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ON EXTENSION OF BAIRE VECTOR 
MEASURES 

MILOSLAV DUCHON 

It is a well-known fact that every Baire positive measure can be extended 
uniquely to a regular Borel positive measure [1, Theorem 65.1; 6, Theorem 54.D]. 
Similar propositions are stated for set functions on relatively compact Baire and 
Borel sets with values in Banach spaces [3, p. 354, vector measures with finite 
variation] and more generally for set functions with values in complete locally 
convex spaces [4]. It has been asked by some persons if it is possible to reduce the 
assumption concerning completeness of the range space of vector-valued measure. 
We answer this question in the positive: Every Baire vector-valued measure with 
values in a metrisable and somewhat more general locally convex space X — not 
necessarily complete — can be extended uniquely to a regular Borel vector-valued 
measure with values in the same space X — more precisely in the closed convex 
cover of the values of the given Baire vector-valued measure. Some other results 
concerning extension and regularity of vector-valued measures are also added. 

1. Extension of vector measures 

Let T be a set, D a ring of subsets of T. Let X be a Hausdorff locally convex 
space with the topology defined by the system of continuous seminorms, P = (p). 
Denote by X and X the quasi-completion and the completion of X [10], p or p 
being the extension of p to X and X, respectively. 

We shall make use of the following 
Lemma 1. If m: D—> X is an additive set function, and if for every p in P there 

exists a positive finite measure vp on D such that 

lim p(m(A)) = 0, AeD, 
vp(A)-0 

then m is sigma additive [4, p. 506]. 
Let N be a set of positive finite subadditive and increasing set functions v defined 

on D with v(0) = O. Consider on D the uniform structure t(N) defined by the 
family (dv)V€Nof semi-distances defined by 

dv(A, B) = v(A-B) + v(B-A), A,BeD. 
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Now we can state the result that is easy to prove [4, p. 506]. 

Lemma 2. Let D 0 cz D be a ring and m: D0—>X a set function. If for every p in 
P there exists vp in N such that 

lim p(m(A)) = 0, AeD0, 
vp(A)—0 

and if either m is additive or m is positive, subadditive and increasing, then m is 
uniformly continuous on D0. 

It follows, in particular, that every set function v in N is uniformly continuous on 
D0. 

We shall need the "bounded" analogue of [4, p. 506, Theorem 2], interesting in 
itself. 

Theorem 1. Let Dbcz D be a ring dense in D for the topology induced by t(N) 
and m: Db—>X a bounded additive set function such that for every p in P there 
exists vp in N such that vp 

lim p(m(A)) = 0, AeD0. 
v p (A)-*0 

Then m can be extended to a bounded additive set function mx: D-^Xsuch that 
for every p in P we have 

lim p(mi(A)) = 0, AeD. 
vp(A>—0 

Proof. Since m is uniformly continuous on D0, it can be uniquely extended to 
mi on D with values in X. This extension is additive on D as can be easily shown. 
However, by assumption m is bounded on D0 and for each A in D we have 
lim m(B) = m2(A) e X when l imB = A, BeD0, in the uniform structure t(N). 
Since m(D0) = {m(B): B in D0} is a bounded subset of X, mx(A) is a strict 
closure point of m(D0) in X and hence m^A) is in the quasi-completion x of X 
[10, §23]. 

R e m a r k 1. Since every non-empty closed, convex subset of a locally convex 
space is the intersection of all closed semi-spaces containing it [11, II.9.2] we can 
see that mi(D) is contained in the X-closed convex cover of m(D0). For every 
closed semi-space in X containing m(D0) contains also mi(D). 

Corollary 1. Let R be a ring and S(R) the sigma ring generated by R. A vector 
measure m R-^Xcan be extended to a measure mx: S(R)-±Xif and only if for 
every p in P there exists a positive bounded measure vp on R such that 

lim p(m(A)) = 0, A e l l . 
vp(A)-*0 

Since vp is bounded on R it can be extended to a positive bounded measure up on 
S(R) and m: R—> X is also bounded on R. In this case D0 = R and D = S(JR). In 
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[4, p. 507] it is proved that m-: S(R)-*X. The "only if" part follows from [4, 
Theorem 1]. 

Recall that many important locally convex spaces are quasi-complete, however 
not complete. 

Corollary 2. IfXis sequentially complete, then the extension mi takes its values 
in X [ 9 , Theorem 4.2]. 

For the set of those A in §(R) for which mt(A) is in X forms a monotone system 
containig R [6, p. 27]. 

