JU ( p) A ~~ D A ) —> 0 by continuity of \i, 
n=\ \n=\ J \i=\ i-\ ) 

hence ju (nDj - ->0 by subadditive continuity of \i. Clearly Dn-f^D.cz 

\J(Dn-Dt). Since A^czA, for i^n, n(Dn-Dl) = 0 for i^n. Thus [i(Dn) = 
i = \ 

pi[pn-f\D\ u C\D\ = iu(nD^-->0 . Hence ^: 3AJ{-^[0, + °°) is con

tinuous. 
Let A = D A N , let An = DnANn, n = l,2, ... and let J U 4 A „ A A ) - - > 0 . Then 

^ ( A „ A A ) = u.«(DnADANnAN) = ^(DnAD), hence fi(DnAD)->0. But then 
]Ujvr(A„) - ]U^(A) = ju(Dn)-]u(D)—>0 by subadditive continuity of ]U. Thus |Uy is 
subadditively continuous on 3AJf. 

Clearly ]Û  is uniform or subadditive, respectively if \i is such. Suppose finally 
that JU is additive. Let A=DlAN1, B = D2AN2, and let AnB = 0. Then 
(D,nD 2 )AN 3 = 0 for some N3eJf. Hence pi(D1nD2) = 0. Thus ^(AuB) = 
iu(DiuD2) = iu( (Di-D 2 ) u ( D 2 - D i ) u (DinD 2 ) ) = ii(D, - D2) + / i ( D 2 - Di) 
= ii(Dl-DlnD2) + ^(D2-DxnD2) = JU(DI) + JU(D2) = JU^(A) + ju^(B) by the 
additivity of JU. Hence ]Û  is additive on 3AJf. The theorem is proved. 

In the following T will be a locally compact Hausdorff topological space. By 
^o (*#) we denote the lattice of all compact G6 (compact) subsets of T. 
0(^0) (o(^)) denotes the smallest a-ring over %o (%), and its elements are called 
Baire (Borel) subsets of T. By °U (°U0) we denote the lattice of all open (open 
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Baire) subsets of T. o(°U) denotes the a-algebra of the so-called weakly Borel 
subsets of T, see [2]. 

Lemma 1. Lef U, Ve°l/, let Ce<€0 and let CczUuV. Then there are 
Ci, C2 e %0 such that G e l / , C2 <= V and C = d u C 2 . 

Proof. By Urysohn's lemma there is a continuous function /:C—>[0, 1] such 
that /(f) = 0 for teC-V, and /(f) = 1 for teC-U. Now it is enough to put 
Ci = { f e C , / ( f ) ^ 2 " 1 } and C2 = {teC, / ( f ) ^ 2 " 1 } . 

Let now JU0: a^o)—»[0, + oo) be a Baire submeasure. According to Theorem 11 
in [3] |Uo is regular, i.e., for each A e a ( ^ 0 ) and each e > 0 there are Ue °U0 and 
C e « 0 such that Cc=Acz[ / and J U 0 ( ( 7 - C ) < £ . 

For Ue°U put 

for A cz T put 

and define 

fi*(L/) = sup {^o(C), C e ^ o , C c L/}, 

H*(A) = M{(i*(U), Ue<%,AcU), 

Jf={N:NcT,n*(N) = 0}. 

Clearly ii*(U) = \i*(U) for any Ue °U, and \i* is monotone on 2T and J U * ( T ) < 
+ oo by Theorem 4 in [3]. According to Theorem 3-b) in [3] the submeasure \i0 (as 
well as any submeasure on a a-ring) has the following property: for each e > 0 
there is a 6 > 0 such that A , B eo(%0) and JU0(A), \i0(B)<5 implies \I0(AKJB)<E 

(the so-called pseudometric generating property, see [4]). From this fact we 
immediately obtain. 

Lemma 2. For each e>0 there is a 6>0 such that t/, V e * and /**([/), 
{i*(V)<6 implies [i*(UuV)<£. 

Using this we easily have 

Lemma 3. There is a sequence of numbers 6k, k = 1, 2, ... such that 0<6k^2~k 

for each k, dk\0, and Uke°U and n*(Uk)<dk for each k = l,2, ... imply 

ju* ( 0 W) = °* f°r ea°h k. 