2. Regular vector-valued measures 

Let S be a Hausdorff locally compact space. Recall that the class of relatively 
compact Baire sets in S is the delta ring generated by the compact sets which are 
Ga, and is denoted BXS). The class of relatively compact Borel sets in S is the delta 
ring generated by the compact sets in S, and is denoted Br(S). Clearly S is in Br(S) 
if and only if S is compact. In this case Br(S) is a sigma algebra. The class of Baire 
sets in S is the sigma ring generated by the compact G6 sets, and is denoted Ba(S). 
The class of Borel sets in S is the sigma ring generated by the compact sets, and is 
denoted B(S). The class of weakly Borel sets in S is the sigma ring generated by the 
closed or equivalently open sets in S; it is a sigma algebra, and is denoted BW(S). 
The Borel sets are precisely the sigma bounded weakly Borel sets [1, p. 181]. When 
S is metrisable, Ba(S) = B(S), but there exist non-metrisable compact spaces S for 
which the equality holds [8]. Clearly B(S) = BW(S) if and only if S is sigma 
compact. Our terminology is drawn from [1], [3], [6]. 

Let F(S) be a ring of subsets of S and m: R(S)-*X an additive set function. 
We say that m is regular if for each E in R(S) and every d>0, for all p in P there 
exist a comact set C in R(S) and an open set O in R(S), CaEaO, such that we 
have p(m(H)) < d for every H in R(S) with Hc= O - C. Recall that if m: K(S)-> 
X is additive and regular, then m is countably additive [4, p. 510, Theorem 3]. 

By a Baire vector measure on S we mean a vector measure ma: Ba(S)—>X. By 
a Borel vector measure, a weakly Borel vector measure we mean a vector measure 
m: B(S)-^X, m*,: BW(S)—>X, respectively. 

In [4, p. 511] it is proved that every vector measure ma: B|.(S)—>X is regular. 
However, a slightly more general result is true. 

Theorem 2. Every Baire vector measure ma: Ba(S)-*X is regular. 
Proof. From [4, Theorem 1] we deduce that for every p in P there is 

a non-negative finite measure vp on Ba(S) such that v£(B)—>0 implies p(ma(B))-+ 
0 B in Ba(S). Since every va is a Baire measure on Ba(S), v°p is regular [1], 
therefore [4, Lemma 3] ni is regular. 
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Theorem 3. Let X be a normed space. Every Baire vector measure 
ma: Ba(S)—*X can be extended uniquely to the regular Borel vector measure 
m: B(S)-->X. 

The proof is based on the following. 

Lemma 3. If JU : B(S)—> R+ is a finite regular Borel measure and A is any set in 
B(S), then there exists a set B in Ba(S) such that 

dM(A, B) = JU(A - B) + JU(B - A) = 0 

andii(A) = ix(B) [1, p. 221]. 
Proof of Theorem 3. It is well-known [cf. e.g. 4] that there exists 

a non-negative finite Baire measure p.a: Ba(S)->R+ such that 

lim ||ma(B)||=0, B in Ba(S). 
/-..(B)—0 

The Baire measure ]Ua can be extended uniquely to the non-negative finite regular 
Borel measure JU: B(S)-*R+ [1]. According to Lemma 3 for every A in B(S) 
there exists a set B in Ba(S) such that d„(A, B) = \i(A - B) + n(B - A) = 0, hence 

B(S) is dense in fi(S) for the topology induced by dM(A, B). From Theorem 1 we 
deduce that there exists a unique extension of ma to a Borel vector measure 
m B(S)->X such that 

lim ||m(A)||=0, AeB(S), 
*-(A)-*0 

and m is regular because ft is regular [4, Lemma 3]. Further, according to 
Lemma 3, if A is in B(S), there is a set B in Ba(S) such that dM(A, B) = 0, hence 
m(A-B) = m(B- A) = 0 and so m(A)= m(B) = ma(B) and thus the element 
m(A) belogs to X, that is m: B(S)^>X. 

Proposition 1. Let X be a normed space. Every (restricted) Baire vector 
measure ma: Br

a(S)-+Xcan be extended uniquely to the regular (restricted) Borel 
vector measure nf: Br(S)-»X. 