Proof. Let 0<81^2~1. By Lemma 2 there is a 81^2~181 such that U, Ve °ll 
and \i*(U), ]U*(V)<62 implies ^*(l /uV)<<5i. Again by Lemma 2 there is 
a 6 3 ^2- 1 6 2 such that U, Ve°U and \i*(U), J U * ( V ) < 6 3 implies \X*(UKJV)<62. 

Continuing in this way we obtain a sequence 8k, 0<8k^2~k for each k = 1, 2, ..., 
6 * \ 0 , and such that U, Ve °U and \i*(U), jU*(V)<dk+i implies \I*(UKJ V ) < 6 k 

for each fc = 1, 2, .... Take a sequence [/* e * , k = 1, 2, ... so that /**([/*)<Sfc for 
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each k, and let C e ^ 0 and Ccz (J U(. Then by compactness of C there is 
i-k+i 

k + n 

a positive integer p such that C c | J [/,. But then we easily compute that 
i - f c + i 

jU0(C)^]U*( IJ UA<dk. Since C e % , Ccz IJ Ut was arbitrary, we have the 
\ i = fc + l / i = k + l 

required inequality ix*( IJ Ui)^6k. 
\i k+i / 

Lemma 4. N is a hereditary o-ring and .Vo= {E: E e a (^ 0 ) , [io(E) = 0} 
= Xno(%0). 

Proof. The first assertion of the lemma immediately follows from Lemma 3 and 
the definition of X. 

Let E e a ( « f l ) . Then (i (E) = inf {no(U): U e <?t0, E c U} ^ 
inf {ju*((J): Uell, EczU} = |U*(JE) by regularity of the Baire submeasure /i0, see 
Theorem 11 in [3]. Hence 7 0̂cz o^^nX. 

Let E G o^^nX. Since ju0(-E) = sup {li0(C): C e ^ C c E } by regularity of n0, 
it is enough to show that jU0(C) = 0 for any Cec40,CczE. Let C be such a set. Then 
owing to Theorem D in §50 in [6] and the regularity of jU0 we obtain the required 
equality 0 = //*(C) = inf {v*(U): Ue0t,CczU} = inf {\i*(U): UeQl0, Ccz U} 
= inf {fio(U): Ue Tl0, CczU} = \i0(C). 

Before the next lemma and theorem let us recall that 0(^0) AX is the smallest 
a-ring containing both a(^ 0 ) and X, see Theorem 12 in [5]. 

Lemma 5. o(°ll)cz o(%0)AX and fiv(U) ^ f.i*(U) for each Ue 2l, where (.u is 
defined on o((€o)AX as in Theorem 1. 

Proof. Let Ue°ll. If \i*(U) = \i*(U) = 0, then UeX. If fi*(U)>0, then take 
C , G « O , CicU so that ^o(Ci) > 2~lii*(U). If j i * ( [ / - C , ) = 0, then U-CieX, 
hence [ / e a ( « ) M , and ^ ( ( 7 ) = /i0(G) ^ /^(LI). If ^*((7 - G ) > 0 , then take 
G e ^ o , C2cz U—Ci so that ^0(C2)>2~l(A*(U- G ) . Continuing in this way we 

either arrive at a k such that ]U*f 17 - IJ G) = 0, or {i*( U- IJ G j > 0 for each 

k = l , 2 , .... In the first case U-\JdeX, hence L^e a(«0)A AT, and {!*([/) 

= J U O ( U G ) = M*(LT). In the second case J u - I J c j -̂  j u * ( l / - U c ) < 

2]Uo(Ck+i) for each k = l , 2 , .... Since Ck, k = \,2, ... are pairwise disjoint sets, 

jtfo(G)-»0 by exhaustivity of pL0, see Theorem 1-c) in [3]. Thus U -\JdeX, 

hence Ue 0(^0)AX. Further, ^(U) = J U 0 ( | J G ) = lim LK>(\J C) ^ n*(U) by 

Theorem 1 in [3]. Since o^^AX is a a-ring a (^ )cz o^^AX, and the lemma is 
proved. 