Proof. If A is in Br(S), there is a compact set K such that AczK. Then A 
belongs to KnBr(S) = Br(KnS). Br(KnS) is asigma ring of subsets of Kand we 
may go on as in proving Theorem 3 and obtain the unique regular Borel extension 
mr

K: B(KnS)-+X. Then we put 

mr(A)=mk(A) 

Then mr is unambiguously defined, mr(A) belongs to Xand mr extends mr
a In [4, 

Theorem 5] it is proved that mr takes its values in X = X . 
The preceding theorem remains to be true if X is metrisable, P = (pk) being 

a countable family of continuous seminorms definig the topology in X. 
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Theorem 4. Lef X be a metrisable locally convex space, P = (Pk)> Every Baire 
vector measure m,: Ba(S)—> X can be extended in a unique way to a regular Borel 
vector measure m: B(S)-*X. 

Proof. For every pk there is a finite non-negative Baire vector measure 
/ii: Ba(S)->R+ such that 

lim pk(m,(B)) = 0, BeBa(S). 
M£(B)->o 

Denote by iik the unique regular Borel extension of juj, by m the unique regular 
Borel extension of ma, m: B(S)-+X and note that 

lim pk(m(A)) = 0, AeB(S). 
/ik(A>-*0 

This follows from Theorem 1, Lemma 1 and Lemma 2. 
Define the measure p. on B(S) by the relation 

KA) = £ T* f^ A L, M*(S) = sup (xk(A). 
k=sl L-1-JVlk[<&) AeB(S) 

This is a finite non-negative regular Borel measure on B(S). For every Borel set A 
there is a Baire set B such that dM(A, B ) = JU(A - B) + p(B — A) = 0. Hence 
lik(A - B) = J U * ( B - A) = 0 and so pk(m(A-B)) = pk(m(B- A)) = 0, fc=l,2, ... 
and thus m(A) = m(B) = mfl(B). Hence m(A) belongs to X for every Borel set A 
in H(S). 

Analogously we have the following. 

Proposition 2. Let X be a metrisable locally convex space. Every restricted 
Baire vector measure ma: BXS)^>X can be extended uniquely to a regular 
restricted Borel vector measure mr: B r (S) -»X. 

In [4, p. 511] it is stated that mr has its values in the completion X = Xof X. 
Let now X be a Hausdorff locally convex space with a system P = (p) of 

continuous seminorms on X corresponding to a base of absolutely convex 
neighbourhoods of zero in X. We recall the following, see e.g. [7; 10]. The 
seminorms p in P form a directed set when we define p^q for p , q in P if 
p(x) ^ q(x) for all x in X. If Np = p"1 (0), then we denote by Xp the normed space 
which we obtain if in XI Np we put, for the coset xp (of x from X) in Xp, 

Then by setting 

I * P I I P = P 0 0 for x in xp in X/Np 

xp=fpq(Xя)> P^Я> 

a continuous linear mapping fpq from the normed space X^ onto the normed space 
Xp is defined since 11/^(^)1^ = I I ^ P I I P ^ I I ^ I L - Moreover for p^q^r we have 
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fpr — fpq o fgr. Hence a system (Xp, fpq), p , qeP forms a projective system and we 
can form its projective limit 

X = limproj (Xp, fpq) 

as a subspace of the topological product ]~] Xp consisting of all JC = (JCP), xp e Xp, for 
peP 

which fPq(xq) = xp for all p^ q. Assigning 
x—>x = (xp) 

an isomorphism j of the space X onto the subspace X of X is defined. This is well 
defined since for p^q we have fpq(xq) = xp. Moreover to every x e X there 
corresponds some x in X' for which x = (xp) = j(x). An isomorphism xeX—> 
(xp) e X is topological as follows from the fact that the topology of the space £ is 
determined by the system of seminorms 

P={\\ IIPO/P , p in P}, 

where fp is a restriction to £ of the projection of Y\ Xp into Xp. So if p = \\ \\p o fp 
peP 

and xe%, then 
P(X) = (|| UP O /„)(*) = | | /P(*)| |P = ||xp||p = P(X) 

for all x in X. 
We can see that a Hausdorff locally convex space X is topologically isomorphic 

to the dense subspace Xof the projective limit Xof the normed spaces Xp, peP. 
Let I? be a ring of subsets of a set S and I: R—>X an additive set function. By 

setting 

lp(A) = l(A)p 

an additive set function lp: R—>XP is defined, for all p in P. Thus for each A in R 
the element 1(A) of X may be identified with an element (/p(A))peP in X with 
fpq(lq(A)) = lp(A), p^q, and we may write 1(A) = (lp(A)) p e P^ /(A). Moreover, it 
is clear that if f is countably additive the lp is countably additive for all p in P. So 
every additive (countably additive) set function /: R—>X gives a family (Ip)p€Pof 
the additive (countably additive) set functions every lp taking its values in the 
normed space Xp. For all p in P we have 

p ( / (A) )= | | I p (A) | | p =p( / (A) ) . 