Now we are prepared to prove our main 
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Theorem 2.Lef pLX: a(^0)AJV—>[0, +00) be defined as in Theorem 1. Then 
M = {E:Eeo(cG0)AN, ^(E) = 0}=X, and ^: a(«o)A.V-*[0, + 00) is 
a (<€, °U)-regular and complete submeasure of the same type as JU0: a^o)—> 
[0, +00). Further, its restriction fi*: o(°U) -> [0, +00) (o(°U)cz o(^0)A\ by 
Lemma 5) is the unique (<€, ^-regular submeasure which extends JU0: a (^ 0 ) —> 
[0, + 00), and a^oK- 'V is the completion of ^: o(°U) -> [0, + 00). 

Proof. X czM by definition of (.ix. Let EeM. Then E = A AN with A e a (^ 0 ) , 
ju0(A) = 0 and Ne.jV. But then A e ./V by Lemma 4, hence EeM. Thus M = X. 
Since JV is a hereditary class, JU^: 0(^0) AX —> [0, + 00) is complete. According to 
Theorem 1 \i*: o(^0)AX —> [0, + 00) is a submeasure of the same type as 
^0: o(%0) -> [0, +00). 

To prove the (<g, ^-regulari ty of ^ on o(%0)AX, let A e a(«0)A.Y and let 
e > 0 . According to Lemma 2 take <5>0 so that U, Ve °U and \i*(U), \i*(V)<b 
implies fi*(UuV)<e. Suppose A=EAN with E e 0(^0) and NeX. Then 
E- Ncz A c E u N . Since ju0: a (^ 0 ) —> [0, + 00) is regular, see Theorem 11 in [3], 
there are [/, e U0 and G 6 ^0 such that C, c= E c [/, and ju*([/i - G ) 
= ] U o ( [ / , - G ) < 6 . Since 0 = ^(N) = inf {|U*(l/): Ue # , Ncz [/}, there is 
a U 2 e * such that NczU2 and ^ * ( [ / 2 ) < 6 . Clearly G - U2e%, G - [ /2c:Ac: 
UiuU2e °U, and ( [ / i u [ / 2 ) - ( G - U2) c ([/1 - G ) u [ / 2 . Thus using Lemma 5 we 
have the inequalities \i*((U^U2) - ( G - U2)) ^ ju*(([/iuL/2) - ( G - U2)) -§ 
] U * ( ( [ / i - G ) u [ / 2 ) < e . Hence ^ : a ( « 0 ) A ^ -> [0, + » ) is ( « , ^ - regular . 

If |Ui, |U2: a ( ^ 0 ) A ^ —> [0, +00) are two (%, ^)-regular submeasures both 
extending JU0: a((go)-->[0, + 00), and if A e o(^>0)AX, then their (%, ^-regulari ty 
and Theorem D in § 50 in [6] imply the existence of a sequence Cn e %0, n = 1, 2, ... 

such that jUi(A) = lim jU0(C) = \i2(A). Hence \ix: o(%0)AX —> [0, + 00) j s the 

unique (%, $f)-regular extension of jU0. 

Denote by Sf the completion of \i^: o(°U)^>[0, +00). Since \ij<: o(%0)AX —> 
[0, + 00) is complete, SP czo(^0)AX. To prove the converse inclusion it is enough 
to prove that XczSf. Let NeX. Then by Lemma 5 0 = /i*(N) = inf {\i*([/), 
Ue°U, Ncz [/} ^ inf {\i*(U), Ue°U, Ncz [/}. Since ^ is a lattice and ^: o(W) 
—> [0, + 00) is monotone, there is a non-increasing sequence Une°U, n = l,2, ... 

such that NczUn for each n = 1, 2, ... and ^ ( [ / „ ) - > 0 . Thus N c f) [ / „ e a ( * ) a n d 
n = l 

jUjvf n [I«) = 0. Hence XczSf. The theorem is proved. 

The author wants to thank Professor Jaroslav Lukes for the short proof of 
Lemma 1 and other valuable comments. 
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О РАСШИРЕНИИ БЭРОВСКИХ СУБМЕР 

^ а п О о Ь г а к о у 

Р е з ю м е 

Пусть (Ио-беровская субмера (неаддитивное обобщение бэровской меры, см. [3]) на локально 

компактном топологическом пространстве Т. Присоединяя к бэровским множествам надлежа
щий класс нулевых множеств, мы получим единственное регулярное борелевское расширение и0. 
Этот метод нагляднее обычного метода, использующего расширение субобъемов. 
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