We can now state the following. 

Theorem 5. Let X be a Hausdorff locally convex space. Every Bake vector 
measure »i%: Ba(S)-*X can be extended uniquely to a regular Borel vector 
measure m: B(S)-*X. 
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Proof. For A in Ba(S) we have ma(A) = (map(A)) p e P Since Xp are the normed 
spaces, according to Theorem 3 every map: Bfl(S)—>XP can be extended uniquely 
to a regular Borel vector measure nip: B(S)—>XP. Define m(A) = (mp(A))peP) 

A in B(S). We must show that m(A) belongs to £. We have to prove that 
fpq(mq(A)) = n\,(A) for p^q and A in B(S). Now mp and mq are both regular 
Borel vector measures and so are fpq(mq) because fpq are continuous as mappings 
from Xq onto Xp. Since fpq(mq(B)) = mp(B) for all B in Ba(S), the uniqueness of 
the extension of a Baire vector measure to a regular Borel vector measure implies 
that fpq(ma(A)) = mp(A) for all A in B(S). So indeed, the mapping A-^m(A) 
takes its values in j£. Since 

p(m(A)) = |K(A)||p = ||/p(m(A))||p 

it follows that m: B(S)—> Ĵ Tso defined is a regular Borel vector measure extending 
uniquely the Baire measure ma. 

Analogously we can obtain the following. 

Proposition 3. Let Xbea Hausdorff locally convex space. Every restricted Baire 
vector measure ma: Ba-+ X can be extended uniquely to a regular restricted Borel 
vector measure mr: Br(S)—>£. 

R e m a r k 2. In [4, p. 511] it is stated that m r: Br(S)-*X, X being the 
completion of X. 

R e m a r k 3. According to Remark 1 m(B(S)) is contained in the closed convex 
cover of ma(Ba(S)) in X not only in X. 

For the weakly Borel sets we have the following. 

Theorem 6. Let X be a Hausdorff locally convex space. Every regular Borel 
measure m: B(S)-->X can be extended uniquely to a regular weakly Borel 
measure mw: BW(S)-+X. 

The proof is based on the 

Lemma 4. If \AW is a regular weakly Borel measure on S and A is any weakly 
Borel set, then there exists a Borel setB (even Baire sigma compact set) such tha t 

tiw(A-B) + iiw(B-A) = 0. 

This can be proved in the same way as for a regular Borel measure [1, p. 221]. 
Futher every positive regular Borel measure can be extended uniquely to 

a regular weakly Borel measure [2]. 
Now the proof of our theorem proceeds as that of Theorem 5. 

Corollary. Every Baire vector measure ma: Ba(S)-+Xcan be extended unique
ly to a regular weakly Borel vector measure m*,: BW(S)—>X. 

R e m a r k 4. The fact that a regular Borel vector measure extending the Baire 
vector measure n^ has its values in the same space as ma is useful, for example, in 
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connection with tensor products of regular Borel vector measures [5] and regular 
weakly Borel vector measures. Recall that, in general, the tensor product of locally 
convex spaces fails to be complete even if the factors are complete. 

As for Theorem 1 it is useful when the space is not complete bur only 
quasi-complete, for example, the space of operators on a Banach space with the 
strong operator topology is quasi-complete. 

Remark 5. Modifying the proof of Theorem 5 we could prove that if X is the 
locally convex projective limit of metrisable locally convex spaces X*, q e Q in the 
sense of [10], then every Baire vector measure wv Ba(S)-->X can be extended 
uniquely to a regular Borel vector measure m: B(S)-^>X. It is clear that the space 
X needs not be, in general, metrisable. The case of an arbitrary locally convex 
space X has remained open if we do not assume that X is quasicomplete. 
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О ПРОДОЛЖЕНИИ ВЕКТОРНЫХ МЕР БЭРА 

М11о$1ау ОисЬоп 

Резюме 

В работе доказаны некоторые утверждения о продолжении векторных аддитивных функций 
множества на кольцо из кольца плотного в последнем в некоторой равномерной структуре. При 
помощи этих результатов доказано следующее утверждение. Каждая векторная мера Бэра со 
значениями в метрическом даже общем отделимом ликально выпуклом пространстве (никакая 
полнота не предполагается) может быть продолжена однозначно в регулярную векторную меру 
Бореля со значениями в том же пространстве, а именно в замкнутой выпуклой оболочке 
значений данной векторной меры Бэра. 

321 


		webmaster@dml.cz
	2012-08-01T03:12:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




